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1. Introduction

Let H = {hn(x)}∞n=0 , x ∈ [0, 1] denote the Haar system normalized in L2
[0,1] (see

[1]). We recall that the Haar system is a basis in space Lp[0,1] , p≥ 1(see [2], [3]),

i.e. each function f(x) ∈ Lp[0,1] can be represented by a unique series

∞∑
n=1

cn(f)hn(x) , (1)

which converges to f(x) in the Lp[0,1]− norm. Note that in (1)

cn(f) =

∫ 1

0
f(x)hn(x)dx , n ≥ 1, (2)

and the Fourier-Haar series (2) of each function f(x) ∈ L1
[0,1] converges to f(x)

almost everywhere on [0 , 1 ] (a.e.). It is known that the Haar system is not an
unconditional basis in L1[0, 1] (see[4]) i.e. there exists a function f(x) ∈ L1

[0,1],

whose Fourier-Haar series
∑∞

k=1 ck(f)hk(x) can be so rearranged as to become
divergent in L1[0, 1].

A.M. Olevskii [5] has constructed a function f(x) ∈ L∞[0,1], whose Fourier-Haar

series
∑∞

k=1 ck(f)hk(x) can be so rearranged as to become divergent almost every-
where on [0 , 1 ].

Note that P.L.Ul’yanov and E.M.Nikishin in [6] proved: if Haar series uncon-
ditionally is convergent almost everywhere on [0,1] then it absolutely convergent
almost everywhere.

∗Email: gmarting@ysu.am



Vol. 18, No. 1, 2014 131

The spectrum of f(x) (denoted by Λ(f) = spec(f)) is the support of the sequence
of Fourier coefficients {ck(f)} of the function f(x) in the Haar’s system, i.e. the
set of integers where ck(f) is non-zero.

In this paper we prove the following results, communicated at the International
Conference on Fourier Analysis and Approximation Theory dedicated to the 80th
birthday of Academician Levan Zhizhiashvili (see [20]):

Theorem 1.1 : For every ε > 0, there exists a measurable set E ⊂ [0, 1] with
|E| > 1−ε, such that for every function f(x) ∈ L[0,1] one can find a function f̃(x) ∈
L[0,1], f̃(x)=f(x), x ∈ E, whose Fourier-Haar series is unconditionally convergent

almost everywhere on [0, 1], and the sequence {ck(f̃) , k ∈ spec(f̃(x))} ↘ 0(.i.e.
the nonzero terms of the sequence of Fourier coefficients {ck(f̃)} of the function
f̃(x) in the Haar system is monotonically decreasing and converges to zero.)

Note that P.L.Ul’yanov in [7] constructed a function f0(x) ∈ L1
[0,1], whose Fourier-

Haar coefficients diverge unboundedly .
Theorem 1 is equivalent to the following:

Theorem 1.2 : For every ε > 0, there exists a measurable set E ⊂ [0, 1] with
|E| > 1−ε, such that for every function f(x) ∈ L[0,1] one can find a function g(x) ∈
L[0,1], g(x) = f(x), x ∈ E, whose Fourier-Haar series is absolutely convergent
almost everywhere on [0 , 1 ], and the sequence {ck(g) , k ∈ spec(g)} ↘ 0.

Note that Theorems 1 and 2 are not true for the trigonometric system.
For the trigonometric and Walsh systems. interesting results in this direction

were obtained by many mathematicians (see for example [8]-[19]).
The following questions remain open.

Question 1. Is it possible to take the modified function g(x) in theorem 2 such
that its Fourier-Haar series absolutely converges in the L1[0, 1] norm?

Question 2. Is it possible to take the modified function f̃(x) such that its Fourier
series in the trigonometric system unconditionally converges in the L1[0, 1] norm ?

2. Basic lemmas

At first we recall the definition of the Haar system(see [1]). It is a system of functions
H = {hn(x)}∞n=0 , x ∈ [0, 1], in which h1(x) ≡ 1 , x ∈ [0, 1] and for n = 2k+m; k =
0, 1, ... ; m = 1, 2, ..., 2k

hn(x) = h
(m)
k (x) = h2k+m(x) =


2k/2 if m−1

2k < x < 2m−1
2k+1 ,

−2k/2 if 2m−1
2k+1 < x < m

2k ,

0 for x /∈ [m−1
2k , m2k ].

(3)

The values taken by these functions in the discontinuity points are not essential
in the present work, hence we do not give them.

By ∆n = ∆
(i)
k , n = 2k+i (n ≥ 2), we denote the support of the function hn(x) =

h
(i)
k (x). An interval ∆n = ∆

(i)
k = ( i−1

2k ,
i

2k ) , n = 2k+i ; k = 0, 1, ... ; i = 1, 2, ..., 2k,
is termed a dyadic interval.

For a set E we denote its characteristic function by χ
E(x).
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Lemma 2.1: For any given numbers γ 6= 0, N0 > 1, q, q0, (q > q0 > 2), δ ∈ (0, 1)

and interval ∆ ⊂ [0, 1] of the form ∆ = ∆
(s)
k = ( i−1

2ν ,
i

2ν ), i ∈ [1; 2ν ] there exists
a measurable set G ⊂ E ⊂ ∆ and a polynomial Q(x) by H of the form

Q(x) =

N∑
k=N0

akhk(x)

which satisfy the conditions:

|E| = (1− 2−q)|∆|,

Q(x) =

{
γ, x ∈ E;

0, x /∈ ∆.

∫ 1

0
|Q(x)| dx < 2|γ||∆|·

N∑
k=N0

ak|hk(x)| < 2q0 |γ|, x ∈ G

|G| = (1− 2−q0)|∆|,

0 ≤ ak < δ,

and nonzero coefficients in {ak}Nk=N0
are arranged in the decreasing order.

Proof : Chosen a subsequence {li} so that

li+1 − li ≥ 2 ∀ i ∈ N, (4)

and a natural j so large that

lj ≥ 2 log2

| γ |
δ

+ log2N0 + ν, (5)

We define a polynomial Q1(x) in the following way

Q1(x) = 2−
lj

2 | γ |
∑

s (∆
(s)
lj
⊂∆)

h
(s)
lj

(x).

The polynomialQ1(x) on ∆ takes values γ and −γ. We denote by E1 a set, on
which P1(x) is equal to −γ.
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By induction we define polynomials Q2(x), Q3(x), ..., Qq(x) and the sets
E2, E3, ..., Eq in the following way

Qi+1(x) = 2i−
lj+i

2 | γ |
∑

s (∆
(s)
lj+i
⊂Ei)

h
(s)
lj+i

(x), (6)

Ei+1 = {t ∈ Ei : Qi+1(t) 6= 2iγ}, (7)

It is clear that

| Qi+1(x) |= 2i−
lj+i

2 | γ |
∑

s (∆
(s)
lj+i
⊂Ei)

| h(s)
lj+i

(x), |=

{
2i | γ | ∀x ∈ Ei.
0, x /∈ Ei.

(8)

| E1 |=
| ∆ |

2
and | Ei+1 |=

| Ei |
2

for all i = 1, 2, . . . , q − 1, (9)

and

E0 = ∆ ⊃ E1 ⊃ E2 . . . ⊃ Eq0 ⊃ .. ⊃ Eq, (10)

Define a polynomial Q(x) and a sets E and G as follows

Q(x) =

q∑
i=1

Qi(x) (11)

E = ∆ \ Eq, G = ∆ \ Eq0 , (12)

From (8)-(12) we have

| G |=| ∆ | − | Eq0 |= (1− 2−q0) | ∆ |,

| E |=| ∆ | − | Eq |= (1− 2−q) | ∆ |,

Q(x) =


γ,∀x ∈ E.
−(2q − 1)γ, ∀ x ∈ Eq.
0, ∀ x /∈ ∆

From this we get ∫ 1

0
|Q(x)| dx < 2|γ||∆|
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That is, the statements 1)-3) and 5) of Lemma 2.1 are satisfied.Now we will check
the fulfillment of statement (4) of Lemma 2.1.

Further, by (5),(6) and (11) the polynomial Q(x) is of the form

Q(x) =

N∑
k=N0

akhk(x), ak =

∫ 1

0
Q(x)hk(x)dx, (13)

All coefficients in decomposition of polynomials Qi(x) are nonnegative; conse-
quently coefficients ak will be also nonnegative. All nonzero coefficients of the
polynomial Qi(x) are equal

2i−1− lj+i−1

2 | γ |,

and from (4) we have

2i−1− lj+i−1

2 | γ |≥ 2i−
lj+i

2 | γ |,

hence nonzero numbers in {ak}Nk=N0
are arranged in the decreasing order. For

the proof termination it is necessary to notice that (see (5)

2i−
lj+i

2 | γ |≤ 2−
lj

2 | γ |< δ

Taking relations (8),(10) and (12) for all x ∈ G and each i > q0 we obtain
Qi(x) = 0.

Therefore, by (8)-(11) and (13) for all x ∈ G we have

N∑
k=N0

ak|hk(x)| =
q∑
i=1

|Qi(x)| =
q0∑
i=1

|Qi(x)| < 2q0 |γ|, x ∈ G

�

Lemma 2.1 is proved.

Lemma 2.2: Let numbers k0 ≥ 1, ε ∈ (0, 1) and a Haar polynomial f(x) with∫ 1
0 |f(x)| dx < 1 be given.Then one can find a measurable set G ⊂ E ⊂ ∆ and a

polynomial P (x) in the Haar system H of the form

Q(x) =

k̄∑
k=k0+1

akhsk(x) , sk ↗ ,

that satisfy the following conditions:

1) | E |> 1− ε;

2) | G |> 1−
√∫ 1

0 |f(x)| dx;
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3) Q(x) = f(x) E;

4) ε > ak ≥ ak+1 > 0 , k ∈ [k0 ; k̄);

5)
∫ 1

0 |Q(x)| dx ≤ 2
∫ 1

0 |f(x)| dx;

6)
∑k̄

k=k0+1 ak|hsk (x)| < 4|f(x)|√∫ 1

0
|f(x)|dx;

if x ∈ G ,

Proof : Let

f(x) =

j0∑
j=0

bjhj(x) =

µ0∑
ν=1

γν · χ∆ν(x) (14)

where ∆νare dyadic intervals of the form∆
(s)
k = ( i−1

2ν0 ,
i

2ν0 ), i ∈ [1; 2ν0 ]
Let:

q0 = 2−

log2

√∫ 1

0
|f(x)| dx;

 , q = q0 +

[
log2

1

ε

]
(15)

Repeated application of Lemma 1 yields a sequence of measurable sets {Eν}µ0

ν=1,
{Gν}µ0

ν=1and a sequence of polynomials {Qν(x)}µ0

ν=1 in the Haar system of the form

Qν =

mν−1∑
k=mν−1

a
(ν)
k hsk(x), ν = 1, 2, . . . , µ0,m0 = k0 + 1, (16)

such that

Qν(x) =

{
γν , x ∈ Eν ;

0, x /∈ ∆ν .
(17)

ε > a(ν−1)
mν−2

≥ ... ≥ a(ν−1)
k ≥ a(ν−1)

k+1 ≥ a(ν−1)
mν−1−1

> a(ν)
m
ν−1
≥ ... ≥ a(ν)

k ≥ a
(ν)
k+1 ≥ ... ≥ a

(ν)
mν−1 > 0, 1 ≤ ν ≤ µ0, (18)

Gν ⊂ Eν ⊂ ∆ν |, 1 ≤ ν ≤ µ0, (19)

|Eν | = (1− 2−q)|∆ν , (20)

|Gν | = (1− 2−q0)|∆ν |, (21)
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0
| Qν(x) | dx < 2 | γν || ∆ν |, (22)

mν−1∑
k=mν−1

a
(ν)
k |hsk(x)| <

{
2q0+1|γν |, x ∈ Gν ,
0, x /∈ ∆ν .

(23)

We put

Q(x) =

µ0∑
ν=1

Qν(x) =

k̄∑
k=k0+1

akhnk , (24)

where

ak = a
(ν)
k , k ∈ [mν−1,mν), 1 ≤ ν ≤ µ0(mµ0

− 1), (25)

E =

µ0⋃
ν=1

Eν, andG =

µ0⋃
ν=1

Gν . (26)

From this and (24) we obtain

Q(x) = f(x) x ∈ E,

ε > ak ≥ ak+1 > 0, k ∈ (k0, k̄),

∫ 1

0
|Q(x)| dx ≤ 2

ν0∑
ν=1

|γν ||∆ν | = 2

∫ 1

0
|f(x)| dx

|E| > 1− ε, | G |> 1−

√∫ 1

0
|f(x)| dx;

Taking relations (15),(23)-(25) for all x ∈ G we have

k̄∑
k=k0+1

ak|hsk(x)| =
µ0∑
ν=1

mν−1∑
k=mν−1

ak|hsk(x)| ≤ 2 |f (x )|√∫ 1
0 |f(x)| dx

�

Lemma 2.2 is proved.
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{, fn(x)}∞n=1, x ∈ [0, 1) (27)

be a sequence of Haar polynomials with rational coefficients.
Applying Lemma 2.2 consecutively, we can find a sequences {Gn}, {En} of sets

and a sequence of polynomials in the Haar system of the form

Qn(x) =
∑

sk∈[mn−1,mn)

askhsk(x), n ≥ 1, mn ↗, ( ask > 0, sk ↗), (28)

which satisfy the conditions:

Qn(x)= fn(x), x ∈ En, n ≥ 1 (29)

|En| > 1− ε · 4−8(n+2), (30)

∫ 1

0
|Qn(x)| dx < 2

∫ 1

0
|fn(x)| dx, (31)

1

n
> ask ≥ ask+1

> asmn > 0, ∀n ≥ 1, ∀sk, sk+1 ∈ [mn−1,mn − 1). (32)

∑
sk∈[mn−1,mn)

ask |hsk(x)| ≤
4 |f n(x )|√∫ 1
0 |fn(x)| dx

, ∀x ∈ Gn, n ≥ 1 (33)

|Gn| > 1−

√∫ 1

0
|fn(x)| dx, n ≥ 1. (34)

We put

ai = ask ,∀i ∈ [sk, sk+1), ∀k ≥ 1. (35)

and

E =

∞⋂
n=1

En. (36)

It is clear (see (30),(34))

|E| > 1− ε, ai ↘ 0(ai > 0)

Proof (of Theorem 1.1): Let ε ∈ (0, 1)and let
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Let f(x) ∈ L1(0, 1). It is not hard to see that one can find a subsequence
{fnk(x)}∞n=1 from sequence (27) such that

lim
N→∞

∫ 1

0

∣∣∣∣∣
N∑
k=1

fnk(x)− f(x)

∣∣∣∣∣ dx = 0. (37)

lim
N→∞

N∑
k=1

fnk(x) = f(x).a.e.on[0, 1]. (38)

and

ε · 4−4(k+3) ≤
∫ 1

0
|fnk(x)| dx ≤ ε · 4−4(k+2), k ≥ 2 |. (39)

ε = min

{
ε

2
,

∫
E
|f(x)|dx

}
Let

Bk =
{
x ⊂ [0, 1]; |fnk(x)| dx ≤ 4−3(k+2)

}
.k ≥ 2. (40)

From this and (39) we have

|[0, 1) \Bk| · 4−3(k+2) ≤
∫

[0,1)\Bk
|fnk(x)| dx ≤ ε · 4−4(k+2), k ≥ 2 , .

Then

|Bk| > 1− ε · 4−(k+2). (41)

We put

B =

∞⋃
ν=1

∞⋂
k=ν

(Bk ∩Gnk). (42)

From (31), (34), (39), (41) and (42) we obtain

∫ 1

0

∣∣∣∣∣
∞∑
k=1

Qnk(x)

∣∣∣∣∣ dx ≤ 2

∞∑
k=1

∫ 1

0
|fnk(x)| dx <∞ (43)

|B| = 1.
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Let the function f̃(x) and the series

∞∑
i=1

δiaiϕi(x) be defined as follows:

f̃(x) =

∞∑
k=1

Qnk(x) =

∞∑
k=1

∑
sj∈[mnk−1,mnk

)

asjhsj (x). (44)

∞∑
i=1

δiaihi(x) =

∞∑
k=1

∑
sj∈[mnk−1,mnk

)

asjhsj (x). (45)

where

δi =

{
1, for i = sj , where sj ∈ ∪∞k=1[mnk−1,mnk) .

0, otherwise .

From this and (29), (31), (36), (39), (43)-(45) we have

f̃(x) ∈ L1(0, 1); f̃(x) = f(x) , x ∈ E,

lim
k→∞

∫ 1

0

∣∣∣∣∣∣
mnk
−1∑

i=1

δiaihi(x)− f̃(x)

∣∣∣∣∣∣ dx = 0.

and therefore

δiai =

∫ 1

0
f̃(x)hi(x)dx, i ≥ 1

Let x ∈ B . Then for some k0 (see (42)) we have x ⊂ Bk ∩Gnk∀k ≥ k0.
From (39), (40) we obtain

∑
sj∈[mnk−1,mnk

)

asj |hsj (x)| ≤
4 |f nk(x )|√∫ 1
0 |fnk(x)| dx

≤ 4.2−3(k+2)

2−2(k+2)
→ 0, k →∞.

Further, from (44), (45), and (43) it follows that the series (45) absolutely (un-
conditionally) converges almost everywhere on [0 , 1 ] to f̃(x).

i.e.

∞∑
i=1

δiai|hi(x)| =
∞∑
k=1

∑
sj∈[mnk−1,mnk

)

asj |hsj (x)| <∞, x ∈ B.
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lim
N→∞

N∑
i=1

δiaihi(x) = f̃(x)

�

Theorem 1.1 is proved.
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