# On the Summability Almost Everywhere by the Methods ( $c, \alpha$ ) and Abel-Poisson's of Series with Respect to Block-Orthonormal Systems 

Givi Nadibaidze *<br>Department of Mathematics, Tbilisi State University, Chavchavadze av. 1, 0128, Tbilisi, Georgia<br>(Received February 28, 2014; Revised May 29, 2014; Accepted June 25, 2014)


#### Abstract

In the present paper the sufficient conditions on the blocks are established, when the blockorthonormal series are $(c, \alpha),(\alpha>0)$ and Abel-Poisson's summable almost everywhere and equivalence of the methods $(c, \alpha)(\alpha>0)$ and Abel-Poisson's are established in certain conditions.


Keywords: Block-orthonormal systems, Abel-Poisson's method.
AMS Subject Classification: 42C10.

Below we shall consider almost everywhere (a.e.) summability by the methods $(c, \alpha),(\alpha>0)$ and Abel-Poisson's of series with respect to block-orthonormal systems and we shall establish the equivalence in certain conditions of the methods $(c, \alpha),(\alpha>0)$ and Abel-Poisson's for the summability a.e. of series with respect to block-orthonormal systems.
Definition 1.1: ([1]). Let $\left\{N_{k}\right\}$ be an increasing sequence of natural numbers, $\Delta_{k}=\left(N_{k}, N_{k+1}\right], \quad(k=1,2, \ldots)$ and let $\left\{\varphi_{n}\right\}$ be a system of functions from $L^{2}(0,1)$. The system $\left\{\varphi_{n}\right\}$ will be called a $\Delta_{k}$-orthonormal system ( $\Delta_{k}$-ONS) if:

1) $\left\|\varphi_{n}\right\|_{2}=1, \quad n=1,2, \ldots$;
2) $\left(\varphi_{i}, \varphi_{j}\right)=0$, for $i, j \in \Delta_{k}, \quad i \neq j, \quad k \geq 1$.

Let the series

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n} \varphi_{n}(x) \tag{1}
\end{equation*}
$$

be given, where $\left\{\varphi_{n}\right\}$ is a $\Delta_{k}$-ONS. Below we shall use notations:

$$
\begin{equation*}
\sigma_{n}^{(\alpha)}(x)=\frac{1}{A_{n}^{\alpha}} \sum_{k=1}^{n} A_{n-k}^{\alpha} a_{k} \varphi_{k}(x), \tag{2}
\end{equation*}
$$

where $a_{0}=0$ and $A_{n}^{\alpha}=\binom{\alpha+n}{n}=\frac{(\alpha+1)(\alpha+2) \cdots(\alpha+n)}{n!}$.

[^0]Lemma 1.2: Let the sequence of natural numbers $\left\{N_{k}\right\}$ be given and let for the positive nondecreasing sequence $\{\omega(n)\}$ the conditions

$$
\begin{equation*}
\min \left\{k: N_{k} \geq n\right\}+n \sum_{k: N_{k} \geq n} \frac{1}{N_{k}}=O(\omega(n)) \text {, as } n \rightarrow \infty \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} a_{n}^{2} \omega(n)<\infty \tag{4}
\end{equation*}
$$

be fulfilled. Then for every $\Delta_{k}-O N S\left\{\varphi_{n}\right\}$ we have

$$
\lim _{n \rightarrow \infty} \delta_{n}^{(\alpha)}(x)=0 \text { a.e., }\left(\alpha>\frac{1}{2}\right)
$$

where

$$
\delta_{n}^{(\alpha)}(x)=\frac{1}{n+1} \sum_{k=1}^{n}\left(\sigma_{k}^{(\alpha)}(x)-\sigma_{k}^{(\alpha-1)}(x)\right)^{2}
$$

and $\sigma_{k}^{(\alpha)}(x)$ is defined by formula (2).
Proof: We have

$$
\begin{gathered}
\sigma_{k}^{(\alpha)}(x)-\sigma_{k}^{(\alpha-1)}(x)=\frac{1}{A_{k}^{\alpha} A_{k}^{\alpha-1}} \sum_{j=1}^{k}\left(A_{k-j}^{\alpha} A_{k}^{\alpha-1}-A_{k-j}^{\alpha-1} A_{k}^{\alpha}\right) a_{j} \varphi_{j}(x) \\
=\frac{1}{A_{k}^{\alpha} A_{k}^{\alpha-1}} \sum_{j=1}^{k}\left(-\frac{j}{\alpha} A_{k-j}^{\alpha-1} A_{k}^{\alpha-1}\right) a_{j} \varphi_{j}(x)
\end{gathered}
$$

Therefore

$$
\begin{gathered}
\int_{0}^{1}\left(\sigma_{n}^{(\alpha)}(x)-\sigma_{n}^{(\alpha-1)}(x)\right)^{2} d x=\int_{0}^{1}\left(\frac{1}{A_{n}^{\alpha} A_{n}^{\alpha-1}} \sum_{j=1}^{n}\left(-\frac{j}{\alpha} A_{n-j}^{\alpha-1} A_{n}^{\alpha-1}\right) a_{j} \varphi_{j}(x)\right)^{2} d x \\
=\frac{1}{\left(A_{n}^{\alpha} A_{n}^{\alpha-1}\right)^{2}} \int_{0}^{1}\left(\sum_{i=0}^{k(n)-1} \sum_{j=N_{i}+1}^{N_{i+1}}\left(-\frac{j}{\alpha} A_{n-j}^{\alpha-1} A_{n}^{\alpha-1}\right) a_{j} \varphi_{j}(x)\right.
\end{gathered}
$$

$$
\begin{gathered}
\left.+\sum_{j=N_{k(n)}+1}^{n}\left(-\frac{j}{\alpha} A_{n-j}^{\alpha-1} A_{n}^{\alpha-1}\right) a_{j} \varphi_{j}(x)\right)^{2} d x \\
\leq \frac{2}{\left(A_{n}^{\alpha}\right)^{2} \alpha^{2}}\left(k(n) \sum_{j=1}^{N_{k(n)}} j^{2}\left(A_{n-j}^{\alpha-1}\right)^{2} a_{j}^{2}+\sum_{j=N_{k(n)}+1}^{n} j^{2}\left(A_{n-j}^{\alpha-1}\right)^{2} a_{j}^{2}\right) .
\end{gathered}
$$

Then for the $\alpha>\frac{1}{2}$ we have

$$
\begin{gathered}
\int_{0}^{1} \delta_{2^{m}}^{(\alpha)}(x) d x \leq \frac{2}{\alpha^{2}\left(2^{m}+1\right)} \sum_{n=1}^{2^{m}} \frac{k(n)}{\left(A_{n}^{\alpha}\right)^{2}} \sum_{j=1}^{N_{k(n)}} j^{2}\left(A_{n-j}^{\alpha-1}\right)^{2} a_{j}^{2} \\
+\frac{2}{\alpha^{2}\left(2^{m}+1\right)} \sum_{n=1}^{2^{m}} \frac{1}{\left(A_{n}^{\alpha}\right)^{2}} \sum_{j=N_{k(n)}+1}^{n} j^{2}\left(A_{n-j}^{\alpha-1}\right)^{2} a_{j}^{2} \leq \frac{c k\left(2^{m}\right)}{2^{m}} \sum_{j=1}^{N_{k\left(2^{m}\right)}} j a_{j}^{2}+\frac{c}{2^{m}} \sum_{j=1}^{2^{m}} j a_{j}^{2} .
\end{gathered}
$$

Hence

$$
\begin{gathered}
\sum_{m=1}^{\infty} \int_{0}^{1} \delta_{2^{m}}^{(\alpha)}(x) d x \leq c\left(\sum_{i=1}^{\infty} \sum_{\log _{2} N_{i}<m \leq \log _{2} N_{i+1}} \frac{k\left(2^{m}\right)}{2^{m}} \sum_{j=1}^{N_{k\left(2^{m}\right)}} j a_{j}^{2}+\sum_{j=1}^{\infty} j a_{j}^{2} \sum_{2^{m} \geq j} \frac{1}{2^{m}}\right) \\
\leq c\left(\sum_{j=1}^{\infty} j a_{j}^{2}\left[(k(j)+1) \sum_{m \geq \log _{2} N_{k(j)+1}} \frac{1}{2^{m}}+\sum_{l=2}^{\infty} \sum_{m \geq \log _{2} N_{k(j)+l}} \frac{1}{2^{m}}\right]+\sum_{j=1}^{\infty} a_{j}^{2}\right) \\
\leq c\left(\sum_{j=1}^{\infty} a_{j}^{2}\left(\min \left\{k: N_{k} \geq j\right\}+j \sum_{k: N_{k} \geq j} \frac{1}{N_{k}}\right)+\sum_{j=1}^{\infty} a_{j}^{2}\right)
\end{gathered}
$$

Then by conditions (3),(4) we obtain

$$
\sum_{m=1}^{\infty} \delta_{2^{m}}^{(\alpha)}(x)<\infty \quad \text { a.e. }
$$

Hence Levi's theorem implies

$$
\lim _{m \rightarrow \infty} \delta_{2^{m}}^{(\alpha)}(x)=0 \quad \text { a.e. }
$$

Now if $2^{m}<n<2^{m+1}$, then

$$
0 \leq \delta_{n}^{(\alpha)}(x) \leq 2 \delta_{2^{m+1}}^{(\alpha)}(x)
$$

Therefore

$$
\lim _{n \rightarrow \infty} \delta_{n}^{(\alpha)}(x)=0 \quad \text { a.e. }
$$

Lemma 1.3: Let the sequence of natural numbers $\left\{N_{k}\right\}$ be given, $\left\{\varphi_{n}\right\}$ is an arbitrary $\Delta_{k}$-ONS and let for the positive nondecreasing sequence $\{\omega(n)\}$ the conditions (3),(4) be fulfilled. If corresponding series (1) is summable a.e. on $(0,1)$ to the function $S(x)$ by the method $(c, \alpha),(\alpha>1 / 2)$, then a.e. on $(0,1)$ we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|S(x)-\sigma_{k}^{\alpha-1}(x)\right|=0
$$

and

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n}\left|S(x)-\sigma_{k}^{\alpha-1}(x)\right|^{2}=0
$$

where $\sigma_{k}^{(\alpha)}(x)$ is defined by formula (2).
Lemma 1.3 is possible to prove by standard method using Lemma 1.2 (see [2, proof [5.8.2]] ).

Lemma 1.4: Let the sequence of natural numbers $\left\{N_{k}\right\}$ be given, $\left\{\varphi_{n}\right\}$ is an arbitrary $\Delta_{k}-O N S$ and for the positive nondecreasing sequence $\{\omega(n)\}$ the conditions $(3),(4)$ are fulfilled. If the corresponding series (1) is summable a.e. on $(0,1)$ by the Poisson's method, then the series (1) is summable a.e. on $(0,1)$ by the all methods $(c, \alpha),(\alpha>0)$.

Lemma 1.4 is possible to prove by standard method using Lemma 1.3 (see [2, proof [5.8.4]] ).

Theorem 1.5: Let the sequence of natural numbers $\left\{N_{k}\right\}$ be given, $\left\{\varphi_{n}\right\}$ is an arbitrary $\Delta_{k}-$ ONS and for the positive nondecreasing sequence $\{\omega(n)\}$ the conditions (3), (4) are fulfilled. Then for the corresponding series (1) all methods $(c, \alpha),(\alpha>0)$ and Abel-Poisson's method are equivalent.

Proof: Let conditions (3), (4) be fulfilled. Then we have

$$
\begin{align*}
& \min \left\{k: N_{k} \geq n\right\}+n^{2} \sum_{k: N_{k} \geq n} \frac{1}{N_{k}^{2}} \leq \min \left\{k: N_{k} \geq n\right\}+n^{2} \sum_{k: N_{k} \geq n} \frac{1}{n N_{k}} \\
& =\min \left\{k: N_{k} \geq n\right\}+n \sum_{k: N_{k} \geq n} \frac{1}{N_{k}}=O(\omega(n)) \text { as } n \rightarrow \infty . \tag{*}
\end{align*}
$$

Therefore using [3, Lemma 1] we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} n\left(\sigma_{n}(x)-\sigma_{n-1}(x)\right)^{2}<\infty \text { a.e. } \tag{5}
\end{equation*}
$$

Let the corresponding series (1) be summable a.e. by Abel-Poisson's method. Then by mentioned method is summable a.e. series

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(\sigma_{n}(x)-\sigma_{n-1}(x)\right) \tag{6}
\end{equation*}
$$

Hence by (5) we obtain that series (6) is summable a.e. by the method $(c, 1)$. Then by Lemma 1.4 we finished proof of Theorem 1.5.
Theorem 1.6: Let the sequence of natural numbers $\left\{N_{k}\right\}$ be given, $\left\{\varphi_{n}\right\}$ is an arbitrary $\Delta_{k}$-ONS and for the positive nondecreasing sequence $\{\omega(n)\}$ the conditions (3),(4) are fulfilled.Then for corresponding series (1) to be summable a.e. by $(c, \alpha),(\alpha>0)$ and Abel-Poisson's methods it is necessary and sufficient that the subsequence of partial sums $\left\{S_{2^{n}}\right\}$ of (1) be convergent a.e.
Proof: Theorem 1.6 will be proved using Theorem 1.5, estimate $\left(^{*}\right)$ and [3, Theorem 2].

Finally, using Theorem 1.6 and method of proof [3, Theorem 3] we have
Corollary 1.7: Let the sequence of natural numbers $\left\{N_{k}\right\}$ be given, $\left\{\varphi_{n}\right\}$ is an arbitrary $\Delta_{k}$-ONS and for the sequence $\omega(n)=\left(\log _{2} \log _{2} n\right)^{2}$ the conditions (3),(4) are fulfilled. Then corresponding series (1) is summable a.e. on $(0,1)$ by all methods $(c, \alpha),(\alpha>0)$ and Abel-Poisson's method.

## References

[1] V.F. Gaposhkin, Series of block-orthonormal and block-independent systems (Russian), Izv. VUZ, ser. Mathem., 34, 5 (1990), 13-20
[2] Kaczmarz S., Steinhaus H., Theorie der Orthogonaleihen, New York, 1951
[3] G. Nadibaidze, On the convergence and summability of series with respect to block- orthonormal systems, Georgian Math. J., 2, 5 (1995), 517-534


[^0]:    * Email: g.nadibaidze@gmail.com

    ISSN: 1512-0082 print
    (C) 2014 Tbilisi University Press

