Solutions of Nonlinear Fractional Integrodifferential Equations with Boundary Conditions

Zhenyu Guo^{1*}, Min Liu², Donglei Wang³

^{1,2} School of Sciences, Liaoning Shihua University Fushun, Liaoning 113001, China
³ WangHua High School, Fushun, Liaoning, China
¹E-mail: guozy@163.com, ²E-mail: min_liu@yeah.net (Received February 29, 2012; Accepted November 23, 2012)

A nonlinear fractional integrodifferential equation with boundary conditions is studied in this article, and some sufficient conditions for existence and uniqueness of a solution for the equation is established by Krasnoselskii fixed point theorem and Banach contraction principle, respectively.

Keywords: Fractional integrodifferential equations, Krasnoselskii fixed point theorem, Banach contraction principle, Boundary conditions.

AMS Subject Classification: 34A12, 34G20, 34K05.

1. Introduction

This article is concerned with the following nonlinear fractional integrodifferential equation with boundary conditions:

$$D^{q}x(t) = f(t, x(t), (\phi x)(t), (\psi x)(t)), \quad 0 < t < 1, \ 2 < q < 3,$$

$$x(0) = x'(0) = x'(1) = 0,$$

(1.1)

where D^q denotes the standard Riemann-Liouville fractional derivative, $f : [0, 1] \times X \times X \times X \to X$ is a given continuous function, $(X, \|\cdot\|)$ is a Banach space and C = C([0, 1], X) is the Banach space of all continuous functions from $[0, 1] \to X$ endowed with a topology of uniform convergence with the norm denoted by $\|\cdot\|$, for $\gamma, \delta : [0, 1] \times [0, 1] \to [0, +\infty)$,

$$(\phi x)(t) = \int_0^t \gamma(t,s)x(s)ds, \quad (\psi x)(t) = \int_0^t \delta(t,s)x(s)ds.$$
 (1.2)

Recently, fractional order differential equations and systems have been of great interest. For detailed discussion on this topic, refer to the monographs of Kilbas et al.[10], Podlubny [17], and the papers by Anguraj et al. [1], Ahmad and Alsaedi [2,3], Cui [4], Guo and Liu [5-9], Kosmatov [11], Lakshmikantham and Vatsala [12], Li and Deng [13], Li [14], Li and Guérékata [15], Mao et al.[16] and the references therein.

ISSN: 1512-0082 print © 2012 Tbilisi University Press Applying Krasnoselskii fixed point theorem and Banach contraction principle, we obtain theorems of existence and uniqueness of solutions for equation (1.1).

2. Preliminaries

Let us recall some basic definitions on fractional calculus, which can be found in the literature.

Definition 2.1: The Riemann-Liouville fractional integral of order q is defined by

$$I^{q}f(t) = \frac{1}{\Gamma(q)} \int_{0}^{t} (t-s)^{q-1} f(s) ds, \ q > 0,$$
(2.1)

provided the integral exists.

Definition 2.2: The Riemann-Liouville fractional derivaltive of order q is defined by

$$D^{q}f(t) = \frac{1}{\Gamma(n-q)} \left(\frac{d}{dt}\right)^{n} \int_{0}^{t} (t-s)^{n-q-1} f(s) ds, \ n-1 < q \le n, \ q > 0,$$
 (2.2)

provided the right-hand side is pointwise defined on $(0, +\infty)$.

Lemma 2.3: (see [17]) For q > 0, let $x, D^q x \in C(0, 1) \cap L(0, 1)$. Then

$$I^{q}D^{q}x(t) = x(t) + c_{1}t^{q-1} + c_{2}t^{q-2} + \dots + c_{n}t^{q-n},$$
(2.3)

where $c_i \in \mathbb{R}, i = 1, 2, \cdots, n$ (n is the smallest integer such that $n \ge q$).

Lemma 2.4: (see [17]) Let $x \in L(0, 1)$. Then (i) $D^p I^q x(t) = I^{q-p}, \ q > p > 0;$ (ii) $D^q t^{a-1} = (\Gamma(a)/\Gamma(a-q))t^{a-q-1}, \ q > 0, a > 0.$

Theorem 2.5: (Krasnoselskii fixed point theorem, see [18]) Let D be a closed convex and nonempty subset of a Banach space X, and A, B be two operators such that

- (i) $Ax + By \in D$ whenever $x, y \in D$;
- (ii) A is compact and continuous;
- (iii) B is a contraction mapping.

Then there exists $z \in D$ such that z = Az + Bz.

Lemma 2.6: Given $f \in C(0,1) \cap L(0,1)$, the unique solution of

$$D^{q}x(t) = f(t), \quad 0 < t < 1, \ 2 < q < 3,$$

$$x(0) = x'(0) = x'(1) = 0$$
(2.4)

-	
α	0
••	
1	. 7
~	~

$$x(t) = \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s) ds - \int_0^1 \frac{t^{q-1}(1-s)^{q-2}}{\Gamma(q)} f(s) ds.$$
(2.5)

Proof: It follows from Lemma 2.3 that the fractional differential equation in (2.4) is equivalent to the integral equation

$$x(t) = I^{q} f(t) + c_{1} t^{q-1} + c_{2} t^{q-2} + c_{3} t^{q-3}$$

$$= \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s)ds + c_1 t^{q-1} + c_2 t^{q-2} + c_3 t^{q-3}, \qquad (2.6)$$

where $c_1, c_2, c_3 \in \mathbb{R}$. From the boundary conditions for (2.4), we have $c_2 = c_3 = 0$ and

$$c_1 = -\int_0^1 \frac{(1-s)^{q-2}}{\Gamma(q)} f(s) ds,$$
(2.7)

which completes the proof.

Now list the following hypotheses for convenience:

(H1) There exist positive functions $L_1(t), L_2(t), L_3(t)$ such that

$$\begin{aligned} & \|f(t, x_1, y_1, z_1) - f(t, x_2, y_2, z_2)\| \\ & \leq L_1(t) \|x_1 - x_2\| + L_2(t) \|y_1 - y_2\| + L_3(t) \|z_1 - z_2\|, \\ & \forall t \in [0, 1], x_1, x_2, y_1, y_2, z_1, z_2 \in X. \end{aligned}$$

$$(2.8)$$

Further,

$$\gamma_{0} = \sup_{t \in [0,1]} \left| \int_{0}^{t} \gamma(t,s) ds \right|, \qquad \delta_{0} = \sup_{t \in [0,1]} \left| \int_{0}^{t} \delta(t,s) ds \right|,$$

$$I_{L}^{q} = \sup_{t \in [0,1]} \{ |I^{q}L_{1}(t)|, |I^{q}L_{2}(t)|, |I^{q}L_{3}(t)| \},$$

$$I^{q-1}L(1) = \max\{ |I^{q-1}L_{1}(1)|, |I^{q-1}L_{2}(1)|, |I^{q-1}L_{3}(1)| \}.$$
(2.9)

 $(H2) ||f(t, x, y, z)|| \le \mu(t), \text{ for all } (t, x, y, z) \in [0, 1] \times X \times X \times X, \mu \in L^1([0, 1], \mathbb{R}^+).$

3. Main results

In this section, the theorems of uniqueness and existence of a solution for equation (1.1) will be given.

Theorem 3.1: Assume that $f : [0,1] \times X \times X \times X \to X$ is jointly continuous and satisfies (H1) and (H2). If

$$(1 + \gamma_0 + \delta_0)I^{q-1}L(1) < q - 1, \tag{3.1}$$

then the fractional integrodifferential equation (1.1) has at least one solution. **Proof:** Consider $B_r = \{x \in C : ||x|| \le r\}$, where

$$r \ge \frac{\|\mu\|_{L^1}(2q-1)}{(q-1)\Gamma(q+1)}.$$
(3.2)

Define two mappings A and B on B_r by

$$(Ax)(t) = \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s, x(s), (\phi x)(s), (\psi x)(s)) ds,$$

$$(Bx)(t) = -\int_0^1 \frac{t^{q-1}(1-s)^{q-2}}{\Gamma(q)} f(s, x(s), (\phi x)(s), (\psi x)(s)) ds.$$
(3.3)

For $x, y \in B_r$, by (H2), we obtain

$$\begin{split} \|(Ax)(t) + (By)(t)\| \\ &\leq \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} \|f(s,x(s),(\phi x)(s),(\psi x)(s))\| ds \\ &+ \int_0^1 \frac{t^{q-1}(1-s)^{q-2}}{\Gamma(q)} \|f(s,y(s),(\phi y)(s),(\psi y)(s))\| ds \\ &\leq \|\mu\|_{L^1} \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} ds + \|\mu\|_{L^1} \int_0^1 \frac{(1-s)^{q-2}}{\Gamma(q)} ds \\ &= \|\mu\|_{L^1} \left(\frac{t^q}{\Gamma(q+1)} + \frac{1}{(q-1)\Gamma(q)}\right) \\ &\leq \frac{\|\mu\|_{L^1}(2q-1)}{(q-1)\Gamma(q+1)} \leq r, \end{split}$$
(3.4)

which means $Ax + By \in B_r$.

It is claimed that A is compact and continuous. Continuity of f implies that (Ax)(t) is continuous. (Ax)(t) is uniformly bounded on B_r as

$$||Ax|| \le \frac{||\mu||_{L^1}}{\Gamma(q+1)}.$$
(3.5)

Since f is bounded on the compact set $[0,1] \times B_r \times B_r \times B_r$, let $\sup_{(t,x,\phi x,\psi x)\in[0,1]\times B_r\times B_r\times B_r} ||f(t,x,\phi x,\psi x)|| = f_{\max}$. Then, for $t_1, t_2 \in [0,1]$, we get

$$\begin{split} \|(Ax)(t_{2}) - (Ax)(t_{1})\| \\ &= \frac{1}{\Gamma(q)} \left\| \int_{0}^{t_{1}} \left((t_{2} - s)^{q-1} - (t_{1} - s)^{q-1} \right) f\left(s, x(s), (\phi x)(s), (\psi x)(s) \right) ds \\ &+ \int_{t_{1}}^{t_{2}} (t_{2} - s)^{q-1} f\left(s, x(s), (\phi x)(s), (\psi x)(s) \right) ds \right\| \\ &\leq \frac{f_{\max}}{\Gamma(q)} \left| - \frac{(t_{2} - t_{1})^{q}}{q} + \frac{t_{2}^{q}}{q} - \frac{t_{1}^{q}}{q} + \frac{(t_{2} - t_{1})^{q}}{q} \right| \\ &\leq \frac{f_{\max}}{\Gamma(q+1)} |t_{2}^{q} - t_{1}^{q}|, \end{split}$$
(3.6)

which is independent of x. Therefore, A is relatively compact on B_r . By Arzela-Ascoli's Theorem, A is compact on B_r .

For $x, y \in B_r$ and $t \in [0, 1]$, by (H1), we have

$$\begin{split} \| (Bx)(t) - (By)(t) \| \\ &\leq \int_{0}^{1} \frac{t^{q-1}(1-s)^{q-2}}{\Gamma(q)} \| f(s,x(s),(\phi x)(s),(\psi x)(s)) \\ &- f(s,y(s),(\phi y)(s),(\psi y)(s)) \| ds \\ &\leq \int_{0}^{1} \frac{(1-s)^{q-2}}{\Gamma(q)} \Big(L_{1}(s) \| x-y \| + L_{2}(s) \| \phi x - \phi y \| + L_{3}(s) \| \psi x - \psi y \| \Big) ds \\ &\leq \frac{1}{q-1} \int_{0}^{1} \frac{(1-s)^{q-2}}{\Gamma(q-1)} \Big(L_{1}(s) + \gamma_{0} L_{2}(s) + \delta_{0} L_{3}(s) \Big) \| x-y \| ds \\ &\leq \frac{1}{q-1} \Big(I^{q-1} L_{1}(1) + \gamma_{0} I^{q-1} L_{2}(1) + \delta_{0} I^{q-1} L_{3}(1) \Big) \| x-y \| \\ &\leq \frac{(1+\gamma_{0}+\delta_{0}) I^{q-1} L(1)}{q-1} \| x-y \|. \end{split}$$

It follows from (3.1) that B is a contraction mapping. Thus, by Krasnoselskii fixed point theorem, (1.1) has at least one solution.

Theorem 3.2: Assume that $f : [0,1] \times X \times X \times X \to X$ is jointly continuous and satisfies (H1). If

$$\lambda = (1 + \gamma_0 + \delta_0) \left(I_L^q + \frac{I^{q-1}L(1)}{q-1} \right) < 1,$$
(3.8)

then the fractional integrodifferential equation (1.1) has a unique solution.

Proof: Define a mapping $F: C \to C$ by

$$(Fx)(t) = \int_0^t \frac{(t-s)^{q-1}}{\Gamma(q)} f(s, x(s), (\phi x)(s), (\psi x)(s)) ds - \int_0^1 \frac{t^{q-1}(1-s)^{q-2}}{\Gamma(q)} f(s, x(s), (\phi x)(s), (\psi x)(s)) ds, \ t \in [0, 1].$$
(3.9)

Let $\sup_{t \in [0,1]} |f(t,0,0,0)| = M$, and choose

$$r \ge \frac{M(2q-1)}{(1-\lambda)(q-1)\Gamma(q+1)}.$$
(3.10)

It is claimed that $FB_r \subset B_r$, where $B_r = \{x \in C : ||x|| \le r\}$. In fact, for $x \in B_r$,

by (3.8), (3.10) and (H1), we obtain

$$\begin{split} \|(Fx)(t)\| &\leq \int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} \|f(s,x(s),(\phi x)(s),(\psi x)(s))\| ds \\ &+ \int_{0}^{t} \frac{t^{q-1}(1-s)^{q-2}}{\Gamma(q)} \|f(s,x(s),(\phi x)(s),(\psi x)(s))\| ds \\ &\leq \int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} \Big(\|f(s,x(s),(\phi x)(s),(\psi x)(s)) - f(s,0,0,0)\| \\ &+ \|f(s,0,0,0)\| \Big) ds \\ &+ \int_{0}^{1} \frac{t^{q-1}(1-s)^{q-2}}{\Gamma(q)} \Big(\|f(s,x(s),(\phi x)(s),(\psi x)(s)) \\ &- f(s,0,0,0)\| + \|f(s,0,0,0)\| \Big) ds \\ &\leq \int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} \Big(L_{1}(s)\|x(s)\| + L_{2}(s)\|(\phi x)(s)\| \\ &+ L_{3}(s)\|(\psi x)(s)\| + M \Big) ds \\ &+ \int_{0}^{1} \frac{(1-s)^{q-2}}{\Gamma(q)} \Big(L_{1}(s)\|x(s)\| + L_{2}(s)\|(\phi x)(s)\| \\ &+ L_{3}(s)\|(\psi x)(s)\| + M \Big) ds \\ &+ \int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} \Big(L_{1}(s)\|x(s)\| + \gamma_{0}L_{2}(s)\|x(s)\| \\ &+ \delta_{0}L_{3}(s)\|x(s)\| + M \Big) ds \\ &+ \frac{1}{q-1} \int_{0}^{1} \frac{(1-s)^{q-2}}{\Gamma(q-1)} \Big(L_{1}(s)\|x(s)\| + \gamma_{0}L_{2}(s)\|x(s)\| \\ &+ \delta_{0}L_{3}(s)\|x(s)\| + M \Big) ds \\ &\leq (I^{q}L_{1}(t) + \gamma_{0}I^{q}L_{2}(t) + \delta_{0}I^{q}L_{3}(t))r + \frac{Mt^{q}}{\Gamma(q+1)} \\ &+ \frac{1}{q-1} (I^{q-1}L_{1}(1) + \gamma_{0}I^{q-1}L_{2}(1) + \delta_{0}I^{q-1}L_{3}(1))r \\ &+ \frac{M}{\Gamma(q)} \int_{0}^{1} (1-s)^{q-2}ds \\ &\leq I_{L}^{q}(1+\gamma_{0}+\delta_{0})r + \frac{M(2q-1)}{\Gamma(q+1)} \leq \lambda r + (1-\lambda)r = r. \end{split}$$

It is declared that F is a contraction mapping. For $x, y \in C$ and $t \in [0, 1]$, by (3.8)

and (H1), we have

$$\begin{split} \| (Fx)(t) - (Fy)(t) \| \\ &\leq \int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} \| f\left(s, x(s), (\phi x)(s), (\psi x)(s)\right) \\ &- f\left(s, y(s), (\phi y)(s), (\psi y)(s)\right) \| ds \\ &+ \int_{0}^{1} \frac{t^{q-1}(1-s)^{q-2}}{\Gamma(q)} \| f\left(s, x(s), (\phi x)(s), (\psi x)(s)\right) \\ &- f\left(s, y(s), (\phi y)(s), (\psi y)(s)\right) \| ds \\ &\leq \int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} \left(L_{1}(s) \| x-y \| + L_{2}(s) \| \phi x - \phi y \| + L_{3}(s) \| \psi x - \psi y \| \right) ds \\ &+ \int_{0}^{1} \frac{(1-s)^{q-2}}{\Gamma(q)} \left(L_{1}(s) \| x-y \| + L_{2}(s) \| \phi x - \phi y \| \\ &+ L_{3}(s) \| \psi x - \psi y \| \right) ds \\ &\leq \int_{0}^{t} \frac{(t-s)^{q-1}}{\Gamma(q)} \left(L_{1}(s) + \gamma_{0} L_{2}(s) + \delta_{0} L_{3}(s) \right) \| x-y \| ds \\ &+ \frac{1}{q-1} \int_{0}^{1} \frac{(1-s)^{q-2}}{\Gamma(q-1)} \left(L_{1}(s) + \gamma_{0} L_{2}(s) + \delta_{0} L_{3}(s) \right) \| x-y \| ds \\ &\leq (I^{q} L_{1}(t) + \gamma_{0} I^{q} L_{2}(t) + \delta_{0} I^{q} L_{3}(t)) \| x-y \| \\ &+ \frac{1}{q-1} \left(I^{q-1} L_{1}(1) + \gamma_{0} I^{q-1} L_{2}(1) + \delta_{0} I^{q-1} L_{3}(1) \right) \| x-y \| \\ &\leq (1+\gamma_{0}+\delta_{0}) \left(I_{L}^{q} + \frac{I^{q-1} L(1)}{q-1} \right) \| x-y \| \\ &= \lambda \| x-y \|. \end{split}$$

 $\lambda < 1$ ensures that F is contractive. Therefore, the conclusion of the theorem follows from the contraction mapping principle.

Acknowledgments

The authors would like to thank the anonymous referee for his/her comments that helped us improve this article.

References

- A. Anguraj, P. Karthikeyan and J. J. Trujillo, Existence of Solutions to Fractional Mixed Integrodifferential Equations with Nonlocal Initial Condition, Advances in Difference Equations, 2011, Article ID 690653, 12 pages
- [2] B. Ahmad and A. Alsaedi, Existence and Uniqueness of Solutions for Coupled Systems of Higher-Order Nonlinear Fractional Differential Equations, Fixed Point Theory and Applications 2010, Article ID 364560, 17 pages

- B. Ahmad and A. Alsaedi, Existence of Solutions for Nonlinear Fractional Integro-Differential Equations with Three-Point Nonlocal Fractional Boundary Conditions, Advances in Difference Equations, 2010, Article ID 691721, 10 pages
- Y. Cui, Existence Results for Singular Boundary Value Problem of Nonlinear Fractional Differential Equation, Abstract and Applied Analysis, 2011, Article ID 605614, 9 pages
- [5] Z. Guo and M. Liu, Existence and uniqueness of solutions for fractional order integrodifferential equations with nonlocal initial conditions, Pan-American Math. J., 21, 3 (2011), 51–61
- [6] Z. Guo and M. Liu, Unique solutions for systems of fractional order differential equations with infinite delay, Bull. Math. Anal. Appl., 3, 1 (2011), 142–147
- Z. Guo and M. Liu, On solutions of a system of higher-order nonlinear fractional differential equations, Bull. Math. Anal. Appl., 3, 4 (2011), 59–68
- [8] Z. Guo and M. Liu, Existence and uniqueness of mild solutions for fractional order mixed integrodifferential equations with nonlocal conditions, New Zealand J. Math., **41**, (2011), 123–129
- Z. Guo and M. Liu, Mild solutions for a system of fractional order differential equations with nonlocal conditions, Internat. J. Pure Appl. Math., 80, 3 (2012), 305–313
- [10] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam, The Netherlands, 2006
- [11] N. Kosmatov, Integral equations and initial value problems for nonlinear differential equations of fractional order, Nonlinear Analysis, 70, 7 (2009), 2521–2529
- [12] V. Lakshmikanthama and A.S. Vatsala, Basic theory of fractional differential equations, Nonlinear Anal., 69 (2008), 2677–2682
- [13] C. Li and W. Deng, Remarks on fractional derivatives, Applied Math. Computation, 187, 2 (2007), 777-784
- [14] F. Li, Mild solutions for fractional differential equations with nonlocal conditions, Advances in Difference Equations, 2010, Article ID 287861, 9 pages
- [15] F. Li and M. Guérékata, Existence and Uniqueness of Mild Solution for Fractional Integrodifferential Equations, Advances in Difference Equations, 2010, Article ID 158789, 10 pages
- [16] J. Mao, Z. Zhao and N. Xu, The Existence and Uniqueness of Positive Solutions for Integral Boundary Value Problems, Bull. Malays. Math. Sci. Soc., 34, 1 (2011), 153–164
- [17] I. Podlubny, Fractional Differential Equations, 198 of Mathematics in Science and Engineering, Academic Press, San Diego, Calif, USA, 1999
- [18] D.R. Smart, Fixed Point Theorems, Cambridge University Press, 1980