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1. Introduction

In this survey paper we will consider Zhizhiashvili’s work in summability theory
and its impact up to the present days. We present one of his fundamental theorems
and several (recent) extensions and generalizations. We investigate convergence and
summations of one- and multi-dimensional trigonometric and Walsh-Fourier series.
First we give the corresponding results in the one-dimensional case and then the
generalizations for higher dimensions. Two types of summability methods will be
investigated, the Fejér and Cesàro or (C,α) methods. The Fejér summation is a
special case of the Cesàro method, (C, 1) is exactly the Fejér method.

In the multi-dimensional case the Marcinkiewicz summability and the corre-
sponding maximal operators are considered. Marcinkiewicz [27] proved that the
arithmetic means of the cubic partial sums taken on the diagonal (the so called
Marcinkiewicz-Fejér means) of a two-dimensional function f ∈ L logL(T2) con-
verge almost everywhere to f . Later Zhizhiashvili [57, 58] extended this result
to all f ∈ L1(T2) and to Cesàro means, D’yachenko [8] and Weisz [52]) to all
f ∈ L1(Td). The result for Walsh-Fourier series is due to the author [50] and to
Goginava [14–17].

We introduce classical and dyadic martingale Hardy spaces Hp(X) (where X = T

or X = [0, 1)) and prove that the maximal operator of the Marcinkiewicz summa-
bility means are bounded from Hp(X) to Lp(X), whenever p > p0 for some p0 < 1.
The exact value of p0, which depends on the type of summability and on the di-
mension, is given. For p = 1 we obtain a weak type inequality by interpolation,
which implies the almost everywhere convergence of the summability means just
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mentioned.

2. Trigonometric and Walsh system

We consider either the torus X = T or the unit interval X = [0, 1) with the Lebesgue
measure λ. We briefly write Lp(X) instead of the real Lp(X, λ) space equipped with
the norm (or quasinorm)

‖f‖p :=

(∫
X
|f |p dλ

)1/p

(0 < p ≤ ∞),

where λ is the Lebesgue measure. We use the notation |I| for the Lebesgue measure
of the set I. A Banach space B consisting of measurable functions on X is called a
homogeneous Banach space if

(i) for all f ∈ B and x ∈ X, Txf ∈ B and ‖Txf‖B = ‖f‖B,
(ii) the function x 7→ Txf from X to B is continuous for all f ∈ B,

(iii) ‖f‖1 ≤ C‖f‖B for all f ∈ B.

Here Tx denotes the usual translation operator for T and the dyadic translation for
[0, 1). For an introduction to homogeneous Banach spaces, see Katznelson [21]. It
is easy to see that the spaces Lp(X) (1 ≤ p <∞), C(X), the Lorentz spaces Lp,q(X)
(1 < p < ∞, 1 ≤ q < ∞) and the Hardy space H1(X) are homogeneous Banach
spaces. The weak Lp(X) space Lp,∞(X) (0 < p < ∞) consists of all measurable
functions f for which

‖f‖p,∞ := sup
ρ>0

ρλ(|f | > ρ)1/p <∞.

Note that Lp,∞ is a quasi-normed space. It is easy to see that

Lp(X) ⊂ Lp,∞(X) and ‖ · ‖p,∞ ≤ ‖ · ‖p

for each 0 < p <∞.
The Rademacher functions are defined by

r(x) :=

{
1, if x ∈ [0, 1

2);
−1, if x ∈ [1

2 , 1),

and

rn(x) := r(2nx) (x ∈ [0, 1), n ∈ N).

The product system generated by the Rademacher functions is the one-dimensional
Walsh system:

wn :=

∞∏
k=0

rk
nk (n ∈ N),
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where

n =

∞∑
k=0

nk2
k, (0 ≤ nk < 2).

In what follows let φn(x) denote the trigonometric system e2πın·x (n ∈ Z) defined
on T or the Walsh system φn(x) := wn(x) (n ∈ N) defined on the unit interval. For
the Walsh system let φn = 0 if n ∈ Z \ N.

In this paper the constants Cp depend only on p and may denote different con-
stants in different contexts.

3. Partial sums of one-dimensional Fourier series

For an integrable function f ∈ L1(X) (X = T or X = [0, 1)) its kth trigonometric
or Walsh-Fourier coefficient is defined by

f̂(k) :=

∫
X
fφk dλ (k ∈ Z).

The definition of the Fourier coefficients can be extended easily to distributions in
case of the trigonometric system and to martingales in case of the Walsh system
(see Weisz [51, 54]).

For f ∈ L1(X) the nth partial sum snf of the Fourier series of f is introduced by

snf(x) :=
∑
|k|≤n

f̂(k)φk(x) =

∫
X
f(x− u)Dn(u) du (n ∈ N),

where

Dn(u) :=
∑
|k|≤n

φk(u)

is the nth trigonometric or Walsh-Dirichlet kernel (see Figure 1). In case of the
Walsh system we use dyadic addition instead of addition.

It is a basic question as to whether the function f can be reconstructed from the
partial sums of its Fourier series. It can be found in most books about Fourier series
(e.g., Zygmund [59], Bary [1], Torchinsky [45], Grafakos [18], Schipp, Wade, Simon
and Pál [37]), that the partial sums converge to f in the Lp-norm if 1 < p <∞.

Theorem 3.1 : If f ∈ Lp(T) for some 1 < p <∞, then

‖snf‖p ≤ Cp ‖f‖p (n ∈ N)

and

lim
n→∞

snf = f in the Lp-norm.
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(a) The trigonometric Dirichlet kernel
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Figure 1. The Dirichlet kernels Dn with n = 5.

One of the deepest results in harmonic analysis is Carleson’s result, i.e. the partial
sums of the Fourier series converge almost everywhere to f ∈ Lp(X) (1 < p < ∞)
(see Carleson [6], Hunt [20] for the trigonometric series and Billard [4], Sjölin [41],
Schipp [35] for Walsh series).

Theorem 3.2 : If f ∈ Lp(X) for some 1 < p <∞, then∥∥∥∥sup
n∈N
|snf |

∥∥∥∥
p

≤ Cp ‖f‖p

and

lim
n→∞

snf = f a.e.

The inequalities of Theorems 3.1 and 3.2 do not hold if p = 1 or p =∞, and the
almost everywhere convergence does not hold if p = 1. du Bois Reymond proved
the existence of a continuous function f ∈ C(T) and a point x0 ∈ T such that the
partial sums snf(x0) diverge as n → ∞. Kolmogorov gave an integrable function
f ∈ L1(T), whose Fourier series diverges almost everywhere or even everywhere
(see Kolgomorov [22, 23], Zygmund [59] or Grafakos [18]). The analogous result for
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Walsh-Fourier series can be found in Schipp [33] and Simon [38].

4. Hardy spaces

To prove almost everywhere convergence of the summability means introduced
in the next section, we will need the concept of Hardy spaces and their atomic
decomposition. First we consider the classical Hardy spaces for the trigonometric
system and then the dyadic Hardy spaces for the Walsh system.

4.1. The Hp(T) classical Hardy spaces

A distribution f is in the Hardy space Hp(T) and in the weak Hardy space Hp,∞(T)
(0 < p ≤ ∞) if

‖f‖Hp :=

∥∥∥∥sup
0<t
|f ∗ Pt|

∥∥∥∥
p

<∞

and

‖f‖Hp,∞ :=

∥∥∥∥sup
0<t
|f ∗ Pt|

∥∥∥∥
p,∞

<∞,

respectively, where

Pt(x) :=

∞∑
k=−∞

r|k|e2πıkx =
1− r2

1 + r2 − 2r cos 2πx
(r := e−t, x ∈ T)

is the periodic Poisson kernel. Since Pt ∈ L1(T), the convolution in the definition
of the norms are well defined.

4.2. The Hp[0, 1) dyadic Hardy spaces

By a dyadic interval we mean one of the form [k2−n, (k+1)2−n) for some k, n ∈ N,
0 ≤ k < 2n. Given n ∈ N and x ∈ [0, 1) let In(x) be the dyadic interval of length
2−n which contains x. The σ-algebra generated by the dyadic intervals {In(x) : x ∈
[0, 1)} will be denoted by Fn (n ∈ N).

We investigate the class of martingales f = (fn, n ∈ N) with respect to
(Fn, n ∈ N). For 0 < p ≤ ∞ the dyadic Hardy space Hp[0, 1) and the dyadic weak
Hardy space Hp,∞[0, 1) consist of all martingales for which

‖f‖Hp :=

∥∥∥∥sup
n∈N
|fn|
∥∥∥∥
p

<∞

and

‖f‖Hp,∞ :=

∥∥∥∥sup
n∈N
|fn|
∥∥∥∥
p,∞

<∞,
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respectively.

4.3. Atomic decomposition

The results of this subsection hold for both the classical and the dyadic Hardy
spaces. It is known (see e.g. Stein [42] or Weisz [51]) that

Hp(X) ∼ Lp(X) (1 < p ≤ ∞)

and H1(X) ⊂ L1(X) ⊂ H2
1,∞(X), where ∼ denotes the equivalence of spaces and

norms. Moreover,

‖f‖H1,∞ ≤ C‖f‖1 ≤ C‖f‖H1
.

The atomic decomposition provides a useful characterization of Hardy spaces. A
function a ∈ L∞(T) is a classical p-atom if there exists an interval I ⊂ T such that

(i) supp a ⊂ I,
(ii) ‖a‖∞ ≤ |I|−1/p,

(iii)
∫
I a(x)xk dx = 0 for all k ∈ N with k ≤ b1/p− 1c.

While a function a ∈ L∞[0, 1) is called a dyadic p-atom if there exists a dyadic
interval I ⊂ [0, 1) such that (i), (ii) and (iii) with k = 0 hold.

The Hardy space Hp(X) has an atomic decomposition. In other words, every
function from the Hardy space can be decomposed into the sum of atoms. A first
version of the atomic decomposition was introduced by Coifman and Weiss [7] in
the classical case and by Herz [19] in the martingale case. The proof of the next
theorem can be found in Latter [24], Lu [26], Wilson [55, 56], Stein [42] and Weisz
[47, 51].

Theorem 4.1 : A distribution (resp. martingale) f is in Hp(X) (0 < p ≤ 1) if
and only if there exists a sequence (ak, k ∈ N) of classical (resp. dyadic) p-atoms
and a sequence (µk, k ∈ N) of real numbers such that

∞∑
k=0

|µk|p <∞ and

∞∑
k=0

µka
k = f

in the sense of distributions (resp. martingales). Moreover,

‖f‖Hp ∼ inf

( ∞∑
k=0

|µk|p
)1/p

.

The “only if” part of the theorem holds also for 0 < p <∞. The following result
gives a sufficient condition for an operator to be bounded from Hp(X) to Lp(X)
(see Weisz [51, 53]). For I ⊂ T let Ir be the interval having the same center as the
interval I and length 2r|I|. If I ⊂ [0, 1) is a dyadic interval then let Ir be a dyadic
interval, for which I ⊂ Ir and |Ir| = 2r|I| (r ∈ N).

Theorem 4.2 : For each n ∈ N, let Vn : L1(X) → L1(X) be a bounded linear
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operator and let

V∗f := sup
n∈N
|Vnf |.

Suppose that ∫
X\Ir
|V∗a|p0 dλ ≤ Cp0

for all classical (resp. dyadic) p-atoms a and for some fixed r ∈ N and 0 < p0 ≤ 1,
where the cube I is the support of the atom. If V∗ is bounded from Lp1(X) to Lp1(X)
for some 1 < p1 ≤ ∞, then

‖V∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp(X)) (1)

for all p0 ≤ p ≤ p1. Moreover, if p0 < 1 then the operator V∗ is of weak type (1, 1),
i.e., if f ∈ L1(X) then

sup
ρ>0

ρ λ(|V∗f | > ρ) ≤ C‖f‖1. (2)

Note that (2) can be obtained from (1) by interpolation. For the basic definitions
and theorems on interpolation theory see Bergh and Löfström [3] and Bennett and
Sharpley [2] or Weisz [47, 51]. The interpolation of martingale Hardy spaces was
worked out in [47]. Theorem 4.2 can be regarded also as an alternative tool to
the Calderon-Zygmund decomposition lemma for proving weak type (1, 1) inequal-
ities. In many cases this theorem can be applied better and more simply than the
Calderon-Zygmund decomposition lemma.

5. Summability of one-dimensional Fourier series

Though Theorems 3.1 and 3.2 are not true for p = 1 and p = ∞, with the help
of some summability methods they can be generalized for these endpoint cases.
Obviously, summability means have better convergence properties than the original
Fourier series. Summability is intensively studied in the literature. We refer at this
time only to the books of Stein and Weiss [44], Butzer and Nessel [5], Trigub and
Belinsky [46], Grafakos [18] and Weisz [51, 54] and the references therein.

The best known summability method is the Fejér method. In 1904 Fejér [10]
investigated the arithmetic means of the partial sums, the so called Fejér means
and proved that if the left and right limits f(x−0) and f(x+ 0) exist at a point x,
then the Fejér means converge to (f(x− 0) + f(x+ 0))/2. One year later Lebesgue
[25] extended this theorem and obtained that every integrable function is Fejér
summable at each Lebesgue point, thus almost everywhere.

Here we consider the Fejér and Cesàro (or (C,α)) means defined by

σnf(x) :=
1

n

n−1∑
k=0

skf(x) =
∑
|j|≤n

(
1− |j|

n

)
f̂(j)φj(x) =

∫
X
f(x− u)Kn(u) du
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and

σαnf(x) :=
1

Aαn−1

n−1∑
k=0

Aα−1
n−1−kskf(x)

=
1

Aαn−1

∑
|j|≤n

Aαn−1−|j|f̂(j)φj(x) =

∫
X
f(x− u)Kα

n (u) du,

where

Aαk :=

(
k + α

k

)
=

(α+ 1)(α+ 2) . . . (α+ k)

k!

and the Fejér and Cesàro kernels are given by

Kn(u) :=
∑
|j|≤n

(
1− |j|

n

)
φj(u) =

1

n

n−1∑
k=0

Dk(u)

and

Kα
n (u) :=

1

Aαn−1

∑
|j|≤n

Aαn−1−|j|φj(u) =
1

Aαn−1

n−1∑
k=0

Aα−1
n−1−kDk(u)

(see Figure 2). It is known (Zygmund [59]) that

Aαk ∼ kα (k ∈ N).

The Riesz means are generalizations of the Fejér means, if α = 1, then we get back
the Fejér means. We will suppose always that 0 < α ≤ 1. The case α > 1 can be
led back to α = 1. The next result extends Theorem 3.1 to the summability means
(see Zygmund [59] and Paley [31]).

Theorem 5.1 : If 0 < α ≤ 1 and B is a homogeneous Banach space on X, then

‖σαnf‖B ≤ C‖f‖B (f ∈ B, n ∈ N).

Moreover, for all f ∈ B

lim
n→∞

σαnf = f in the B-norm.

Recall that the Lp(X) (1 ≤ p < ∞) spaces are all homogeneous Banach spaces,
so Theorem 5.1 holds for these spaces, too.

The maximal operator of the Cesàro means are defined by

σα∗ f := sup
n∈N
|σαnf | .
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Figure 2. The Fejér kernels Kn with n = 5.

Applying Theorem 4.2, we extended the previous result to the Lp(X) spaces
(0 < p < 1) and to the maximal operator in [48, 49, 51]. The first inequality was
proved by Fujii [12] in the Walsh case for p = 1 (see also Schipp, Simon [36]).

Theorem 5.2 : If 0 < α ≤ 1 and 1/(α+ 1) < p ≤ ∞, then

‖σα∗ f‖p ≤ Cp‖f‖Hp (f ∈ Hp(X))

and for f ∈ H1/(α+1)(X),

‖σα∗ f‖1/(α+1),∞ = sup
ρ>0

ρλ(σα∗ f > ρ)α+1 ≤ C‖f‖H1/(α+1)
.

The critical index is p = 1/(α + 1), if p is smaller than or equal to this critical
index, then σα∗ is not bounded anymore (see Stein, Taibleson and Weiss [43], Simon
and Weisz [40], Simon [39] and Gát and Goginava [13]):

Theorem 5.3 : The operator σα∗ (0 < α ≤ 1) is not bounded from Hp(X) to
Lp(X) if 0 < p ≤ 1/(α+ 1).

We get the next weak type (1, 1) inequality from Theorem 5.2 by interpolation
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(Weisz [48, 49, 51], Zygmund [59] for the trigonometric system, for α = 1 and for
the Walsh system Schipp [34]).

Corollary 5.4: If 0 < α ≤ 1 and f ∈ L1(X) then

sup
ρ>0

ρλ(σα∗ f > ρ) ≤ C‖f‖1.

This weak type (1, 1) inequality and the density argument of Marcinkiewicz and
Zygmund [28] imply the well known theorem of Fejér [10] and Lebesgue [25] with
α = 1. Riesz [32] proved it for other α’s and Fine [11], Schipp [34] and Weisz [49]
for the Walsh system.

Corollary 5.5: If 0 < α ≤ 1 and f ∈ L1(X) then

lim
n→∞

σαnf = f a.e.

With the help of the conjugate functions we ([51]) proved also

Theorem 5.6 : If 0 < α ≤ 1 and 1/(α+ 1) < p ≤ ∞ then

‖σαnf‖Hp ≤ Cp‖f‖Hp (f ∈ Hp(X)).

Corollary 5.7: If 0 < α ≤ 1, 1/(α+ 1) < p <∞ and f ∈ Hp(X) then

lim
n→∞

σαnf = f in the Hp-norm.

6. Multi-dimensional partial sums

Let us fix d ≥ 1, d ∈ N. For a set Y 6= ∅ let Yd be its Cartesian product Y× . . .× Y
taken with itself d-times. The Lp(X

d) spaces are defined in the usual way. For
x = (x1, . . . , xd) ∈ Rd and u = (u1, . . . , ud) ∈ Rd set

u · x :=

d∑
k=1

ukxk, ‖x‖2 :=

(
d∑

k=1

|xk|2
)1/2

, |x| := ‖x‖∞ := sup
k=1,...,d

|xk|.

The d-dimensional trigonometric and Walsh system is introduced as a Kronecker
product by

φk(x) := φk1(x1) · · ·φkd(xd),

where k = (k1, . . . , kd) ∈ Nd, x = (x1, . . . , xd) ∈ Xd. The multi-dimensional Fourier
coefficients of an integrable function f are defined by

f̂(k) :=

∫
Xd
fφk dλ (k ∈ Nd).
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For f ∈ L1(Xd) the nth cubic partial sum snf (n ∈ N) is given by

snf(x) :=
∑

k∈Zd,|k|≤n

f̂(k)φk(x) =

∫
Xd
f(x− u)Dn(u) du (n ∈ N),

where

Dn(u) :=
∑

k∈Zd,|k|≤n

φk(u)

is the nth trigonometric or Walsh-Dirichlet kernel (see Figure 3). Other types of
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Figure 3. The Dirichlet kernels Dn with n = 5.

partial sums are considered e.g. in Weisz [51, 54].
By iterating the one-dimensional result, we get easily the next theorem.

Theorem 6.1 : If f ∈ Lp(Xd) for some 1 < p <∞, then

‖snf‖p ≤ Cp ‖f‖p (n ∈ N)
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and

lim
n→∞

snf = f in the Lp-norm.

The analogue of the Carleson’s theorem holds also for higher dimensions and for
the trigonometric system (see Fefferman [9] and Grafakos [18]), and it holds for
the Walsh system if p = 2 (see Móricz [29] or Schipp, Wade, Simon and Pál [37]).

Theorem 6.2 : If f ∈ Lp(Xd) for some 1 < p < ∞, then for the trigonometric
Fourier series ∥∥∥∥sup

n∈N
|snf |

∥∥∥∥
p

≤ Cp ‖f‖p

and

lim
n→∞

snf = f a.e.

The same result holds for the Walsh-Fourier series if p = 2.

It is an open question, whether this theorem holds for the Walsh system and for
p 6= 2 (cf. Schipp, Wade, Simon and Pál [37]).

7. Hardy spaces

In this section we introduce the multi-dimensional classical Hardy spaces for the
trigonometric system and the multi-dimensional dyadic Hardy spaces for the Walsh
system.

7.1. The Hp(Td) multi-dimensional classical Hardy spaces

A distribution f is in the Hardy space Hp(T
d) and in the weak Hardy space

H2
p,∞(Td) (0 < p ≤ ∞) if

‖f‖Hp :=

∥∥∥∥sup
0<t

∣∣∣f ∗ P dt ∣∣∣∥∥∥∥
p

<∞

and

‖f‖Hp,∞ :=

∥∥∥∥sup
0<t

∣∣∣f ∗ P dt ∣∣∣∥∥∥∥
p,∞

<∞,

respectively, where

P dt (x) :=
∑
k∈Zd

e−t‖k‖2e2πık·x (x ∈ Td, t > 0)

is the d-dimensional periodic Poisson kernel. If d = 1, then we get back the one-
dimensional Poisson kernel.
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7.2. The Hp[0, 1)
d multi-dimensional dyadic Hardy spaces

By a dyadic rectangle we mean a Cartesian product of d dyadic intervals. For n ∈ N
and x = (x1, . . . , xd) ∈ [0, 1)d let In(x) := In(x1) × . . .× In(xd) be a dyadic cube.
The σ-algebra generated by the dyadic cubes {In(x) : x ∈ [0, 1)d} will be denoted
again by Fn (n ∈ N).

For 0 < p ≤ ∞ the dyadic Hardy space Hp[0, 1)d and the dyadic weak Hardy
space Hp,∞[0, 1)d consist of all d-dimensional dyadic martingales f = (fn, n ∈ N)
with respect to (Fn, n ∈ N), for which

‖f‖Hp :=

∥∥∥∥sup
n∈N
|fn|
∥∥∥∥
p

<∞

and

‖f‖Hp,∞ :=

∥∥∥∥sup
n∈N
|fn|
∥∥∥∥
p,∞

<∞,

respectively.

7.3. Atomic decomposition of the multi-dimensional
Hardy spaces

It is known again (see e.g. Stein [42] or Weisz [51]) that

Hp(X
d) ∼ Lp(Xd) (1 < p ≤ ∞)

and H1(Xd) ⊂ L1(Xd) ⊂ H1,∞(Xd) with

‖f‖H1,∞ ≤ C‖f‖1 ≤ C‖f‖H1
.

A function a ∈ L∞(Td) is a multi-dimensional classical p-atom if there exists a
cube I ⊂ Td such that

(i) supp a ⊂ I,
(ii) ‖a‖∞ ≤ |I|−1/p,

(iii)
∫
I a(x)xk dx = 0 for all multi-indices k = (k1, . . . , kd) with ‖k‖2 ≤
bd(1/p− 1)c.

A function a ∈ L∞[0, 1)d is called a multi-dimensional dyadic p-atom if there exists
a dyadic cube I ⊂ [0, 1)d such that (i), (ii) and (iii) with k = 0 hold.

The atomic decomposition holds for the multi-dimensional Hardy spaces, too
(see Latter [24], Lu [26], Wilson [55, 56], Stein [42] and Weisz [47, 51]).

Theorem 7.1 : A distribution (resp. martingale) f is in Hp(X
d) (0 < p ≤ 1) if

and only if there exist a sequence (ak, k ∈ N) of classical (resp. dyadic) p-atoms
and a sequence (µk, k ∈ N) of real numbers such that

∞∑
k=0

|µk|p <∞ and

∞∑
k=0

µka
k = f
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in the sense of distributions (resp. martingales). Moreover,

‖f‖Hp ∼ inf

( ∞∑
k=0

|µk|p
)1/p

.

For a cube

I = I1 × · · · × Id ⊂ Xd let Ir = Ir1 × · · · × Ird .

For the proof of the next theorem see Weisz [51, 53].

Theorem 7.2 : For each n ∈ N, let Vn : L1(Xd) → L1(Xd) be a bounded linear
operator and let

V∗f := sup
n∈N
|Vnf |.

Suppose that ∫
Xd\Ir

|V∗a|p0 dλ ≤ Cp0

for all classical (resp. dyadic) p-atoms a and for some fixed r ∈ N and 0 < p0 ≤ 1,
where the cube I is the support of the atom. If V∗ is bounded from Lp1(X

d) to
Lp1(X

d) for some 1 < p1 ≤ ∞, then

‖V∗f‖p ≤ Cp‖f‖Hp (f ∈ Hp(X
d))

for all p0 ≤ p ≤ p1. Moreover, if p0 < 1, then

sup
ρ>0

ρ λ(|V∗f | > ρ) ≤ C‖f‖1 (f ∈ L1(Xd)).

8. Marcinkiewicz summability of multi-dimensional Fourier series and
Hardy spaces

The summability results can be generalized for higher dimensions in several ways.
Here we consider the method, which basically consist of the arithmetic means of
the cubic partial sums skf , and which was first investigated by Marcinkiewicz [27]
and Zhizhiashvili [57, 58]. They proved fundamental results in this topic.

The Marcinkiewicz-Fejér and Marcinkiewicz-Cesàro means of the trigonometric
Fourier or Walsh-Fourier series of f are defined by

σnf(x) =
1

n

n−1∑
k=0

skf(x) =
∑

j∈Zd,|j|≤n

(
1− |j|

n

)
f̂(j)φj(x) =

∫
Xd
f(x− u)Kn(u) du
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and

σαnf(x) :=
1

Aαn−1

n−1∑
k=0

Aα−1
n−1−kskf(x)

=
1

Aαn−1

∑
j∈Zd,|j|≤n

Aαn−1−|j|f̂(j)φj(x) =

∫
Xd
f(x− u)Kα

n (u) du,

respectively, where the Marcinkiewicz-Fejér and Marcinkiewicz-Cesàro kernels are
given by

Kn(u) :=
∑

j∈Zd,|j|≤n

(
1− |j|

n

)
φj(u) =

1

n

n−1∑
k=0

Dk(u)

and

Kα
n (u) :=

1

Aαn−1

∑
j∈Zd,|j|≤n

Aαn−1−|j|φj(u) =
1

Aαn−1

n−1∑
k=0

Aα−1
n−1−kDk(u)

(see Figure 4).
The next theorem can be found in [50, 52, 54] for multi-dimensional Fourier series

and for two-dimensional Walsh-Fourier series and in [14–17] for multi-dimensional
Walsh-Fourier series.

Theorem 8.1 : If 0 < α ≤ 1 and B is a homogeneous Banach space on X
d, then

‖σαnf‖B ≤ C‖f‖B (f ∈ B, n ∈ N)

and

lim
n→∞

σαnf = f in the B-norm for all f ∈ B.

Of course the theorem holds for the Lp(X) (1 ≤ p < ∞) spaces as well. The
maximal Marcinkiewicz-Cesàro operator is defined by

σα∗ f := sup
n∈N
|σαnf |.

The next theorem follows from Theorem 7.2.

Theorem 8.2 : If 0 < α ≤ 1 and d/(d+ α) < p ≤ ∞, then

‖σα∗ f‖p ≤ Cp‖f‖Hp (f ∈ Hp(X
d)) (3)

and for f ∈ Hd/(d+α)(X
d),

‖σα∗ f‖d/(d+α),∞ = sup
ρ>0

ρλ(σα∗ f > ρ)(d+α)/d ≤ C‖f‖Hd/(d+α)
. (4)
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(b) The Walsh-Marcinkiewicz-Fejér kernel

Figure 4. The Marcinkiewicz-Fejér kernels Kn with n = 5.

This theorem was proved by Oswald [30] for Fourier transforms and for Riesz
means, by the author for multi-dimensional Fourier series and for two-dimensional
Walsh-Fourier series [50–52, 54] and by Goginava [14–17] for multi-dimensional
Walsh-Fourier series.

Oswald and Goginava verified also that d/(d+ α) is the best possible constant.

Theorem 8.3 : The operator σα∗ (0 < α ≤ 1) is not bounded from Hp(X
d) to

Lp(X
d) if 0 < p ≤ d/(d+ α).

Of course (4) is not true for p < d/(d + α), because then (3) would hold for
p < d/(d+ α) by interpolation.

The weak type (1, 1) inequality and the almost everywhere convergence of the
Marcinkiewicz-Cesàro means is obtained again by interpolation and by Theorem
8.2.

Corollary 8.4: If 0 < α ≤ 1 and f ∈ L1(Xd), then

sup
ρ>0

ρλ(σα∗ f > ρ) ≤ C‖f‖1.
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Corollary 8.5: If 0 < α ≤ 1 and f ∈ L1(Xd), then

lim
n→∞

σαnf = f a.e.

This corollary was verified first by Marcinkievicz [27] for two-dimensional Fourier
series, for f ∈ L logL(T2) and α = 1. Later Zhizhiashvili [57, 58] extended this
result to all f ∈ L1(T2) and 0 < α ≤ 1, D’yachenko [8] and Weisz [52]) to all
f ∈ L1(Td). The result for Walsh-Fourier series is due to the author [50] and to
Goginava [14–17]. The next two results can be found in [50, 52].

Theorem 8.6 : If 0 < α ≤ 1 and d/(d+ α) < p ≤ ∞, then

‖σαnf‖Hp ≤ Cp‖f‖Hp (f ∈ Hp(X
d)).

Corollary 8.7: If 0 < α ≤ 1, d/(d+ α) < p <∞ and f ∈ Hp(X
d), then

lim
n→∞

σαnf = f in Hp-norm.
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[32] M. Riesz, Sur la sommation des séries de Fourier, Acta Sci. Math. (Szeged), 1 (1923), 104-113
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[34] F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest Sect. Math., 18 (1975),
189-195

[35] F. Schipp, Pointwise convergence of expansions with respect to certain product systems, Anal. Math.,
2 (1976), 65-76

[36] F. Schipp and P. Simon, On some (H,L1)-type maximal inequalities with respect to the Walsh-Paley
system, In Functions, Series, Operators, Proc. Conf. in Budapest, 1980, volume 35 of Coll. Math.
Soc. J. Bolyai, pages 1039-1045, North Holland, Amsterdam, 1981

[37] F. Schipp, W.R. Wade, P. Simon, and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic
Analysis, Adam Hilger, Bristol, New York, 1990

[38] P. Simon, On the divergence of Vilenkin-Fourier series, Acta. Math. Hung., 41 (1983), 359-370
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