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1. Introduction

The linear theory for elastic materials with inner structure whose particles, in addition to
the classical displacement and temperature fields, possess microtemperatures, was con-
structed by Iesan and Quintanilla [1] in 2000. The fundamental solutions of the equa-
tions of the three-dimensional (3D) theory of thermoelasticity with microtemperatures
were constructed by Svanadze [2] in 2004. The representations of the Galiorkin type and
general solutions of the system of statics of the above theory were obtained by Scalia,
Svanadze, and Tracina [3] in 2010. The linear theory for microstretch elastic materials
with microtemperatures was constructed by Iesan [4] in 2001, where the uniqueness and
existence theorems in the dynamical case for isotropic materials are proved. The funda-
mental solutions of the equations of the two-dimensional (2D) theory of thermoelasticity
with microtemperatures were constructed by Basheleishvili, Bitsadze, and Jaiani [5] in
2011. Some basic boundary value problems of 2D version of statics of the linear theory of
thermoelasticity with microtemperatures that cannot be considered as a particular case of
the 3D version because of some peculiarities intrinsic only for the 2D version are studied
by Bitsadze and Jaiani [6] in 2012.

In the present paper on the basis of the linear theory of thermoelasticity of homoge-
neous isotropic bodies with microtemperatures the zero order approximation of hierarchi-
cal models of elastic prismatic shells with microtemperatures is constructed.

Let Ox1x2x3 be an anticlockwise-oriented rectangular Cartesian frame of origin O. We
conditionally assume the x3-axis to be vertical. The elastic body is called a prismatic shell
if it is bounded above and below by, respectively, the surfaces (so called face surfaces)

x3 =
(+)

h (x1,x2) and x3 =
(−)

h (x1,x2), (x1,x2) ∈ ω ⊂ R2,
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laterally by a cylindrical surface Γ of generatrix parallel to the x3-axis and its vertical di-
mension is sufficiently small compared with other dimensions of the body. In other words,
the 3D elastic prismatic shell-like body occupies a bounded region Ω with boundary ∂Ω,
which is defined as:

Ω :=
{
(x1,x2,x3) ∈ R3 : (x1,x2) ∈ ω,

(−)

h (x1,x2)< x3 <
(+)

h (x1,x2)

}
, (1)

where ω :=ω∪∂ω is the so-called projection of the prismatic shell Ω :=Ω∪∂Ω γ := ∂ω
and ∂Ω denote boundaries of ω and Ω, respectively; Rn is an n-dimensional Euclidian
space.

In what follows we assume that

(±)

h (x1,x2) ∈C2(ω)∩C(ω),1

and

2h(x1,x2) :=
(+)

h (x1,x2)−
(−)

h (x1,x2)

{
> 0 for (x1,x2) ∈ ω,
≥ 0 for (x1,x2) ∈ ∂ω

is the thickness of the prismatic shell Ω at the points (x1,x2) ∈ ω; max{2h} is essentially
less than the characteristic dimensions of ω;

a :=
1
h
, b :=

(+)

h (x1,x2)+
(−)

h (x1,x2)

2h
.

2. Hierarchical Models

In order to construct hierarchical models we use Vekua’s dimension reduction method
[7], [8]. In what follows Xi j and ei j are the stress and strain tensors, respectively, ρ is the
reference mass density; Φi is the volume force; ui is the displacement vector; T is the
temperature measured from the constant absolute temperature T∗ > 0; η is the entropy
per unit mass; qi is the heat flux vector; S is the heat supply; εi is the first moment of
energy vector; q̃i j is the first heat flux moment vector; Qi is the mean heat flux vector; Mi
is the first heat source moment vector; λ , µ, β , ã, b̃, k, κs, (s = 1,2, ...,5) are constitutive
coefficients; δi j is the Kronecker delta, and wi is the microtemperature vector. Throughout
this article we use a superposed dot to denote partial differentiation with respect to time.
Moreover, repeated indices imply summation (Greek letters run from 1 to 2, and Latin
letters run from 1 to 3, unless otherwise stated), bar under one of the repeated indices
means that we do not sum.

By uir, Xi jr, ei jr, Φir, Tr, wir, Sr, Mir, Qir, qir, ηr, q̃i jr, εir we denote the r-th order math-
ematical moments (with respect to the Legendre polynomicals Pr) of the corresponding

1C(ω) denotes a class of functions continuous on ω; C2(ω) denotes a class of twice continuously differentiable functions
with respect to the variables x1 and x2 with (x1,x2) ∈ ω .
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quantities ui, Xi j, ei j, Φi, T , wi, S, Mi, Qi, qi, η , q̃i j, εi as defined below:(
uir, Xi jr, ei jr, Φir, Tr, wir, Sr, Mir, Qir, qir, ηr, q̃i jr, εir

)
(x1,x2, t)

:=

(+)
h (x1,x2)∫

(−)
h (x1,x2)

(
ui, Xi j, ei j, Φi, T, wi, S, Mi, Qi, qi, η , q̃i j, εi

)
(x1,x2,x3, t)

×Pr(ax3 −b) dx3, (x1,x2) ∈ ω ⊂ R2, i, j = 1,2,3. (2)

Hierarchical models for elastic prismatic shells with microtemperatures are the mathe-
matical models. Their constructing is based on the multiplication of the basic equations
of the linear theory of thermoelasticity with microtemperatures (see [1]):
The Motion Equations

Xi j,i +Φ j = ρ ..
u j(x1,x2,x3, t), (x1,x2,x3) ∈ Ω ⊂ R3, t > t0, j = 1,2,3; (3)

The Balance of Energy

ρT∗η̇ = qi,i +ρS; (4)

The First Moment of Energy

ρε̇ j = qi j,i +q j −Q j +ρM j, j = 1,2,3; (5)

Generalized Hooke’s law (isotropic case)

Xi j = λellδi j +2µei j −βT δi j, i, j = 1,2,3, (6)

ρη = βell + ãT, ρε j =−b̃w j, j = 1,2,3, (7)

q j = kT, j +κ1w j, j = 1,2,3, (8)

Q j = (κ1 −κ2)w j +(k−κ3)T, j, j = 1,2,3, (9)

q̃i j =−κ4wl,lδi j −κ5wi, j −κ6w j,i, i, j = 1,2,3; (10)

The Kinematic Relations

ei j =
1
2
(ui, j +u j,i), i, j = 1,2,3, (11)

by Legendre polynomials Pr(ax3 − b) and then integration with respect to x3 within

the limits
(−)

h (x1,x2) and
(+)

h (x1,x2). Roughly speaking, assuming all the mathematical
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moments for r > N to be equal to zero in the obtained relations, we get the Nth order
hierarchical model. We suppose that:

(i) Φi, S, and Mi are continuous on Ω× I, where I = [0,∞[;
(ii) ρ is strictly positive;
(iii) the constitutive coefficients are constants.

The components of surface the traction Xn, the heat flux q, and the first heat flux moment
Λi at a regular point of ∂Ω× I are defined by

Xni = X jin j, q = qini, Λi = q̃ jin j, (12)

respectively.
In the context of the linear theory, the Clausius-Duhem inequality has the form

qiT,i −T∗q̃ jiwi, j −T0(Qi −qi)wi ≥ 0. (13)

Inequality (13) implies that

3κ4 +κ5 +κ6 ≥ 0, κ6 +κ5 ≥ 0, (14)

κ6 −κ5 ≥ 0, k ≥ 0, (κ1 +T0κ3)
2 −4T0kκ2 ≤ 0.

We must adjoin boundary conditions and initial conditions to equations (3)-(11). Let us
consider the subsets Σr (r = 1,2, ...,6) of ∂Ω such that Σ1∪Σ2 =Σ3∪Σ4 =Σ5∪Σ6 = ∂Ω,
and Σ1 ∩Σ2 = Σ3 ∩Σ4 = Σ5 ∩Σ6 =∅.

In the case of the mixed boundary value problem the boundary conditions are

ui = ũi on Σ1 × I, i = 1,2,3, (15)

X jin j = X̃ni on Σ2 × I, i = 1,2,3, (16)

wi = w̃i on Σ5 × I, i = 1,2,3, (17)

T = T̃ on Σ3 × I, i = 1,2,3, (18)

q̃ jin j = Λ̃i on Σ6 × I, i = 1,2,3, (19)

qini = q̃ on Σ4 × I, i = 1,2,3, (20)
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where ũi, T̃ , w̃i, X̃ni, q̃, and Λ̃i are prescribed functions. The initial conditions are

u(x,0) = u0(x), u̇(x,0) = u0
∼ (x), (21)

T (x,0) = T 0(x), w(x,0) = w0(x), x ∈ B̄, (22)

where u0, v0, T 0, and w0 are given. We assume that: (i) ũi, T̃ , and w̃i are continuous func-
tions; (ii) X̃ni, q̃, and Λ̃i are continuous in time and piecewise regular on Σ2 × I, Σ4 × I,
and Σ6 × I, respectively; (iii) u0

i , v0
i , T 0, and w0

i are continuous on Ω.
The mixed problem consists of finding the functions ui ∈C2.1(Ω×I), T ∈C2.1(Ω×I),

and wi ∈ C2.1(Ω × I) on Ω × I that satisfy equations (3)-(11) on Ω × I, the boundary
conditions (15)-(20), and the initial conditions (21)-(22).

Substitution of equations (11) into (6) and then the obtained and (7)-(10) into equations
(3)-(5) yields the following system of linear partial differential equations for the fields
ui, T , and wi:

µ △ u+(λ +µ)grad div u−βgrad T +Φ = ρ ü, (23)

k △ T −βT∗div u̇+κ1div w− cṪ =−ρS, (24)

κ6 △ w+(κ4 +κ5)grad div w−κ3grad T −κ2w− b̃ẇ = ρM, (25)

where u := (u1,u2,u3), w := (w1,w2,w3), c := ãT∗.
By constructing hierarchical models, on the upper and lower face surfaces temperatures,

stress-vectors X ji
(±)
n j and first heat flux moment vectors q̃ ji

(±)
n j are assumed to be known,

while on the upper and lower face surfaces the values of the displacement, microtemper-
ature and heat flux vectors are calculated from their Fourier-Legendre–series expansions
on the segment

x3 ∈
[(−)

h (x1,x2),
(+)

h (x1,x2)
]
.

3. The N = 0 Approximation (Hierarchical Model)

Let

vi0 := h−1ui0, Wi0 := h−1wi0, i = 1,2,3.

Then the basic relations (constructed in the way pointed out in Section 2) of the zero
approximation for elastic isotropic prismatic shells with microtemperatures have the fol-
lowing form:

The Motion Equations

Xα j0,α +
◦
X j = ρ ü j0, j = 1,2,3; (26)
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The Balance of Energy

ρT∗η̇0 = qα0,α −
(+)
qα

(+)

h,α +
(−)
qα

(−)

h,α +
(+)
q3 −

(−)
q3 +ρS0; (27)

The First Moment of Energy

ρε̇ j0 =−b̃ẇ j0 = q̃α j0,α +
0
q̃ j +q j0 −Q j0 +ρM jo, j = 1,2,3; (28)

Generalized Hooke’s Law (isotropic case)

Xi j0 = λδi jell0 +2µei j0 −βT0δi j, i, j = 1,2,3; (29)

(uα0,β +uβ0,α +
0

bα0uβ0 +
0

bβ0uα0)

=
1
2
(uα0,β +uβ0,α −

h,α
h

uβ0 −
h,β
h

uα0) =
h
2
(vα0,β + vβ0,α), α ,β = 1,2, (30)

e3α = eα3 =
1
2
(u30,α +

0
bα0u30) =

1
2
(u30,α −

h,α
h

u30) =
h
2

v30,α , α = 1,2,

e330 = 0,

i.e.,

ei j0 =
h
2
(vi0, j + v j0,i), i, j = 1,2,3;

ρη0 = β (uγ0,γ +
0

bi0ui0)+ ãT0 = β (uγ0,γ −
h,γ
h

uγ0)+ ãT0

= βhvγ0,γ + ãT0; (31)

qi0 = κ1wi0 + k(T0,i +
0ai0T0 +

i
T ) = κ1wi0 + k(To,i +

i
T ), i = 1,2,3; (32)

Qi0 = (κ1 −κ2)wi0 +(k−κ3)(T0,i +
i

T ), i = 1,2,3; (33)

q̃αβ0 =−κ4(wγ0,γ +
0

bl0wl0)δαβ −κ5(wα0,β +
0

bβ0wα0)−κ6(wβ0,α +
0

bα0wβ0)

=−κ4(wγ0,γ −
h,γ
h

wγ0)δαβ −κ5(wα0,β −
h,β
h

wα0)−κ6(wβ0,α −
h,α
h

wβ0)

=−κ4hWγ0,γδαβ −κ5hWα0,β −κ6hWβ0,α , α ,β = 1,2,

q̃α30 =−κ6(w30,α +
0

bα0w30) =−κ6hW30,α , α = 1,2,

q3β0 =−κ5(w30,β +
0

bβ0w30) =−κ5hW30,β , β = 1,2,

q̃330 =−κ4(wγ0,γ +
0

bl0wl0) =−κ4hWγ0,γ ,

αβ0 −
1

e      =
2
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i.e.,

q̃i j0 =−κ4hWγ0,γδi j −κ5hWi0, j −κ6hWj0,i, i, j = 1,2,3;

0q j =
(+)

q̃ j

√
1+

((+)

h,1
)2

+
((+)

h,2
)2

+
(−)

q̃ j

√
1+

((−)

h,1
)2

+
((−)

h,2
)2
,

(±)

q̃ j =
(±)

q̃i jni, j = 1,2,3,

i
T =

−
(+)

T
(+)

h,α +
(−)

T
(−)

h,α , i = α = 1,2;
(+)

T −
(−)

T , i = 3,
(34)

0
X j = X(+)

n j

√
1+

((+)

h,1
)2

+
((+)

h,2
)2

+X(−)
n j

√
1+

((−)

h,1
)2

+
((−)

h,2
)2

+Φ j0, j = 1,2,3,

where X(+)
n j

and X(−)
n j

are components of the stress vectors, acting on upper and lower face

surfaces.
By virtue of (26)-(34) and

b0
α0 :=−h−1h,α , α = 1,2, b0

30 = 0,

we have

µ
[
(hvα0, j),α +(hv jo,α),α

]
+λδα j(hvγ0,γ),α

−βT0, j +
◦

X j = ρhv̈ j0, (x1,x2) ∈ ω ⊂ R2, j = 1,2,3, (35)

−b̃hẆj0 =−κ4(hWγ0,γ),αδα j −κ5(hWα0, j),α −κ6(hWj0,α),α

+
◦

q j +κ2hWj0 +κ3(T0, j +
j

T )+ρM j0, (x1,x2) ∈ ω ⊂ R2, j = 1,2,3, (36)

βT∗
[
(hv̇γ0),γ −h,γ v̇γ0

]
+ ãT∗Ṫ0 = κ1(hWα0),α

+kT0,αα +
α

T,α −
h,α
h

[
κ1hWα0 + k(T0,α +

α
T )

]
+ρS0, (x1,x2) ∈ ω ⊂ R2. (37)

To the system (35)-(37) should be added the initial and boundary conditions reformu-
lated in mathematical zero moments:

ui0(x1,x2,0) = u0
i0(x1,x2), u̇i0(x1,x2,0) = u0

∼i0(x1,x2),

wi0(x1,x2,0) = w0
i0(x1,x2), T0(x1,x2,0) = T 0

0 (x1,x2),

(x1,x2) ∈ ω, i = 1,2,3,
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and e.g.

ui0 = ũi0, wi0 = w̃i0, T0 = T̃0 on ∂ω f or t > 0, i = 1,2,3.

If we consider the static case of the prismatic shell of constant thickness 2h(x1,x2) =
const and take j = 1,2 in (35), (36), the obtained system along with (37) will give the
system considered in [5], [6], while in the case of the variable thickness (in particular for
cusped prismatic shells) we can use correspondingly modified methods presented in [9].

From the specificity of system (35)-(37) it follows that setting boundary conditions on
the cusped edge for v j0 and Wj0, j = 1,2,3, differs from classical setting and depends
on the character of sharpening prismatic shells but it is not so for T0, while setting initial
conditions for T0, v j0 and Wj0, j = 1,2,3, does not depend on the character of sharpening
and does not differ from classical setting.
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