On some Properties of Conjugate Fourier-Stieltjes Series

Shalva Zviadadze *
I. Javakhishvili Tbilisi State University, 13 University St., 0186, Tbilisi, Georgia (Received January 16, 2014; Revised April 30, 2014; Accepted June 23, 2014)

A theorem of Ferenc Lukács [9] states that the partial sums of conjugate Fourier series of a periodic Lebesgue integrable function f diverge at the logarithmic rate at the points of first kind discontinuity of f.

The aim of this paper is to investigate analogous problems in terms of Fourier-Stieltjes series and Abel-Poisson means of the Fourier-Stieltjes series.

Keywords: Fourier-Stieltjes series, Bounded variation.
AMS Subject Classification: 42A38, 42A50.

1. Introduction

Let f be a 2π periodic Lebesgue integrable function. The Fourier trigonometric series of the function f is defined by

$$
\begin{equation*}
\frac{a_{0}}{2}+\sum_{i=1}^{\infty}\left(a_{i} \cos i x+b_{i} \sin i x\right) \tag{1}
\end{equation*}
$$

where

$$
a_{i}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos i x d x \text { and } b_{i}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin i x d x
$$

are the Fourier coefficients of f. The conjugate series of (1) is defined by

$$
\begin{equation*}
\sum_{i=1}^{\infty}\left(a_{i} \sin i x-b_{i} \cos i x\right) \tag{2}
\end{equation*}
$$

Let $\tilde{S}_{k}(f ; x)$ be the k-th partial sum of series (2). Lukács [9] proved the following theorem.
Theorem 1.1: If $f \in L(-\pi, \pi]$ and the finite limit

$$
\lim _{t \rightarrow 0+}[f(x+t)-f(x-t)]=d_{x}(f),
$$

[^0]exists at some point $x \in(-\pi, \pi]$ then
$$
\lim _{k \rightarrow+\infty} \frac{\tilde{S}_{k}(f ; x)}{\ln k}=-\frac{d_{x}(f)}{\pi}
$$
B. Golubov obtained a formula for the jump of a function of bounded p-variation at a given point in terms of derivatives of partial sums of its Fourier series.
R. Riad [13] proved an analogous theorem of the Lukács theorem in terms of the conjugate Walsh series.
G. Kvernadze, T. Hagstrom, H. Shapiro ([5]-[8]) investigate how to determined jumps for class of function generalized variation in terms of Jacobi polynomials, also they utilize the truncated Fourier series as a tool for the approximation of the points of discontinuities and the magnitudes of jumps of a 2π-periodic bounded function in terms of derivative of the partial sums, they also use integrals.
F. Móricz ([10], [11]) generalized Lukács's theorem in terms of the Abel-Poisson means and proved estimate of the partial derivative of the Abel-Poisson mean of an integrable function at those points where functions are smooth.

Pinsky [12] generalized Fourier partial sums by using a family of convolution operators with some classes of kernels.
Q. Shi and X. Shi [14] discuss the concentration factor methods for determination of jumps in terms of spectral data.
P. Zhou and S. Zhou [19] generalize Lukács theorem in terms of the linear operators which satisfy some certain conditions.
D. Yu, P. Zhou and S. Zhou [17] show how jumps can be determined by the higher order partial derivatives of the of its Abel-Poisson means.

The authors ([20], [21]) examine the analogous theorems for the generalized Cesáro means, introduced by Akhobadze ([1]-[3]), as well as positive regular linear means, and consider ([22], [23]) Lukás theorem for the functions and series introduced by Taberski ([15], [16]) as well as generalized Cesáro, positive regular linear and Abel-Poisson means.

2. Formulation of the results

Our interest is to study same tasks for Fourier-Stiltjes series. Let the function f be 2π periodic and have bounded variation on the $[-\pi ; \pi]$, the Fourier coefficients are defined as

$$
\begin{equation*}
a_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} \cos k x d f(x) \quad b_{k}=\frac{1}{\pi} \int_{-\pi}^{\pi} \sin k x d f(x) . \tag{3}
\end{equation*}
$$

By $\tilde{S}_{n}(d f ; x)$ we define the n-th partial sum of Fourier-Stieltjes series of the f. Also define

$$
\varphi_{x}(t)=f(x+t)+f(x-t)-2 f(x)-t \cdot\left(f^{\prime}(x+)-f^{\prime}(x-)\right) .
$$

Theorem 2.1: For any point x where there exist numbers $f^{\prime}(x+), f^{\prime}(x-)$ and

$$
\begin{equation*}
\stackrel{t}{V}\left(\varphi_{x}\right)=o(t), \quad t \rightarrow 0+ \tag{4}
\end{equation*}
$$

we have

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} \frac{\tilde{S}_{n}(d f ; x)}{\ln n}=-\frac{f^{\prime}(x+)-f^{\prime}(x-)}{\pi} \tag{5}
\end{equation*}
$$

where $\underset{0}{\stackrel{t}{V}}\left(\varphi_{x}\right)$ is a variation of the function $\varphi_{x}(\cdot)$ on the set $[0 ; t]$.
It is natural to ask: is the analogue of the last statement valid for a Abel-Poisson summability method?

Abel-Poisson means of the conjugate Fourier-Stieltjes series is defined as

$$
\begin{equation*}
d \tilde{f}(r, x)=\sum_{k \in \mathbb{N}} r^{k}\left(a_{k} \sin k x-b_{k} \cos k x\right)=-\frac{1}{\pi} \int_{0}^{\pi} Q(r, x) d(f(x+t)+f(x-t)) \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
Q(r, t)=\sum_{k \in \mathbb{N}} r^{k} \sin k t=\frac{r \sin t}{(1-r)^{2}+4 r \sin ^{2}(t / 2)} \tag{7}
\end{equation*}
$$

Now we examine the analogous of the theorem 2.1 for Abel-Poisson mean.
Theorem 2.2: For any point x where there exist numbers $f^{\prime}(x+), f^{\prime}(x-)$ we have

$$
\begin{equation*}
\lim _{r \rightarrow 1-} \frac{d \tilde{f}(r, x)}{\ln (1-r)}=\frac{f^{\prime}(x+)-f^{\prime}(x-)}{\pi} \tag{8}
\end{equation*}
$$

Note that in Theorem 2.2 we omit condition (4). It is natural to ask about condition (4). If the function f is absolutely continuous then the mentioned condition follows automatically, but in this case we provide the known results in the introduction. Arises a question: is condition (4) equivalent to absolutely continuity of function f ?

Proposition 2.3: There exists function f of bounded variation which is not absolutely continuous but for which (4) holds.

It is interesting if there is a possibility to replace (4) with a weaker condition. Our hypothesis is that (4) is the best option to guarantee (5).

3. Proofs

Proof (of Theorem 2.1):

$$
\begin{gather*}
\tilde{S}_{n}(d f ; x)=-\frac{1}{\pi} \int_{0}^{\pi} \tilde{D}_{k}(t) d(f(x+t)+f(x-t)) \\
=-\frac{1}{\pi} \int_{0}^{\pi} \tilde{D}_{k}(t) d\left(f(x+t)+f(x-t)-2 f(x)-t \cdot\left(f^{\prime}(x+)-f^{\prime}(x-)\right)\right) \\
-\frac{f^{\prime}(x+)-f^{\prime}(x-)}{\pi} \int_{0}^{\pi} \tilde{D}_{k}(t) d t=-A_{1}(n)-A_{2}(n) \tag{9}
\end{gather*}
$$

Let estimate $A_{1}(n)$. By (4) for every $\varepsilon>0$ we can choose $\delta \equiv \delta(\varepsilon)>0$ such that

$$
\begin{equation*}
\underset{0}{t}\left(\varphi_{x}\right)<\varepsilon \cdot t, \quad t \in(0 ; t) \tag{10}
\end{equation*}
$$

Let us choose n such that $1 / n<\delta$. We get

$$
\begin{align*}
A_{1}(n) & =\frac{1}{\pi}\left(\int_{0}^{1 / n}+\int_{1 / n}^{\delta}+\int_{\delta}^{\pi}\right) \tilde{D}_{k}(t) d \varphi_{x}(t) \\
& =B_{1}(n)+B_{2}(n)+B_{3}(n) \tag{11}
\end{align*}
$$

Since $\left|\tilde{D}_{n}(t)\right| \leq n$ for all t, (see [18, Ch. II, (5.11)]), by (10) we have

$$
\begin{equation*}
B_{1}(n) \leq \frac{n}{\pi} \int_{0}^{1 / n} d \stackrel{t}{V}\left(\varphi_{x}\right)<\frac{\varepsilon}{\pi} \tag{12}
\end{equation*}
$$

By estimation $\left|\tilde{D}_{n}(t)\right| \leq 2 / t, t \in(0 ; \pi]$, (see [18, Ch. II, (5.11)]) and integration by parts with respect to t and (10) we have

$$
\begin{equation*}
B_{2}(n) \leq \frac{2}{\pi} \int_{1 / n}^{\delta} \frac{1}{t} d \stackrel{t}{V}\left(\varphi_{x}\right)<\varepsilon+\frac{2}{\pi} \int_{1 / n}^{\delta} \frac{1}{t^{2}} \underset{0}{t}\left(\varphi_{x}\right) d t<\varepsilon+\frac{2 \varepsilon}{\pi} \int_{n}^{\delta} \frac{1}{t} d t=o(\ln n) \tag{13}
\end{equation*}
$$

$$
\begin{equation*}
B_{3}(n) \leq \frac{2}{\pi} \int_{\delta}^{\pi} \frac{1}{t} d \underset{0}{t}\left(\varphi_{x}\right) \leq \frac{2}{\pi \delta} \int_{\delta}^{\pi} d \underset{0}{V}\left(\varphi_{x}\right) \leq \frac{2}{\pi \delta} \stackrel{\pi}{V}\left(\varphi_{x}\right)=O(1) \tag{14}
\end{equation*}
$$

By (11)-(14) we get

$$
\begin{equation*}
\lim _{n \rightarrow+\infty} A_{1}(n) / \ln n=0 \tag{15}
\end{equation*}
$$

It is well known that

$$
\int_{0}^{\pi} \tilde{D}_{n}(t) d t \simeq \ln n
$$

therefore we get

$$
\lim _{n \rightarrow+\infty} \frac{\pi \cdot A_{2}(n)}{\left(f^{\prime}(x+)-f^{\prime}(x-)\right) \cdot \ln n}=1 .
$$

Combining (9), (15) and the last estimate we prove (5).

Proof (of Theorem 2.2):

$$
\begin{gather*}
d \tilde{f}(r, x)=-\frac{1}{\pi} \int_{0}^{\pi} Q(r, x) d \varphi_{x}(t)-\frac{f^{\prime}(x+)-f^{\prime}(x-)}{\pi} \int_{0}^{\pi} Q(r, x) d t \\
=-D_{1}(r)-D_{2}(r) \tag{16}
\end{gather*}
$$

Let us estimate $D_{2}(r)$. Consider

$$
\left(2^{-1} \ln \left((1-r)^{2}+4 r \sin ^{2}(t / 2)\right)\right)^{\prime}=\frac{r \sin t}{(1-r)^{2}+4 r \sin ^{2}(t / 2)}
$$

Therefore we have

$$
\begin{gather*}
D_{2}(r)=\left.\frac{f^{\prime}(x+)-f^{\prime}(x-)}{\pi}\left(2^{-1} \ln \left((1-r)^{2}+4 r \sin ^{2}(t / 2)\right)\right)\right|_{0} ^{\pi} \\
=\frac{f^{\prime}(x+)-f^{\prime}(x-)}{\pi}(\ln (1+r)-\ln (1-r)) \simeq-\frac{f^{\prime}(x+)-f^{\prime}(x-)}{\pi} \ln (1-r) . \tag{17}
\end{gather*}
$$

By definition of the numbers $f^{\prime}(x+)$ and $f^{\prime}(x-)$, for any $\varepsilon>0$ we choose $\delta=$ $\delta(\varepsilon)>0$ such that when $t \in[0 ; \delta]$ we have

$$
\left|f(x+t)-f(x)-f^{\prime}(x+) \cdot t\right| / t<\varepsilon / 2, \quad\left|f(x-t)-f(x)+f^{\prime}(x-) \cdot t\right| / t<\varepsilon / 2
$$

Therefore

$$
\left|f(x+t)-f(x)-f^{\prime}(x+) \cdot t\right|<\varepsilon \cdot t / 2, \quad\left|f(x-t)-f(x)+f^{\prime}(x-) \cdot t\right|<\varepsilon \cdot t / 2
$$

By definition of $\varphi_{x}(t)$ we have

$$
\begin{gather*}
\left|\varphi_{x}(t)\right|=\mid f(x+t)+f(x-t)-2 f(x)-t \cdot\left(f^{\prime}(x+)-f^{\prime}(x-) \mid\right. \\
\leq\left|f(x+t)-f(x)-t \cdot f^{\prime}(x+)\right|+\left|f(x-t)-f(x)+t \cdot f^{\prime}(x-)\right|<\varepsilon \cdot t \tag{18}
\end{gather*}
$$

Consider $D_{1}(r)$.

$$
\begin{equation*}
D_{1}(r)=\frac{1}{\pi} \int_{0}^{\delta} Q(r, x) d \varphi_{x}(t)+\frac{1}{\pi} \int_{\delta}^{\pi} Q(r, x) d \varphi_{x}(t)=E_{1}+E_{2} \tag{19}
\end{equation*}
$$

Integration by parts with respect to t we have

$$
E_{1}=\frac{1}{\pi} Q(r, \delta) \varphi_{x}(\delta)-\frac{1}{\pi} \int_{0}^{\delta} Q^{\prime}(r, t) \varphi_{x}(t) d t=F_{1}+F_{2}
$$

We have

$$
\begin{equation*}
F_{1}=O(1) \tag{20}
\end{equation*}
$$

If β is a point such that $Q^{\prime}(r, t)$ changes the sign on it, then by (18) and integrating by parts with respect to t we have

$$
\begin{align*}
& \left|F_{2}\right| \leq \varepsilon \int_{0}^{\delta} t \cdot\left|Q^{\prime}(r, t)\right| d t=\varepsilon \int_{0}^{\beta} t \cdot Q^{\prime}(r, t) d t-\varepsilon \int_{\beta}^{\delta} t \cdot Q^{\prime}(r, t) d t \\
& =\varepsilon \beta Q(r, \beta)-\varepsilon \int_{0}^{\beta} Q(r, t) d t-\varepsilon \delta Q(r, \delta)+\varepsilon \beta Q(r, \beta)+\varepsilon \int_{\beta}^{\delta} Q(r, t) d t \\
\leq & 2 \varepsilon \beta Q(r, \beta)+2 \varepsilon \int_{0}^{\pi} Q(r, t) d t=o(1)+o(\ln (1-r))=o(\ln (1-r)) . \tag{21}
\end{align*}
$$

On the other hand, by the representation of $Q(r, t)$ (see [18, Ch. III, (6.3)]) we have

$$
\frac{r \sin t}{(1-r)^{2}+4 r \sin ^{2}(t / 2)} \leq \frac{\sin t}{4 \sin ^{2}(t / 2)}=\frac{1}{2} \cot (t / 2)
$$

Then

$$
\begin{equation*}
\left|E_{2}\right| \leq \frac{1}{2 \pi} \int_{\delta}^{\pi} \cot (t / 2) d \stackrel{t}{V}\left(\varphi_{x}\right) \leq \frac{1}{\pi} \int_{\delta}^{\pi} \frac{1}{t} d \underset{0}{V}\left(\varphi_{x}\right) \leq \frac{1}{\delta \pi} \int_{\delta}^{\pi} d \stackrel{t}{V}\left(\varphi_{x}\right)=O(1) \tag{22}
\end{equation*}
$$

Finally, by (16)-(22) we prove (8). Theorem 2.2 is proved.

Proof (of Proposition 2.3): Let us introduce the set

$$
\begin{equation*}
A=\{1,1 / 2,1 / 3, \ldots\} \tag{23}
\end{equation*}
$$

Now choose some number $\gamma>1$ and define the function f

$$
f(x)= \begin{cases}n^{-\gamma}-(n+1)^{-\gamma} & \text { if } x=\frac{1}{n} \\ 0 & \text { if } x \in[-\pi ; \pi] \backslash A\end{cases}
$$

It is easy to see that f is not absolutely continuous, f has bounded variation and (4) is valid at the point 0 . Let as consider $\varphi_{0}(t)$ because $f^{\prime}(0)=0$ when $t>0$ we have $\varphi_{0}(t)=f(0+t)+f(0-t)-2 f(0)-t \cdot\left(f^{\prime}(0+)-f^{\prime}(0-)\right)=f(t)$, then

$$
\stackrel{t}{V}\left(\varphi_{0}\right)=2 \sum_{n \geq 1 / t}^{\infty}\left(\frac{1}{n^{\gamma}}-\frac{1}{(n+1)^{\gamma}}\right)=2 t^{\gamma}=o(t), \quad t \rightarrow 0+
$$

Proposition 2.3 is proved.

Acknowledgment.

Research supported by Shota Rustaveli National Science Foundation grant \#12/25.

References

[1] T. Akhobadze, On generalized Cesáro summability of trigonometric Fourier series, Bull. Georgian Acad. Sci., 170 (2004), 23-24
[2] T. Akhobadze, On the convergence of generalized Cesáro means of trigonometric Fourier series I, Acta Math. Hungar., 115 (2007), 59-78
[3] T. Akhobadze, On the convergence of generalized Cesáro means of trigonometric Fourier series II, Acta Math. Hungar., 115 (2007), 79-100
[4] B. I. Golubov, Determination of the jumps of a function of bounded p-variation by its Fourier series, Math. Notes, 12 (1972), 444-449
[5] G. Kvernadze, Determination of the jumps of a bounded function by its Fourier series, J. Approx. Theory, 92 (1998), 167-190
[6] G. Kvernadze, Approximation of the singularities of a bounded function by the partial sums of its differentiated Fourier series, Appl. Comput. Harmon. Anal., 11 (2001), 439-454
[7] G. Kvernadze, T. Hagstrom, H. Shapiro, Locating discontinuities of a bounded function by the partial sums of its Fourier series, J. Sci. Comput., 14 (1999), 301-327
[8] G. Kvernadze, T. Hagstrom, H. Shapiro, Detecting the singularities of a function of Vp class by its integrated Fourier series, Comput. Math. Appl., 39 (2000), 25-43
[9] F. Lukács, Über die bestimmung des sprunges einer funktion aus ihrer Fourierreihe, J, Reine Angew. Math., 150 (1920), 107-112
[10] F. Móricz, Determination of jumps in terms of Abel-Poisson means, Acta Math. Hungar., 98 (2003), 259-262
[11] F. Móricz, Ferenc Lukács type theorems in terms of the Abel-Poisson mean of conjugate series, Proc. Amer. Math. Soc., 131 (2003), 1234-1250
[12] M.A. Pinsky, Inverse problems in Fourier analysis and summability theory, Methods Appl. Anal., 11 (2004), 317-330
[13] R. Riad, On the conjugate of the Walsh series, Ann. Univ. Sci. Budapest. Rolando Eotvös, Sect. Math., 30 (1987), 69-76
[14] Q. Shi, X. Shi, Determination of jumps in terms of spectral data, Acta Math. Hungar., 110 (2006), 193-206
[15] R. Taberski, Convergence of some trigonometric sums, Demonstratio Mathematica, 5 (1973), 101-117
[16] R. Taberski, On general Dirichlet's integrals, Anales soc. Math Polonae, Series I: Prace mathematyczne XVII (1974), 499-512
[17] D.S. Yu, P. Zhou, S. Zhou, On determinatioin of jumps in terms of Abel-Poisson mean of Fourier series, J. Math. Anal. Appl., 341 (2008), 12-23
[18] A. Zigmund, Trigonometric Series, Cambridge University Press, 1 (1959)
[19] P. Zhou, S.P. Zhou, More on determination of jumps, Acta Math. Hungar., 118 (2008), 41-52
[20] Sh. Zviadadze, On the Statement of F. Lukács, Bull. Georgian Acad. Sci., 171 (2005), 411-412
[21] Sh. Zviadadze, On a Lukács theorem for regular linear means of conjugate trigonometric Fourier series, Bull. Georgian Acad. Sci., 173 (2006), 435-438
[22] Sh. Zviadadze, On generalizations of a theorem of Ferenc Lukás, Acta Math. Hungar., 122 (2009), 105-120
[23] Sh. Zviadadze, On some properties conjugate trigonometric Fourier series, Georgian Math. Journal, 20 (2013), 397-413

[^0]: *Email: sh.zviadadze@gmail.com

