
Bulletin of TICMI
Vol. 18, No. 1, 2014, 110–121

Approximation by Marcinkiewicz Means of

Walsh-Kaczmarz-Fourier Series in the Hardy Space H2/3
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1. Introduction

In 1948, S̆neider [17] introduced the Walsh-Kaczmarz system and showed that the
inequality

lim sup
n→∞

Dκ
n(x)

log n
≥ C > 0

holds a.e. In 1974, Schipp [14] and Young [21] proved that the Walsh-Kaczmarz
system is a convergence system. In 1981, Skvortsov [16] showed the uniform con-
vergence of the Fejér means with respect to the Walsh-Kaczmarz system for any
continuous functions f . Gát [2] proved, that the Walsh-Kaczmarz-Fejér means of
an integrable function converge almost everywhere to the function. He showed that
the maximal operator σκ,∗ of Walsh-Kaczmarz-Fejér means is weak type (1, 1) and
of type (p, p) for all 1 < p ≤ ∞. Gát’s result was generalized by Simon [15], he
showed that the maximal operator σκ,∗ is of type (Hp, Lp) for p > 1/2. In the
endpoint case p = 1/2 Goginava [5] proved that the maximal operator σκ,∗ is not
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bounded from the dyadic Hardy space H1/2 to the space L1/2. Moreover, Weisz
[24] showed that the maximal operator is of weak type (H1/2, L1/2).

In [5, 18] it was proved that the maximal operators σ̃κ,∗p defined by

σ̃κ,∗p := sup
n∈N

|σκn|
(n+ 1)1/p−2 log2[1/2+p] (n+ 1)

,

(where 0 < p ≤ 1/2 and [x] denotes the integer part of x) are bounded from
the Hardy space Hp to the space Lp. Moreover, it was proved that the sequence

{(n+ 1)1/p−2 log2[1/2+p] (n+ 1)}∞n=1 can not be weakened.
The second author [19] (see also [20]) found a necessary and sufficient condition

for the convergence σκnf → f in Hp norm, in terms of modulus of continuity of the
martingale f ∈ Hp.

In particular, it was proved that if

ωHp

(
1/2k, f

)
= o

(
2k(1/p−2) log2[1/2+p] k

)
, as k →∞,

then

‖σκnf − f‖Hp → 0, as n→∞, (0 < p ≤ 1/2) . (1)

Moreover, there exists a martingale f ∈ Hp, (0 < p ≤ 1/2) , for which

ω
(

1/2k, f
)
Hp

= O
(

2k(1/p−2) log2[1/2+p] k
)
, as k →∞

and

‖σκnf − f‖p 9 0, as n→∞.

In 1939, for the two-dimensional trigonometric Fourier partial sums Sj,jf
Marcinkiewicz [9] has proved that the means

σnf =
1

n

n∑
j=1

Sj,jf

converge a.e. to f as n → ∞ for any f ∈ L logL([0, 2π]2). Zhizhiashvili [25] im-
proved this result for f ∈ L1([0, 2π]2).

In 2006, the a.e. convergence of Walsh-Kaczmarz-Marcinkiewicz means was
proved by the first author [10]. He also proved that the maximal operator

σκ,∗f := sup
n∈P
|σκnf | = sup

n∈P

1

n

∣∣∣∣∣∣
n∑
j=0

Sκj,jf

∣∣∣∣∣∣
is of weak type (1, 1) and of type (p, p) for all 1 < p ≤ ∞. In [4] it was proved that
the maximal operator σκ,∗ is bounded from the Hardy space Hp to the space Lp
for p > 2/3. In the paper [8] Goginava and the first author showed that, σκ,∗ is



112 Bulletin of TICMI

not bounded from the Hardy space H2/3 to the space L2/3. This means that, it is
interesting to discuss what does happen at the endpoint p = 2/3. Recently, it was

showed in [11] that the maximal operator σ̃κ,∗f := supn∈P
|σκnf |

log3/2(n+1)
, is bounded

from the Hardy space H2/3 into the space L2/3. Moreover, it was proved that the

sequence {log3/2(n + 1)}∞n=1 can not be weakened. That is, the order of deviant

behaviour of the n-th Walsh-Kaczmarz-Marcinkiewicz mean is exactly log3/2(n+1)
in the endpoint case p = 2/3. As a corollary we get that

‖σκnf‖2/3 ≤ c log3/2(n+ 1)‖f‖H2/3
(2)

for all f ∈ H2/3.
The main aim of this paper is to continue the investigations at the endpoint

p = 2/3. We give necessary and sufficient conditions for the convergence of Walsh-
Kaczmarz-Marcinkiewicz means in terms of modulus of continuity on the Hardy
space H2/3. That is, we give the two-dimensional version of the result of the second
author [19] (see equation (1)).

2. Definitions and notation

Now, we give a brief introduction to the theory of dyadic analysis [1, 13].
Let P denote the set of positive integers, N := P∪{0}. Denote by Z2 the discrete

cyclic group of order 2, that is the elements of Z2 are 0,1, and the group operation
is the modulo 2 addition. Let every subset be open. The Haar measure on Z2 is
given such that µ({0}) = µ({1}) = 1/2. Let G be the complete direct product
of the countable infinite copies of the compact groups Z2. The elements of G are
sequences of the form x = (x0, x1, ..., xk, ...) with coordinates xk ∈ {0, 1} (k ∈ N) .
The group operation on G is the coordinate-wise addition, the measure (denoted by
µ) is the product measure and the topology is the product topology. The compact
Abelian group G is called the Walsh group.

The dyadic intervals are defined by

I0 (x) := G, In (x) := In (x0, ..., xn−1) := {y ∈ G : y = (x0, ..., xn−1, yn, yn+1, ...)} ,

where (x ∈ G,n ∈ N) . They form a base for the neighbourhoods of G. Let 0 =
(0 : i ∈ N) ∈ G denote the null element of G, and In := In (0) (n ∈ N) . Set en :=
(0, ..., 0, 1, 0, ...) ∈ G, the n-th coordinate of which is 1 and the rest are zeros
(n ∈ N) .

For k ∈ N the k-th Rademacher function is defined by

rk (x) := (−1)xk , (x = (x0, x1, ..., xk, ...) ∈ G)

If n ∈ N, then n can be expressed in the number system of base 2. That is,

n =
∞∑
i=0

ni2
i can be written, where ni ∈ {0, 1} (i ∈ N). Denote the order of n by

|n| := max{j ∈ N :nj 6= 0}. We immediately have that 2|n| ≤ n < 2|n|+1.
The Walsh-Paley system is defined as the product system of Rademacher func-
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tions:

wn (x) :=

∞∏
k=0

(rk (x))nk = r|n| (x) (−1)

|n|−1∑
k=0

nkxk
(x ∈ G,n ∈ P) .

The Walsh-Kaczmarz functions are defined by κ0 = 1 and for n ≥ 1

κn(x) := r|n|(x)

|n|−1∏
k=0

(r|n|−1−k(x))nk = r|n|(x)(−1)
∑|n|−1
k=0 nkx|n|−1−k .

It is well-known that the set of Walsh-Kaczmarz functions and the set of Walsh-
Paley functions are equal in dyadic blocks. Namely,

{κn : 2k ≤ n < 2k+1} = {wn : 2k ≤ n < 2k+1}

for all k ∈ P and κ0 = w0.
Define the transformation τA : G→ G by

τA(x) := (xA−1, xA−2, ..., x1, x0, xA, xA+1, ...)

for A ∈ N. Skvortsov [16] gave a relation between the function κn and wn. Namely,

κn(x) = r|n|(x)wn−2|n|(τ|n|(x)) (n ∈ N, x ∈ G). (3)

The Dirichlet kernels are defined by

Dα
n :=

n−1∑
k=0

αk,

where αn = wn (for all n ∈ P) or κn (for all n ∈ P), Dα
0 := 0. The 2n-th Dirichlet

kernels have a closed form (see e.g. [13])

Dw
2n(x) = Dκ

2n(x) = D2n(x) =

{
0, if x 6∈ In,
2n, if x ∈ In.

(4)

The norm (or quasi-norm) of the space Lp(G
2) (for the simplicity we write Lp)

is defined by

‖f‖p :=

(∫
G2

|f(x1, x2)|p dµ(x1, x2)

)1/p

(0 < p <∞) .

The space weak − Lp consists of all measurable functions f for which

‖f‖weak−Lp := sup
λ>0

λµ (f > λ)1/p < +∞.
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The σ-algebra generated by the 2-dimensional cube of measure 2−2k will be
denoted by Fk (k ∈ N) . Denote by f =

(
f (n), n ∈ N

)
the one-parameter martingale

with respect to (Fn, n ∈ N) (for details see, e. g. [22, 23]). The maximal function of
a martingale f is defined by f∗ = sup

n∈N

∣∣f (n)
∣∣ . For 0 < p <∞ the Hardy martingale

space Hp(G
2) consists of all martingales for which ‖f‖Hp := ‖f∗‖p < ∞ (for

simplicity we use the notation Hp).
The Kronecker product (αn,m : n,m ∈ N) of two Walsh-(Kaczmarz) system is

said to be the two-dimensional Walsh-(Kaczmarz) system. That is, αn,m
(
x1, x2

)
=

αn
(
x1
)
αm
(
x2
)
.

If f ∈ L1, then the number f̂α (n,m) :=
∫
G2

fαn,m (n,m ∈ N) is said to be the

(n,m)-th Walsh-(Kaczmarz)-Fourier coefficient of f. We can extend this definition
for martingales in the usual way (see Weisz [22, 23]). Denote the (n,m)-th rect-
angular partial sum of the Walsh-(Kaczmarz)-Fourier series of a martingale f by
Sαn,m. Namely,

Sαn,mf(x1, x2) :=

n−1∑
k=0

m−1∑
i=0

f̂α(k, i)αk,i(x
1, x2).

The Marcinkiewicz-Fejér means of a martingale f are defined by

σαnf
(
x1, x2

)
:=

1

n

n∑
k=0

Sαk,kf(x1, x2).

The two-dimensional Dirichlet kernels and Marcinkiewicz-Fejér kernels are de-
fined by

Dα
k,l(x

1, x2) := Dα
k (x1)Dα

l (x2), Kα
n (x1, x2) :=

1

n

n∑
k=0

Dα
k,k(x

1, x2).

During the proof of our main theorem we will use the following bellow estimation
of Marcinkiewicz-Fejér kernels on the special indices, which was proved in [7]:

Lemma 2.1 (Goginava [7]) : Let

x1 ∈ I4A

(
0, ..., 0, x1

4m = 1, 0, ..., 0, x1
4l = 1, x1

4l+1, ..., x
1
4A−1

)
and

x2 ∈ I4A

(
0, ..., 0, x2

4l = 1, x1
4l+1..., x

1
4q−1, 1− x1

4q, x
2
4q+1, ..., x

2
4A−1

)
.

Then

nA−1

∣∣KnA−1

(
x1, x2

)∣∣ ≥ 24q+4l+4m−3,
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where

nA = 24A + 24A−4 + ...+ 24 + 20.

The concept of modulus of continuity in Hp (0 < p ≤ 1) is given by

ωHp (1/2n, f) := ‖f − S2n,2nf‖Hp .

Let the maximal operators σκ,∗ and σκ,# be defined by

σκ,∗f = sup
n≥1
|σκnf | , σκ,#f = sup

n∈N
|σκ2nf | .

For the maximal operator σκ,# Gát, Goginava and Nagy [3] proved that the
following is true:

Theorem 2.2 (Gát, Goginava and Nagy [3]): The maximal operator σκ,# is
bounded from the Hardy space Hp to the space Lp when p > 1/2.

Later, it was shown that the maximal operator σκ,# is not bounded from the
Hardy space Hp to the space Lp for 0 < p ≤ 1/2. Moreover, the maximal operator
σκ,# is bounded from the Hardy space H1/2 to the space weak-L1/2 (see [6]).

For the martingale

f =

∞∑
n=0

(
f (n) − f (n−1)

)
the conjugate transforms are defined as

f̃ (t) =

∞∑
n=0

rn (t)
(
f (n) − f (n−1)

)
,

where t ∈ G is fixed. Note that f̃ (0) = f. It is well-known (see [22]) that∥∥∥f̃ (t)
∥∥∥
Hp

= ‖f‖Hp , ‖f‖pHp ∼
∫

[0,1)

∥∥∥f̃ (t)
∥∥∥p
p
dt. (5)

As a consequence, we have that the conjugate transform of the n-th Marcinkievicz
means of a function f coincides with the n-th Marcinkievicz means of the conjugate
transform of f .

3. Formulation of main results

Our main result reads as follows:

Theorem 3.1 : a) Let

ω

(
1

2k
, f

)
H2/3

= o

(
1

k3/2

)
, as k →∞. (6)
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Then

‖σκnf − f‖H2/3
→ 0, when n→∞.

b) There exists a martingale f ∈ H2/3, for which

ω

(
1

22k
, f

)
H2/3

= O

(
1

23k/2

)
, as k →∞

and

‖σκnf − f‖2/3 9 0 as n→∞.

Proof : During the proof we follow the method of the second author in [19] (for
dimension 1), but for the completeness we give the details. Moreover, the proof
is based on the result of the first author [11] (see inequality (2)) and the method
of Weisz [22] improved for conjugate transforms (see equality (5)). Combining (2)
and (5) we have

‖σκnf‖
2/3
H2/3

=

∫
[0,1)

∥∥∥∥ ˜
(σκnf)(t)

∥∥∥∥2/3

2/3

dt =

∫
[0,1)

∥∥∥σκnf̃ (t)
∥∥∥2/3

2/3
dt (7)

≤ c log (n+ 1)

∫
[0,1)

∥∥∥f̃ (t)
∥∥∥2/3

H2/3

dt

= c log (n+ 1)

∫
[0,1)
‖f‖2/3H2/3

dt

= c log (n+ 1) ‖f‖2/3H2/3
.

Let 2N < n ≤ 2N+1.

‖σκnf − f‖
2/3
H2/3
≤
∥∥σκnf − σκnS2N ,2Nf

∥∥2/3

H2/3
+
∥∥σκnS2N ,2Nf − S2N ,2Nf

∥∥2/3

H2/3

+
∥∥S2N ,2Nf − f

∥∥2/3

H2/3

The inequality (7) gives immediately

∥∥σκnf − σκnS2N ,2Nf
∥∥2/3

H2/3
+
∥∥S2N ,2Nf − f

∥∥2/3

H2/3
≤
∥∥σκn (S2N ,2Nf − f

)∥∥2/3

H2/3

+
∥∥S2N ,2Nf − f

∥∥2/3

H2/3

≤ c (log (n+ 1) + 1)ω2/3

(
1

2N
, f

)
H2/3
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For
∥∥σκnS2N ,2Nf − S2N ,2Nf

∥∥2/3

H2/3
we will show that

∥∥σκnS2N ,2Nf − S2N ,2Nf
∥∥2/3

H2/3
≤
(

2N

n

)2/3 ∥∥S2N ,2N (σκ2Nf − f)
∥∥2/3

H2/3

≤ ‖σκ2Nf − f‖
2/3
H2/3
→ 0, while n→∞. (8)

That is, we get that if

ω

(
1

2n
, f

)
H2/3

= o

(
1

n3/2

)
, as n→∞,

then

‖σκnf − f‖H2/3
→ 0, while n→∞.

At last, we have to show inequality (8). We write

σκnS2N ,2Nf − S2N ,2Nf =
1

n

2N∑
k=0

Sκk,kS2N ,2Nf +
1

n

n∑
k=2N+1

Sκk,kS2N ,2Nf − S2N ,2Nf

=
2N

n

(
σκ2Nf − S2N ,2Nf

)
=

2N

n

(
S2N ,2Nσ

κ
2Nf − S2N ,2Nf

)
=

2N

n
S2N ,2N (σκ2Nf − f) .

Combining (5), Theorem 2.2 and following the steps of estimation (7) we get in-
equality (8). It completes the proof of the first part of our theorem.

Now, we prove the second part of Theorem 3.1. We use the martingale con-
structed in [12]. We set

ai(x
1, x2) = 22i

(
D22i+1(x

1)−D22i (x
1)
) (
D22i+1(x

2)−D22i (x
2)
)

and

f (n)(x1, x2) =

n∑
i=1

ai(x
1, x2)

23i/2
.

In the paper [12], it is shown that the martingale f satisfies the conditions of the sec-

ond part of Theorem 3.1. That is, f ∈ H2/3 and ω
(

1
22k
, f
)
H2/3

= O
(

1
23k/2

)
, as k →

∞.
Now, we show that

‖σκnf − f‖2/3 9 0 as n→∞.
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It is easy to calculate the Fourier coefficients

f̂κ(i, j) =


22k

23k/2 , if (i, j) ∈
{

22k , ..., 22k+1 − 1
}2
, k = 0, 1, ...

0, if (i, j) /∈
∞⋃
k=0

{
22k , ..., 22k+1 − 1

}2
.

(9)

Set n2A−2 = 24·2A−2

+ 24·2A−2−4 + ...+ 24 + 20 = 22A + 22A−4 + ...+ 24 + 20 as in
Lemma 1.

σκn2k−2
f − f =

22kσκ
22k
f

n2k−2

+
1

n2k−2

n2k−2∑
j=22k+1

Sκj,jf −
22kf

n2k−2

− n2k−2−1f

n2k−2

(10)

Let 22k < j ≤ n2k−1 . Using equations (3) and (9) we have

Sκj,jf
(
x1, x2

)
= S22k ,22kf

(
x1, x2

)
+

j−1∑
v=22k

j−1∑
s=22k

f̂(v, s)κv,s
(
x1, x2

)

= S22k ,22kf
(
x1, x2

)
+

22k

23k/2

j−22k−1∑
v=0

j−22k−1∑
s=0

κv+22k

(
x1
)
κs+22k

(
x2
)

= S22k ,22kf
(
x1, x2

)
+

22kr2k
(
x1 + x2

)
23k/2

j−22k−1∑
v=0

j−22k−1∑
s=0

wv
(
τ2k
(
x1
))
ws
(
τ2k
(
x2
))

= S22k ,22kf
(
x1, x2

)
+

22kr2k
(
x1 + x2

)
Dw
j−22k

(
τ2k
(
x1
))
Dw
j−22k

(
τ2k
(
x2
))

23k/2
.

Hence, we write the following

1

n2k−2

n2k−2∑
j=22k+1

Sκj,jf
(
x1, x2

)
=
n2k−2−1S22k ,22kf

(
x1, x2

)
n2k−2

+
22kr2k

(
x1 + x2

)
n2k−223k/2

n2k−2−1∑
j=1

Dw
j

(
τ2k
(
x1
))
Dw
j

(
τ2k
(
x2
))

=
n2k−2−1S22k ,22kf

(
x1, x2

)
n2k−2

+
22kr2k

(
x1 + x2

)
n2k−2−1K

w
n2k−2−1

(
τ2k
(
x1
)
, τ2k

(
x2
))

n2k−223k/2
.
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Equality (10) yields

‖σκn2k−2
f − f‖2/32/3 ≥

c

2k
‖n2k−2−1K

w
n2k−2−1

◦ (τ2k × τ2k) ‖
2/3
2/3

−

(
22k

n2k−2

)2/3

‖σκ
22kf − f‖

2/3
2/3

−
(
n2k−2−1

n2k−2

)2/3

‖S22k ,22kf − f‖2/32/3.

For a fixed 2k we give a subset of G2 as the following disjoint union:

G×G ⊇
2k−3⋃
m=1

2k−2⋃
l=m+1

2k−1⋃
q=l+1

(
Jm,l2k × L

l,q
2k

)
,

where

Jm,l2k :=
{
x1 ∈ G : x1

2k−1 = ... = x1
2k−4m = 0,

x1
2k−4m−1 = 1, x1

2k−4m−2 = ... = x1
2k−4m−4l = 0, x1

2k−4l−1 = 1
}

and

Ll,q2k :=
{
x2 ∈ G : x2

2k−1 = ... = x2
2k−4l = 0,

x2
2k−4l−1 = 1, x1

2k−4l−2, ..., x
1
2k−4q, x

2
2k−4q−1 = 1− x1

2k−4q−1

}
.

Notice that, for any
(
x1, x2

)
∈ Jm,l2k ×L

l,q
2k , by the definition of τ2k and Lemma 1

we have

n
2k−2−1

∣∣∣Kw
n2k−2−1

(
τ2k
(
x1
)
, τ2k

(
x2
))∣∣∣ ≥ 24q+4l+4m−3.

This immediately yields

∫
G2

(n
2k−2−1

|Kw
n2k−2−1

(τ2k(x
1), τ2k(x

2))|)2/3dµ(x1, x2)

≥ c
2k−2−3∑
m=1

2k−2−2∑
l=m+1

2k−2−1∑
q=l+1

∫
Jm,l
2k
×Ll,q

2k

(n2k−2−1|Kw
n2k−2−1

(τ2k(x
1), τ2k(x

2))|)2/3dµ(x1, x2)

≥ c
2k−2−3∑
m=1

2k−2−2∑
l=m+1

2k−2−1∑
q=l+1

µ
(
Jm,l2k × L

l,q
2k

)
2(8q+8l+8m)/3
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≥ c
2k−2−3∑
m=1

2k−2−2∑
l=m+1

2k−2−1∑
q=l+1

2(8q+8l+8m)/32−4l2−4q

≥ c
2k−2−3∑
m=1

28m/3
2k−2−2∑
l=m+1

2−4l/3
2k−2−1∑
q=l+1

2−4q/3

≥ c
2k−2−3∑
m=1

1 ≥ c2k.

By inequality (11) we have

lim sup
k→∞

‖σκn2k−2
f − f‖2/3 ≥ c > 0.

The proof of Theorem 3.1 is complete. �
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