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Introduction

A function of many variables will not have the continuity or differentiability prop-
erty only because it has the same property with respect to each independent vari-
able.
Functions with this drawback at individual points have been known since the late

19th century, and on the massive set since the 20th century. Namely, the following
statement is valid.

Statement A ([1, pp. 432-433]): There exists the function of two variables which
is discontinuous at almost every point of the unit square and at every point of that
square continuous with respect to every variable.

Note that this Tolstov’s function does not posses almost everywhere even the
property of continuity on the whole (see [2]; [3, pp. 32–39]).
These and analogous problems are studied e.g. in Z. Piotrowski [4].
Here the problem consists in finding out whether there exists or does not exist

any notion of a function with respect to an independent variable and whether the
fulfillment of this notion for all independent variables will be the necessary and
sufficient condition for the continuity and differentiability of the function itself.
In this paper, the discussion concentrates on this problem.
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In formulating the main results, we use the following notation: x = (x1, . . . , xn),
x0 = (x01, . . . , x

0
n), x(x

0
k) = (x1, . . . , xk−1, x

0
k, xk+1, . . . , xn).

1. The conditions for the continuity

1. The function f is called a strong partial continuous with respect to the
variable xk at the point x0, if the equality

lim
x→x0

[f(x)− f(x(x0k))] = 0 (1.1)

is fulfilled and f is called separately strong partial continuous at the point x0,
if f with respect to every variable is strongly partial continuous at x0, i.e. equality
(1.1) is fulfilled for all k = 1, 2, . . . , n.

Theorem 1.1 ([5]; [2]; [3, pp. 20–25]): For the continuity of the function f at
the point x0, it is necessary and sufficient that it possesses separately strong partial
continuity at x0.

2. The expression

f(x)− f(x(x0k)) for |xj − x0j | ≤ cj |xk − x0k|, j ̸= k,

depending on the variables x1, . . . , xn, is called an angular partial increment
of the function f at the point x0 with respect to the variable xk, corresponding to
the collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive constants.
The angular partial continuity of the function of at the point x0 with respect

to the variable xk means the fulfillment of the equality

lim
xk→x0

k

|xj−x0
j |≤cj |xk−x0

k|
j ̸=k

[f(x)− f(x(x0k))] = 0 (1.2)

for every collection c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive constants.
The function f is called separately angular partial continuous at the point

x0, if with respect to every variable the function f possesses the property of angular
partial continuity at the point x0, i.e. if for all k = 1, . . . , n and for every collection
c = (c1, . . . , ck−1, ck+1, . . . , cn) of positive constants, equality (1.2) holds.

Theorem 1.2 ([5]; [2] ; [3, pp. 25–27]): For the continuity of the function f at
the point x0, the necessary and sufficient condition is the separately angular partial
continuity at x0.

3. If in the definition of the angular partial continuity we put cj = 1 for all j ̸= k,
then we have the nonintense angular partial continuity at the point x0 of the
function f with respect to the variable xk.

Theorem 1.3 ([3, pp. 27–28]) : For the continuity of the function f at the
point x0, the necessary and sufficient condition is the separately nonintense angular
partial continuity of the function f at the point x0.
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2. Angular partial derivative and angular gradient

The existence of finite partial derivatives of all orders, i.e. ordinary gradients of the
real function f at the point x0 does not imply the differentiability of the function
f at the same point x0. Even the function, possessing a finite gradient at the point
x0, may be discontinuous at x0. Such, for example, are at the point (0, 0) the most
of the functions of two variables indicated in Piotrowski’s work [4].
It is remarkable that this fact can be realized at all points of a set, whose plane

measure is arbitrarily nearly to total measure.

Statement B ([1, § 4]): For every number µ < 1 there exists the function F ,
defined on the square Q = {(x, y) ∈ R2; 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}, possessing at all
points of the Q finite partial derivatives of all orders, and at the same time F is
discontinuous on a certain set E ⊂ Q of plane measure µ2.

We say that the function F has at the point x0 an angular partial derivative
with respect to the variable xk, symbolically f ′x̂k

(x0), if for every collection c =
(c1, . . . , ck−1, ck+1, . . . , cn) of positive n − 1 constants there exists an independent
of the c finite limit

f ′x̂k
(x0) = lim

xk→x0
k

|xj−x0
j |≤cj |xk−x0

k|
j ̸=k

f(x)− f(x(x0k))

xk − x0k
. (2.1)

The existence of f ′x̂k
(x0) implies existence of the partial derivative f ′xk

(x0), and

the equality f ′xk
(x0) = f ′x̂k

(x0). To show this, we have to put in (2.1) xj = x0j for
all j ̸= k.
The existence of the angular partial derivative does not, in general, follows from

existence of the ordinary partial derivative. If f ′x̂k
(x0) is finite, then the function

f with respect to the variable xk has the property of angular partial continuity at
the point x0.
If there exist finite f ′x̂k

(x0), k = 1, . . . , n, then we call f the function possessing

an angular gradient at the point x0 and write

anggrad f(x0) = (f ′x̂1
(x0), . . . , f ′x̂n

(x0)).

Theorem 2.1 ([5]; [6]; [3, pp. 60–64]): For the function f to be differentiable
at the point x0, it is necessary and sufficient that anggrad f(x0) is finite. The
total differential df(x0) of the differentiable at the point x0 function f admits the
following representation

df(x0) =

n∑
k=1

f ′x̂k
(x0) dxk .

Theorem 2.2 ([6]; [3, p. 65]): For the function f to be differentiable at the point
x0, it is necessary and sufficient that the nonintense angular partial deriva-
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tives

Dx̂k
f(x0) = lim

xk→x0
k

|xj−x0
j |≤|xk−x0

k|
j ̸=k

f(x)− f(x(x0k))

xk − x0k

are finite for all k = 1, . . . , n.

Corollary 2.3 ([6]; [3, p. 65]) : The finiteness of all Dx̂k
f(x0) implies finiteness

of all f ′x̂k
(x0), and the equality

f ′x̂k
(x0) = Dx̂k

f(x0), k = 1, . . . , n,

df(x0) =

n∑
k=1

Dx̂k
f(x0) dxk.

3. Examples on the differentiability

Using Theorem 2.2, we can establish the differentiability as well as non-
differentiability of concrete functions.
On the differentiability we investigate some appearing frequently functions.

Proposition 3.1 ([6]; [3, p. 66]): Suppose the numbers αj are positive, j =
1, . . . , n. Then the condition

α1 + α2 + · · ·+ αn > 1

is necessary and sufficient for the everywhere continuous function

φ(x1, . . . , xn) = |x1|α1 · |x2|α2 · · · |xn|αn

to be differentiable at the point x0 = (0, . . . , 0).
In particular, the function γ(x1, . . . , xn) = (|x1| · · · |xn|)α is differentiable at the

point x0 if and only if α > 1/n.
If α1 + α2 + · · ·+ αn ≤ 1, then all Dx̂k

φ(x0) are devoid of existence.

Proposition 3.2 ([3, p. 67]): Suppose the numbers βj > 1, j = 1, . . . , n. Then
the function

Φ(x1, . . . , xn) =


n∑

j=1
|xj |βj for all rational xj

0 at the remaining points

(3.1)

is differentiable at the point x0 = (0, . . . , 0), dΦ(x0) = 0 and discontinuous at all
the remaining points (x1, . . . , xn) ̸= (0, . . . , 0).
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Ψ(x1, . . . , xn) =


( n∑

j=1
|xj |

)q
for all rational xj

0 at the remaining points

(3.2)

possesses the same properties as the function (3.1).

Proposition 3.4 ([3, p. 68]): The corresponding to the number α > 0 function

ω(x1, . . . , xn) =


( n∑

j=1
x2j

) 1+α

2

for all rational xj

0 at the remaining points

possesses all properties of functions (3.1) and (3.2).

Proposition 3.5 ([3, p. 69]): The function

g(x1, x2) =

{
x1x2 sin

1
x1x2

for x1 · x2 ̸= 0

0 for x1 · x2 = 0

is differentiable at the point x0 = (0, 0), and its gradient grad g(x1, x2) is indeter-
minate in the punctured neighborhood of the point x0.

Proposition 3.6 ([3, pp. 69–70]) : The function

ψ(x1, x2) =

{
x2
1·x2

x2
1+x2

2
for x21 + x22 > 0,

0 for x1 = 0 = x2

possesses the following properties:

1) ψ(x1, x2) is continuous everywhere;
2) gradψ(x1, x2) is finite everywhere;
3) ψ(x1, x2) is not differentiable at the point (0, 0);
4) gradψ(x1, x2) is not continuous at the point (0, 0).

4. A strong partial derivative and strong gradient

We say that the function f possesses at the point x0 a strong partial derivative
with respect to the variable xk, symbolically f ′[xk]

(x0), if there exists a finite limit

f ′[xk]
(x0) = lim

x→x0

f(x)− f(x(x0k))

xk − x0k
.

We say that the function f has at the point x0 a strong gradient, symbolically
strgrad f(x0), if for every k = 1, . . . , n there exist finite f ′[xk]

(x0), and we write

strgrad f(x0) = (f ′[xk]
(x0), . . . , f ′

[xn]
(x0)).

Proposition 3.3 ([3, p. 68]): The corresponding to the number q > 1 function
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If there exists a strgrad f(x0), then there likewise exists anggrad f(x0), and equal-
ities strgrad f(x0) = anggrad f(x0) = grad f(x0) hold.
Consequently, we have

Theorem 4.1 ([5]; [6]; [3, p. 77]) : The existence of a finite strgrad f(x0) implies
existence of a total differential df(x0) and

strgrad f(x0) = anggrad f(x0) = grad f(x0).

If the grad f(x) is continuous at the point x0, then we have the equality
strgrad f(x0) = grad f(x0) ([3, p. 75]).
Besides, the existence of the finite strgrad f(x0) does not, in general, imply the

continuity of grad f(x) at the point x0.
For, the gradient of the function g(x1, x2) from the Proposition 3.5 is not con-

tinuous at (0, 0), but strgrad g(0, 0) = (0, 0).
In addition to this, we have

Theorem 4.2 ([3, p. 76]) : There exists an absolutely continuous function of
two variables which has almost everywhere both finite strong and discontinuous
gradients.

Remark 1 : We should begin the proof of Theorem 4.2 from [3] with the following.
There exists a measurable set e ⊂ [0, 1] such that the sets e ∩ (α, β) and ([0, 1] \
e) ∩ (α, β) have positive measures for all subintervals (α, β) ⊂ [0, 1] ([7, p. 50] or
[8, p. 49]). By α(x) we denote the characteristic function of the set e. Analogously,
we obtain the function β(y).

Proposition 4.3 ([5]; [6]; [3, p. 77]) : The finiteness of anggrad f(x0) or, what
is the same, the existence of df(x0) does not imply the existence of strgrad f(x0).

The function λ(x1, x2) = |x1 · x2|2/3 is differentiable at the point x0 = (0.0) (see
Proposition 4.3), but strgradλ(x0) does not exist.
Afterwards, G.G. Oniani established that the existence of a finite strong gradient

is essentially stronger property than the differentiability.

Theorem 4.4 ([11]; [12]) : For arbitrary n ≥ 2 there exists a continuous function
f : [0, 1]n → R such that:

1. f is differentiable almost everywhere,
2. f devoid of finite a strong gradient almost everywhere.

The following theorem is improvement of Theorem 4.4.

Theorem 4.5 ([10, Theorem 4]): For arbitrary n ≥ 2 there exists a continuous
function f : [0, 1]n → R that is differentiable almost everywhere, but everywhere
devoid of finite a strong gradient.

As is known, functions of bounded variationss in the Hardy or Arzela sense
possess the differentiability property almost everywhere, i.e. have finite angular
gradients almost everywhere.
As to the existence of a strong gradient, functions of these classes behave differ-

ently.

Theorem 4.6 ([9]; [10]): Every function f : [0, 1]n → R of bounded variation in
the Hardy sense has a finite strong gradient almost everywhere.
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Theorem 4.7 ([10, Theorem 3]): For arbitrary n ≥ 2 there exists a continuous
function f : [0, 1]n → R of bounded variation in the Arzela sense that everywhere
devoid of finite the strong gradient.

5. Classification of functions by various gradients

Theorem 5.1 ([3, p. 80]): A class with continuous at the point x0 gradients of
functions is contained strictly in a class with finite at the point x0 strong gradients
of functions, and the latter is contained strictly in a class of functions with finite at
the point x0 angular gradients. This class coincides with the class of differentiable
at x0 functions.

Remark 1 : The notions of angular and strong gradients were generalized by
Leri Bantsuri, who introduced the notion of a gradient with respect to the basis
and established, in particular, the relationship between the differentiablity and the
existence of the gradient which he has introduced ([13], [14]).

6. Differentiability of an indefinite integral and of an absolutely continuous
functions

Let the function of two variables f be summable on the rectangle Q = {(x, y) ∈
R2 : a ≤ x ≤ b, c ≤ y ≤ d}, f ∈ L(Q). Consider for the function f the indefinite
double integral

F (x, y) =

∫ x

a

∫ y

c
f(t, τ) dt dτ. (6.1)

The following problems are quite natural.
I. Does the indefinite double integral (6.1), have or have no total differential almost
everywhere?
II. If F has a total differential, then at what points and how the set of such points
is connected with the function f?
The answer to problem I will be given here, and problem II will be considered

in Section 8.

Theorem 6.1 ([5, Theorem 6.7]; [15]; [3, pp. 102–104]): Indefinite integral (6.1)
has a total differential at almost all points (x, y) ∈ Q for every function f ∈ L(Q).

Theorem 6.2 ([5]; [15]; [3, p. 104]): At every point (x0, y0) ∈ Q of differentiability
of the indefinite integral (6.1) with f ∈ L(Q) we have

lim
h→0
k→0

1

|h|+ |k|

∫ x0+h

x0

∫ y0+k

y0

f(t, τ) dt dτ = 0. (6.2)

In particular, equality (6.2) is fulfilled at almost all points (x0, y0) ∈ Q.

Theorem 6.3 ([5]; [3, p. 105]): Let the indefinite integral (6.1) for f ∈ L(Q) have
in the neighborhood of the point (x0, y0) ∈ Q finite F ′

x, F
′
y and F ′′

x,y. Then for the
function F to be differentiable at the point (x0, y0), it is necessary and sufficient
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that

lim
h→0
k→0

h · k
|h|+ |k|

F ′′
x,y(x0 + θ1h, y0 + θ2k) = 0, 0 < θ1, θ2 < 1.

If, in addition, F ′′
x,y = f in the neighborhood of the point (x0, y0), then for the

differentiability of the function F at (x0, y0) it is necessary and sufficient that

lim
h→0
k→0

h · k
|h|+ |k|

f(x0 + θ1h, y0 + θ2k) = 0, 0 < θ1, θ2 < 1.

Theorem 6.4 ([5]; [15]; [3, pp. 107–108]): Every absolutely continuous on the Q
function has a total differential almost everywhere on the Q. Its partial and mixed
partial derivatives are summable on the Q functions.

Note that Theorem 6.4 is not true for separately absolutely continuous functions!

7. The finiteness of a strong gradient of an indefinite integral and an
absolutely continuous function

Theorem 7.1 ([5, Theorem 6.6]; [3, p. 109]): Let the function f be summable on
the rectangle Q = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}. Then the corresponding
indefinite integral

F (x, y) =

∫ x

a

∫ y

c
f(t, τ) dt dτ

possesses the following properties:

1) for almost every x0 ∈ [a, b] and for every y0 ∈ [c, d] the F ′
[x](x0, y0) is finite,

and

F ′
[x](x, y) =

∫ y0

c
f(x0, τ) dτ ;

2) for every x0 ∈ [a, b] and for almost every y0 ∈ [c, d] the F ′
[y](x0, y0) is finite,

and

F ′
[y](x, y) =

∫ x0

a
f(t, y0) dt;

3) at almost every point (x0, y0) ∈ Q the strgradF (x0, y0) is finite.

Theorem 7.2 ([5, Theorem 6.8]; [3, pp. 111–112]): For every summable on the
rectangle Q = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d} function f the following
statements are valid:

1) there exists a measurable set e1 ⊂ [a, b] with |e1| = b− a, such that at every
point (x0, y0) with x0 ∈ e1 and y∈[c, d] the integral

∫ y0

c f(x0, τ) dτ is finite,



Vol. 18, No. 1, 2014 101

and

lim
h→0
y→y0

1

h

∫ x0+h

x0

∫ y0

c
f(t, τ) dt dτ =

∫ y0

c
f(x0, τ) dτ ; (7.1)

2) there exists a measurable set e2 ⊂ [c, d] with |e2| = d− c, such that at every
point (x0, y0) with x

0 ∈ [a, b] and y0 ∈ e2 the integral
∫ x0

a f(t, y0) dt is finite,
and

lim
k→0
x→x0

1

k

∫ y0+k

y0

∫ x0

a
f(t, τ) dt dτ =

∫ x0

a
f(t, y0) dt; (7.2)

3) equalities (7.1) and (7.2) are fulfilled simultaneously at the points (x0, y0) ∈
E, where E = e1 × e2, |E| = |Q|.

To formulate this and the subsequent theorems in short, we introduce the fol-
lowing measurable sets:

A) E1 =
∪

x0∈e1
m(x0), |E1| = |Q|,

where the measurable set e1 ⊂ [a, b] with |e1| = b− a is adopted from statement 1)
of Theorem 7.2, and the vertical closed interval m(x0) is defined by the equality

m(x0) = {(x0, y) : c ≤ y ≤ d};

B) E2 =
∪

y0∈e2
n(y0), |E2| = |Q|,

where the measurable set e2 ⊂ [c, d] with |e2| = d− c is adopted from statement 2)
of Theorem 7.2, and the horizontal closed interval n(y0) is defined by the equality

n(y0) = {(x, y0) : a ≤ x ≤ b}.

Now Theorem 7.2 can be rephrased as follows.

Theorem 7.3 ([3, p. 112]): For every function f ∈ L(Q), equalities (7.1) and
(7.2) take place at the points (x0, y0) ∈ E1 and (x0, y0) ∈ E2, respectively. Equalities
(7.1) and (7.2) are fulfilled simultaneously at the points (x0, y0) ∈ E3, where E3 =
E1 ∩ E2, |E3| = |Q|.

Theorem 7.4 ([5]; [3, pp. 112–113]): For every function f ∈ L(Q) the following
statements take place:

1) at the points (x0, y0) ∈ E1 the equality

lim
(h,k)→(0,0)

1

h

∫ x0+h

x0

∫ y0+k

y0

f(t, τ) dt dτ = 0 (7.3)

holds;
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2) at the points (x0, y0) ∈ E2 the equality

lim
(h,k)→(0,0)

1

k

∫ x0+h

x0

∫ y0+k

y0

f(t, τ) dt dτ = 0 (7.4)

is valid;
3) equalities (7.3) and (7.4) are fulfilled simultaneously at the points (x0, y0) ∈

E3, where E3 = E1 ∩ E2, |E3| = |Q|;
4) at the points (x0, y0) ∈ E3 the equality

lim
(h,k)→(0,0)

h+ k

hk

∫ x0+h

x0

∫ y0+k

y0

f(t, τ) dt dτ = 0 (7.5)

holds.

Remark 1 ([3, p. 113]): If S(x, y) ∈ L(Q) is Sak’s function, then the expression

1

hk

∫ x+h

x

∫ y+k

y
S(t, τ) dt dτ (7.6)

has the strong supper limit +∞ at every point (x, y) ∈ Q. At the same time, The-
orem 7.4 shows that tending of expression (7.6) to +∞ is subordinate to equalities
(7.3) and (7.4) at the points (x0, y0) ∈ E1 ∩ E2, i.e.

1

hk

∫ x0+h

x0

∫ y0+k

y0

S(t, τ) dt dτ = O

(
1

max(h, k)

)
.

Theorem 7.5 ([3, pp. 113–114]): To every absolutely continuous on the rectangle
Q function Φ there corresponds a triple of functions φ ∈ L(Q), g ∈ L([a, b]) and
h ∈ L([c, d]), such that the following statements take place:

1) for almost every x0 ∈ [a, b] and for every y0 ∈ [c, d] there exists the finite
Φ′
[x](x0, y0), and

Φ′
[x](x0, y0) =

∫ y0

c
φ(x0, y) dy + g(x0);

2) for every x0 ∈ [a, b] and for almost every y0 ∈ [c, d] there exists the finite
Φ′
[y](x0, y0), and

Φ′
[y](x0, y0) =

∫ x0

a
φ(x, y0) dx+ h(y0);

3) at almost every point (x0, y0) ∈ Q the strgradΦ(x0, y0), Φ
′′
x,y(x0, y0) and

Φ′′
y,x(x0, y0) are finite, and

Φ′′
x,y(x0, y0) = φ(x0, y0) = Φ′′

y,x(x0, y0).

An n ≥ 2-dimensional analogue of statement 3) of Theorem 7.1 is
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Theorem 7.6 ([16]; [17]; [3, p. 111]): For every n ≥ 2 and f ∈ L(0, 1)n the
indefinite integral of f , at almost every point is differentiable, moreover, has a
finite strong gradient.

8. Lebesgue’s intense points and finiteness at these points of a strong
gradient of an indefinite integral

Definition 8.1 ([5]; [3, p. 115]): Let the function f belong to the space Lp(Q)
for some p ≥ 1.
The point (x0, y0) ∈ Q is called jointly Lebesgue’s intense point (of p-th

degree) of the function f , symbolically (x0, y0) ∈ intLp
x,y(f), if the following two

conditions are fulfilled:

lim
(h,k)→(0,0)

1

h

∫ x0+h

x0

∣∣∣∣ ∫ y0+k

c
f(x, y) dy −

∫ y0

c
f(x0, y) dy

∣∣∣∣pdx = 0, (8.1)

lim
(h,k)→(0,0)

1

k

∫ y0+k

y0

∣∣∣∣ ∫ x0+h

a
f(x, y) dy −

∫ x0

a
f(x, y0) dx

∣∣∣∣pdy = 0. (8.2)

When equality (8.1) is fulfilled, then the point (x0, y0) is called Lebesgue’s
intense point with respect to the variable x (of p-th degree) of the function
f , symbolically (x0, y0) ∈ intLp

x(f).
When equality (8.2) is fulfilled, then the point (x0, y0) is called Lebesgue’s

intense point with respect to the variable y (of p-th degree) of the function
f , symbolically (x0, y0) ∈ intLp

y(f).

Theorem 8.2 ([3, p. 115]): Let the function f belong to the space Lp(Q) for
some p ≥ 1. The following statements take place:

1) there exists a measurable set e∗1 ⊂ [a, b] with |e∗1| = b− a, such that the set
of all points (x0, y0) with x0 ∈ e∗1 and y0 ∈ [c, d] forms the set intLp

x(f),
| intLp

x(f)| = |Q|;
2) there exists a measurable set e∗2 ⊂ [c, d] with |e∗2| = d− c, such that the set

of all points (x0, y0) with x0 ∈ [a, b] and y0 ∈ e∗2 forms the set intLp
y(f),

| intLp
y(f)| = |Q|;

3) the set of all points (x0, y0) with x0 ∈ e∗1 and y0 ∈ e∗2 forms the set
intLp

x,y(f), | intLp
x,y(f)| = |Q|.

Theorem 8.3 ([5]; [3, p. 118]): Let the function f ∈ L(Q). Then the correspond-
ing indefinite integral

F (x, y) =

∫ x

a

∫ y

c
f(t, τ) dt dτ

possesses the following properties:

1) at every point (x0, y0) ∈ intLx(f) the F
′
[x](x0, y0) is finite and

F ′
[x](x0, y0) =

∫ y0

c
f(x0, τ) dτ,
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or what is the same,

lim
h→0
k→0

1

h

∫ x0+h

x0

∫ y0+k

c
f(t, τ ) dt dτ =

∫ y0

c
f(x0, τ) dτ ;

2) at every point (x0, y0) ∈ intLy(f) the F
′
[y](x0, y0) is finite and

F ′
[y](x0, y0) =

∫ x0

a
f(t, y0) dt,

or what is the same,

lim
h→0
k→0

1

k

∫ y0+k

y0

∫ x0+h

a
f(t, τ) dt dτ =

∫ x0

a
f(t, y0) dt;

3) at every point (x0, y0) ∈ intLx,y(f) the strgradF (x0, y0) is finite, in par-
ticular, there exists dF (x0, y0).

Theorem 8.4 ([5]; [3, p. 119]): For every function f ∈ Lp(Q) with p ≥ 1 the
following statements are valid:

1) at every point (x0, y0) ∈ intLp
x(f) the equality

lim
(h,k)→(0,0)

1

h

∫ x0+h

x0

∣∣∣∣ ∫ y0+k

y0

f(x, y) dy

∣∣∣∣pdx = 0 (8.3)

holds;
2) at every point (x0, y0) ∈ intLp

y(f) we have

lim
(h,k)→(0,0)

1

k

∫ y0+k

y0

∣∣∣∣ ∫ x0+h

x0

f(x, y) dx

∣∣∣∣pdy = 0; (8.4)

3) at every point (x0, y0) ∈ intLp
x,y(f) equalities (8.3) and (8.4) are fulfilled

simultaneously.

9. A generalization of classical theorems on derivatives on an indefinite
integral and of the definite integral with a parameter

We mean the following Lebesgue’s and Ch. J. de la Valle’e Poussin’s theorems.

Theorem L: Let ψ be a summable function on a closed interval [a, b], and suppose
that

Ψ(x) =

∫ x

a
ψ(t) dt.

Then for almost all x ∈ [a, b] the equality

Ψ′(x) = ψ(x) (9.1)
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is fulfilled.

Theorem VP: Let a function f(x, y) be summable with respect to x on a closed
interval [a, b] for every fixed y from a closed interval [c, d]. Consider a finite on
[c, d] function – a definite integral with parameter y –

Φ(y) =

∫ b

a
f(x, y) dx.

Suppose that the following conditions are fulfilled:

(A) f(x, y) is a function absolutely continuous with respect to y on [c, d] for
every fixed x ∈ [a, b];

(B) partial derivative f ′y with respect to y is a summable function on a closed

rectangle Q = {(x, y) ∈ R2 : a ≤ x ≤ b, c ≤ y ≤ d}.

Then

Φ′(y) =

∫ b

a
f ′y(x, y) dx (9.2)

for almost all y ∈ [c, d].

We have the following generalization of Theorem L and Theorem VP.

Theorem 9.1 ([18]; [3, pp. 120–123]): Let assumptions (A) and (B) of Theorem
VP be fulfilled. Then the function – an indefinite integral with parameter y –

F (x, y) =

∫ x

a
f(t, y) dt (9.3)

possesses the following properties:

(i) there exists e1 ⊂ [a, b] such that |e1| = b − a, F ′
[x](x0, y0) is finite for

(x0, y0) ∈ e1 × [c, d], and

F ′
[x](x0, y0) = f(x0, y0); (9.4)

(ii) there exists e2 ⊂ [c, d] such that |e2| = d − c, F ′
[y](x0, y0) is finite for

(x0, y0) ∈ [a, b]× e2, and

F ′
[y](x0, y0) =

∫ x0

a
f ′y(t, y0) dt; (9.5)

(iii) the strgradF (x0, y0) is finite at almost all points (x0, y0) ∈ Q, in particular,
there exists the total differential dF (x0, y0).

If in equality (9.3) we put x = b, then equality (9.5) for x0 = b takes the
form of equality (9.2) because the derivative of the function of one variable is, in
fact, its strong partial derivative with respect to the same variable, if we consider
this function as the function of two variables, constant with respect to the second
variable. Thus equality (9.5) is the generalization of equality (9.2).
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Equality (9.1) is obtained analogously from equality (9.4) if the function f in
equality (9.3) is assumed to be independent of the variable y.

10. A criterion of Cn-differentiability

Theorem 10.1 ([19]): A function f is Cn-differentiable at a point z ∈ Cn, if
and only if the condition

f ′x̂k
(z) + if ′ŷk

(z) = 0

or, equivalently

Dx̂k
f(z) + iDŷk

f(z) = 0

holds for all k = 1, . . . , n, where z = (z1, . . . , zn) and zk = xk + yk.

Hartog’s Main Theorem([19, p. 17]). A function f holomorphic (analytic) with
respect to each variable in an open set G ⊂ Cn is Cn-holomorphic (Cn-analytic)
in G.

11. On the H-differentiability∗

Definition 11.1 ([20]) : A quaternion function f(z), z = x0+x1i1+x2i2+x3i3,
defined on some neighborhood of a point z0 = x00 + x01i1 + x02i2 + x03i3, is called H-
differentiable at z0 if there exists two sequences of quaternions Ak(z

0) and Bk(z
0)

such that
∑
k

Ak(z
0)Bk(z

0) is finite and that the increment f(z0+h)− f(z0) of the

function f can be represented as

f(z0 + h)− f(z0) =
∑
k

Ak(z
0)Bk(z

0) + ω(z0, h),

where

lim
h→0

|ω(z0, h)|
|h|

= 0.

In this case, the quaternion
∑
k

Ak(z
0)Bk(z

0) is called the H-derivative of the

function f at the point z0 and is denoted f ′(z0). Thus

f ′(z0) =
∑
k

Ak(z
0)Bk(z

0). (11.1)

The uniqueness of the H-derivative follows from the fact that the right-hand part
of (11.1), if it exists, is just the partial derivative f ′x0

(z0) of f at z0 with respect to
its real variable x0 (see [6], equality (2)).

*For the history of differentiability of quaternion functions see [20] and [21], p. 385.
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The basic elementary quanternion functions zn, ez, cos z, sin z are H-
differentiable and fulfilled the following equalities (zn)′ = nzn−1, (ez)′ = ez,
(cos z)′ = − sin z, (sin z)′ = cos z.
The rules for calculating H-derivatives are identical to those derived in a

standard calculus course: (cf)′(z) = cf ′(z), (fc)′(z) = f ′(z)c, (f + φ)′(z) =
f ′(z)+φ′(z), (fφ)′(z) = f ′(z)φ(z)+f(z)φ′(z), (1/φ)′(z) = −1/φ(z) ·φ′(z) ·1/φ(z),
(f · 1/φ)′(z) == f ′(z) · 1/φ(z) − f(z) · 1/φ(z) · φ′(z) · 1/φ(z), (1/φ · f)′(z) =
−1/φ(z) · φ′(z) · 1/φ(z) · f(z) + 1/φ(z) · f ′(z).
Right now we formulate a relationship between H-differentiability of a quaternion

function f(z) = u0(z) + u1(z)i1 + u2(z)i2 + u3(z)i3 of a quaternion variable z =
x0 + x1i1 + x2i2 + x3i3 and the existence of the differential df(z) (with respect to
real variables x0, x1, x2, x3).
Since the partial angular derivatives are the derivatives with respect to real

variables (see the Section 2), the condition of differentiability for real, complex and
quaternion functions are expressed in the same form.
It then follows that for the differentiability of a quaternion function f at a point

z = x0+x1i1+x2i2+x3i3, a necessary and sufficient condition is the existence finite
partial angular derivatives f ′x̂k

= (u0)
′
x̂k
+i1(u2)

′
x̂k
+i2(u2)

′
x̂k
+i3(u3)

′
x̂k
, k = 0, 1, 2, 3.

Moreover, when f is differentiable at z, the following equalities hold for its dif-
ferential df(z):

df(z) = f ′x̂0
(z)dx0 + f ′x̂1

(z)dx1 + f ′x̂2
(z)dx2 + f ′x̂3

(z)dx3,

df(z) = du0(z) + i1du1(z) + i2du2(z) + i3du3(z).

Theorem 11.2 ([22]): If a quaternion function f is H-differentiable at a point
z = x0 + x1i1 + x2i2 + x3i3, then f is differentiable at the same point z and its
partial angular derivatives f ′x̂0

(z), f ′x̂1
(z), f ′x̂2

(z), f ′x̂3
(z) can be expressed in terms

of the H-derivative f ′(z) =
∑
k

Ak(z)Bk(z) as follows:

f ′x̂0
(z) =

∑
k

Ak(z)Bk(z) = f ′(z), (11.2)

f ′x̂1
(z) =

∑
k

Ak(z)i1Bk(z), (11.3)

f ′x̂2
(z) =

∑
k

Ak(z)i2Bk(z), (11.4)

f ′x̂3
(z) =

∑
k

Ak(z)i3Bk(z). (11.5)

Moreover, we have

df(z) =
∑
k

Ak(z) dz Bk(z). (11.6)

Remark 1 : Equation (11.6) can be interpreted as follows. As in the classical
case, the differential df(z) of an H-differentiable function f is linear with respect
to the differential dz of the independent variable z.
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Theorem 11.3 ([22]): If a quaternion function f is differentiable at a point z
and its partial angular derivatives f ′x̂0

(z), f ′x̂1
(z), f ′x̂2

(z) and f ′x̂3
(z) can be expressed

in the forms (11.2)–(11.5) for some quaternions Ak(z) and Bk(z), then f is H-
differentiable at the point z and

f ′(z) =
∑
k

Ak(z)Bk(z).

We can combine Theorems 11.2 and 11.3 to obtain the following theorem

Theorem 11.4 ([22]): The existence of the differential df(z) of a quaternion
function f and its representability in the form

df(z) =
∑
k

Ak(z) dz Bk(z) (11.7)

is equivalent to the existence of the derivative f ′(z) and its representability in the
form

f ′(z) =
∑
k

Ak(z)Bk(z).

Corollary 11.5 ([22]): When x2 = 0 = x3 and u2 = 0 = u3, then one has
a complex function f(z) = u(z) + iv(z) of a complex variable z = x + iy. In
this case, Eq. (11.7) has the form df(z) = c(z)dz = c(z)dx+ ic(z)dy, where c(z) =∑

k Ak(z)Bk(z), from which we obtain the equalities f ′x̂(z) = c(z) and f ′ŷ(z) = ic(z).
Thus, we have

f ′x̂(z) + if ′ŷ(z) = 0. (11.8)

Note that Eq.(11.8) is a necessary and sufficient condition for the complex
function f to be C1-differentiable at the point z (see [19], Theorem 3.1, when
n = 1). Moreover, we have obtained the well known equalities f ′(z) = f ′x̂(z) and
f ′(z) = −if ′ŷ(z) for the derivative f ′(z).

Corollary 11.6 ([22]): For a quaternion z = x0 + x1i1 + x2i2 + x3i3, we have
dzn = zn−1 · dz + zn−2dz · z + zn−3dz · z2 + · · · + zdz · zn−2 + dz · zn−1 for all
n = 0, 1, 2, . . . .

Corollary 11.7 ([22]): For the partial derivatives of the functions fn(z) = zn,
n = 0, 1, 2, . . . , with respect to real variables xk, k = 0, 1, 2, 3, we have (zn)′xk

=
zn−1 · ik + zn−2 · ik · z + · · ·+ z · ik · zn−2 + ik · zn−1.
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