An Iteration Method for the Kirchhoff Static Beam

Peradze Jemal
I. Javakhishvili Tbilisi State University, Georgian Technical University
(Received December 26, 2011; Accepted March 5, 2012)

Abstract

The iteration method $u_{k}^{\mathrm{iv}}-\left(\lambda+2 / L \int_{0}^{L} u_{k-1}^{\prime 2} d x\right) u_{k}^{\prime \prime}=f, k=1,2, \ldots$, is used to solve the boundary value problem for the nonlinear differential equation $u^{\text {iv }}-\left(\lambda+2 / L \int_{0}^{L} u^{\prime 2} d x\right) u^{\prime \prime}=f$. The approximation u_{k} is expressed as well-defined integrals of the functions u_{k-1} and f. The method error $u_{k}-u$ is estimated.

Keywords: Kirchhoff equation, Static beam, Iteration method, Algorithm error.
AMS Subject Classification: 65L10, 65L70.

1. Statement of the problem

We consider the following boundary value problem

$$
\begin{gather*}
u^{\mathrm{IV}}(x)-\left(\lambda+\frac{2}{L} \int_{0}^{L} u^{\prime 2}(x) d x\right) u^{\prime \prime}(x)=f(x) \tag{1.1}\\
0<x<L, \quad \lambda=\text { const }>0 \\
u(0)=u(L)=0, \quad u^{\prime \prime}(0)=u^{\prime \prime}(L)=0 \tag{1.2}
\end{gather*}
$$

where $f(x)$ is a given continuous function, and $u(x)$ is the sought solution.
Equation (1.1) is the stationary problem related to the equation

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial t^{2}}+\alpha_{0} \frac{\partial^{4} u}{\partial x^{4}}-\left(\alpha_{1}+\alpha_{2} \int_{0}^{L}\left(\frac{\partial u}{\partial x}\right)^{2} d x\right) \frac{\partial^{2} u}{\partial x^{2}}=0 \tag{1.3}
\end{equation*}
$$

which was proposed by Woinowsky-Krieger [9] in 1950 as a model for the deflection of an extensible dynamic beam with hinged ends. The nonlinear term of this equation was for the first time used by Kirchhoff [4] who generalized D'Alembert's classical model. Therefore equations (1.1) and (1.3) are frequently called a Kirchhoff type equation for a dynamic and a static beam, respectively. The results of one of the initial mathematical studies of equations of (1.3) type are presented in [1] and [2].

For equation (1.1) and its generalizations, as well as for equations similar to (1.1), the problem of construction of numerical algorithms and estimation of their accuracy is studied in [3], [5]-[8]. Each of the algorithms used in these papers is a combination of two approximate methods, one of which reduces the problem to
the finite-dimensional one and the other is some iterative process of solution of the discrete system. In the present paper, a technique somewhat different from the above-mentioned one is proposed to solve problem (1.1),(1.2). The differential equation (1.1) is solved by an iteration method. At each iteration step, a boundary value problem is obtained for a linear differential equation whose solution is written in integrals. The algorithm accuracy is estimated by the method of a priori inequalities.

2. The algorithm

On choosing a function $u_{0}(x), 0 \leq x \leq L$, that together with its second derivative vanishes for $x=0$ and $x=L$, we will seek for a solution of problem (1.1),(1.2) using the iteration process

$$
\begin{gather*}
u_{k}^{\mathrm{lv}}(x)-\left(\lambda+\frac{2}{L} \int_{0}^{L} u_{k-1}^{\prime 2}(x) d x\right) u_{k}^{\prime \prime}(x)=f(x) \tag{2.4}\\
0<x<L \\
u_{k}(0)=u_{k}(L)=0, \quad u_{k}^{\prime \prime}(0)=u_{k}^{\prime \prime}(L)=0 \tag{2.5}\\
k=1,2, \ldots
\end{gather*}
$$

where $u_{k}(x)$ is the k-th approximation of the solution of problem (1.1),(1.2), $k=$ $0,1, \ldots$.

The considered algorithm makes it possible to express $u_{k}(x)$ through the preceding approximation in the integral form. Indeed, on denoting

$$
\alpha_{k}=\lambda+\frac{2}{L} \int_{0}^{L} u_{k}^{\prime 2}(x) d x
$$

we introduce the function $v_{k}(x)=u_{k}^{\prime \prime}(x), k=0,1, \ldots$.
Now, (2.4),(2.5) can be rewritten as relations

$$
\begin{aligned}
& u_{k}^{\prime \prime}(x)=v_{k}(x), \quad 0<x<L \\
& u_{k}(0)=u_{k}(L)=0
\end{aligned}
$$

and

$$
\begin{aligned}
& v_{k}^{\prime \prime}(x)-\alpha_{k-1} v_{k}(x)=f(x), \quad 0<x<L \\
& v_{k}(0)=v_{k}(L)=0
\end{aligned}
$$

For $u_{k}(x)$ we have

$$
\begin{equation*}
u_{k}(x)=\frac{1}{L}\left((x-L) \int_{0}^{x} \xi v_{k}(\xi) d \xi+x \int_{x}^{L}(\xi-L) v_{k}(\xi) d \xi\right) \tag{2.6}
\end{equation*}
$$

and $v_{k}(x)$ is representable in the form

$$
\begin{align*}
& v_{k}(x)=\frac{1}{\sqrt{\alpha_{k-1}} \sinh \left(\sqrt{\alpha_{k-1}} L\right)} \\
& \times\left(\sinh \left(\sqrt{\alpha_{k-1}}(x-L)\right) \int_{0}^{x} \sinh \left(\sqrt{\alpha_{k-1}} \xi\right) f(\xi) d \xi\right. \\
& \left.\quad+\sinh \left(\sqrt{\alpha_{k-1}} x\right) \int_{x}^{L} \sinh \left(\sqrt{\alpha_{k-1}}(\xi-L)\right) f(\xi) d \xi\right) . \tag{2.7}
\end{align*}
$$

Substituting (2.7) into (2.6) and applying the well-known equalities for hyperbolic functions, we obtain the desired formula

$$
\begin{align*}
& u_{k}(x)=-\frac{1}{\alpha_{k-1} L}\left((x-L) \int_{0}^{x} \xi f(\xi) d \xi+x \int_{x}^{L}(\xi-L) f(\xi) d \xi\right) \\
& +\frac{1}{\alpha_{k-1} \sqrt{\alpha_{k-1}} \sinh \left(\sqrt{\alpha_{k-1}} L\right)}\left(\sinh \left(\sqrt{\alpha_{k-1}}(x-L)\right) \int_{0}^{x} \sinh \left(\sqrt{\alpha_{k-1}} \xi\right) f(\xi) d \xi\right. \\
& \left.\quad+\sinh \left(\sqrt{\alpha_{k-1}} x\right) \int_{x}^{L} \sinh \left(\sqrt{\alpha_{k-1}}(\xi-L)\right) f(\xi) d \xi\right), \quad k=1,2, \ldots, \tag{2.8}
\end{align*}
$$

which makes it possible to obtain approximations $u_{k}(x)$ evading the differential problem $(2.4),(2.5)$. Therefore approximations $u_{k}(x)$ are found by means of (2.8).

3. Error of the algorithm and the equation for it

Let us define the algorithm error as a difference

$$
\Delta u_{k}(x)=u_{k}(x)-u(x), \quad k=0,1, \ldots,
$$

between an approximate and an exact solutions.
Subtracting the respective relations in (1.1) and (1.2) from (2.4) and (2.5), we obtain

$$
\begin{align*}
\Delta u_{k}^{\mathrm{IV}}(x) & -\left(\lambda+\frac{1}{L} \int_{0}^{L}\left(u_{k-1}^{\prime 2}(x)+u^{\prime 2}(x)\right) d x\right) \Delta u_{k}^{\prime \prime}(x) \\
& -\frac{1}{L}\left(\int_{0}^{L}\left(u_{k-1}^{\prime}(x)+u^{\prime}(x)\right) \Delta u_{k-1}^{\prime}(x) d x\right)\left(u_{k}^{\prime \prime}(x)+u^{\prime \prime}(x)\right)=0 \tag{3.9}\\
\Delta & u_{k}(0)=\Delta u_{k}(L)=0, \quad \Delta u_{k}^{\prime \prime}(0)=\Delta u_{k}^{\prime \prime}(L)=0 \tag{3.10}
\end{align*}
$$

We use (3.9), (10) to estimate the algorithm accuracy. For this, we need some a priori relations which are derived in the next paragraph.

4. Auxiliary inequalities

For the well-defined functions, sufficiently smooth for $0 \leq x \leq L$, we introduce the notation

$$
\begin{gathered}
(u(x), v(x))=\int_{0}^{L} u(x) v(x) d x \\
\|u(x)\|_{p}=\left(\int_{0}^{L}\left(\frac{d^{p} u(x)}{d x^{p}}\right)^{2} d x\right)^{\frac{1}{2}}, \quad p=0,1,2, \quad\|u(x)\|=\|u(x)\|_{0} .
\end{gathered}
$$

Lemma 4.1: For a twice differentiable function $u(x), 0 \leq x \leq L$, that vanishes at $x=0$ and $x=L$ the inequalities

$$
\begin{equation*}
\frac{\sqrt{2}}{L}\|u(x)\| \leq\|u(x)\|_{1} \leq \frac{L}{\sqrt{2}}\|u(x)\|_{2} \tag{4.11}
\end{equation*}
$$

are valid.
Proof: We have

$$
u(x)=\int_{0}^{x} u^{\prime}(\xi) d \xi
$$

Hence

$$
|u(x)| \leq\left(\int_{0}^{x} d \xi\right)^{\frac{1}{2}}\left(\int_{0}^{x} u^{\prime 2}(\xi) d \xi\right)^{\frac{1}{2}} \leq x^{\frac{1}{2}}\|u\|_{1}
$$

Therefore

$$
\|u(x)\|^{2} \leq \frac{L^{2}}{2}\|u\|_{1}^{2}
$$

which implies the left inequality of (4.11). Using the latter and taking into account that

$$
\|u(x)\|_{1}^{2}=\left.u(x) u^{\prime}(x)\right|_{0} ^{L}-\left(u(x), u^{\prime \prime}(x)\right)=-\left(u(x), u^{\prime \prime}(x)\right)
$$

we complete the proof.
Lemma 4.2: For the solution of problem (1.1), (1.2) we have the inequality

$$
\begin{equation*}
\|u(x)\|_{1} \leq c_{1} \tag{4.12}
\end{equation*}
$$

where c_{1} is the constant calculated by the formula

$$
\begin{equation*}
c_{1}=\frac{L}{2}\left(\frac{2}{L}+\lambda L\right)^{-\frac{1}{4}}\|f(x)\|^{\frac{1}{2}} \tag{4.13}
\end{equation*}
$$

Proof: We multiply equation (1.1) by $u(x)$ and then integrate the obtained equality with respect to x from 0 to L. Using (1.2), we get the relation

$$
\|u(x)\|_{2}^{2}+\left(\lambda+\frac{2}{L}\|u(x)\|_{1}^{2}\right)\|u(x)\|_{1}^{2}=(f(x), u(x))
$$

which, together with (4.11), yields

$$
\left(\lambda+\frac{2}{L^{2}}+\frac{2}{L}\|u(x)\|_{1}^{2}\right)\|u(x)\|_{1}^{2} \leq \frac{L}{\sqrt{2}}\|f(x)\|\|u(x)\|_{1} .
$$

Thus we obtain the inequality

$$
\frac{2}{L}\|u(x)\|_{1}^{4} \leq \frac{L^{2}}{8}\left(\frac{2}{L^{2}}+\lambda\right)^{-1}\|f(x)\|^{2}
$$

which implies estimate (4.12).
Lemma 4.3: The solution of problem (2.4), (2.5) satisfies the relation

$$
\begin{equation*}
\left\|u_{k}(x)\right\|_{1} \leq c_{2}, \quad k=1,2, \ldots, \tag{4.14}
\end{equation*}
$$

where c_{2} is a constant independent of k and defined by

$$
\begin{equation*}
c_{2}=\frac{L^{2}}{\sqrt{2}}\left(\frac{2}{L}+\lambda L\right)^{-1}\|f(x)\| . \tag{4.15}
\end{equation*}
$$

Proof: We multiply equation (2.4) by $u_{k}(x)$ and integrate with respect to x from 0 to L. Taking (2.5) into account, we see

$$
\left\|u_{k}(x)\right\|_{2}^{2}+\left(\lambda+\frac{2}{L}\left\|u_{k-1}(x)\right\|_{1}^{2}\right)\left\|u_{k}(x)\right\|_{1}^{2}=\left(f(x), u_{k}(x)\right) .
$$

By applying (4.11) we find

$$
\left(\lambda+\frac{2}{L^{2}}+\frac{2}{L}\left\|u_{k-1}(x)\right\|_{1}^{2}\right)\left\|u_{k}(x)\right\|_{1}^{2} \leq \frac{L}{\sqrt{2}}\|f(x)\|\left\|u_{k}(x)\right\|_{1} .
$$

This implies (4.14).

5. Estimation of the algorithm error

We multiply equation (3.9) by $\Delta u_{k}(x)$ and integrate the obtained equality with respect to x from 0 to L. Applying (3.10) we obtain

$$
\begin{aligned}
\left\|\Delta u_{k}(x)\right\|_{2}^{2}+\left(\lambda+\frac{1}{L}\left(\left\|u_{k-1}(x)\right\|_{1}^{2}+\right.\right. & \left.\left.\|u(x)\|_{1}^{2}\right)\right)\left\|\Delta u_{k}(x)\right\|_{1}^{2} \\
& +\frac{1}{L} \prod_{p=0}^{1}\left(u_{k-p}^{\prime}(x)+u^{\prime}(x), \Delta u_{k-p}^{\prime}(x)\right)=0
\end{aligned}
$$

By (4.11)

$$
\begin{aligned}
&\left(\lambda+\frac{2}{L^{2}}+\frac{1}{L}\left(\left\|u_{k-1}(x)\right\|_{1}^{2}+\|u(x)\|_{1}^{2}\right)\right)\left\|\Delta u_{k}(x)\right\|_{1}^{2} \\
& \leq \frac{1}{L} \prod_{p=0}^{1}\left(\left\|u_{k-p}(x)\right\|_{1}+\|u(x)\|_{1}\right)\left\|\Delta u_{k-p}(x)\right\|_{1}
\end{aligned}
$$

Therefore

$$
\begin{aligned}
\left\|\Delta u_{k}(x)\right\|_{1} \leq\left(\frac{2}{L}\right)^{\frac{1}{2}}\left(\frac { 1 } { L } \left(\left\|u_{k-1}(x)\right\|_{1}^{2}\right.\right. & \left.\left.+\|u(x)\|_{1}^{2}\right)\right)^{\frac{1}{2}} \\
& \times\left(\lambda+\frac{2}{L^{2}}+\frac{1}{L}\left(\left\|u_{k-1}(x)\right\|_{1}^{2}+\|u(x)\|_{1}^{2}\right)\right)^{-1} \\
& \times\left(\left\|u_{k}(x)\right\|_{1}+\|u(x)\|_{1}\right)\left\|\Delta u_{k-1}(x)\right\|_{1}
\end{aligned}
$$

Since $\max _{0 \leq y<\infty} \frac{y}{\alpha+y^{2}}=\frac{1}{2} \alpha^{-1 / 2}$ holds for $\alpha>0$, we have

$$
\begin{equation*}
\left\|\Delta u_{k}(x)\right\|_{1} \leq\left(2\left(\frac{2}{L}+\lambda L\right)\right)^{-\frac{1}{2}}\left(\left\|u_{k}(x)\right\|_{1}+\|u(x)\|_{1}\right)\left\|\Delta u_{k-1}(x)\right\|_{1} \tag{5.16}
\end{equation*}
$$

Let the condition $q=\left(2\left(\frac{2}{L}+\lambda L\right)\right)^{-\frac{1}{2}}\left(c_{1}+c_{2}\right)<1$ be fulfilled, which, as follows from (4.13) and (4.15), is equivalent to the requirement

$$
q=\frac{1}{4} \sum_{p=1}^{2}\left(L \sqrt{2}\left(\frac{2}{L}+\lambda L\right)^{-\frac{3}{4}}\|f(x)\|^{\frac{1}{2}}\right)^{p}<1
$$

Then, by virtue of $(5.16),(4.12),(4.14)$ and (4.11), we come to a conclusion that the iteration method $(2.4),(2.5)$ or, which is the same, (2.8) reduces to the solution
of problem (1.1),(1.2) and the estimate

$$
\begin{gathered}
\left\|\Delta u_{k}(x)\right\|_{p} \leq\left(\frac{L}{\sqrt{2}}\right)^{1-p} q^{k}\left\|\Delta u_{0}(x)\right\|_{1} \\
k=1,2, \ldots, \quad p=0,1
\end{gathered}
$$

holds for the error of the method.

Acknowledgement

The author acknowledges the support under grant 7353 of the Estonian Science Foundation.

References

[1] J.M. Ball, Initial-boundary value problems for an extensible beam, J. Math. Anal. Appl., 42 (1973), 61-90
[2] R.W. Dickey, Free vibrations and dynamic buckling of the extensible beam, J. Math. Anal. Appl., 29 (1970), 443-454
[3] T. Gudi, Finite element method for a nonlocal problem of Kirchhoff type, SIAM J. Numer. Anal., 11 pp., 2011 (in print)
[4] G. Kirchhoff, Vorlesungen über mathematische Physik. I. Mechanik, Teubner, Leipzig, 1876
[5] T.F. Ma, Existence results and numerical solutions for a beam equation with nonlinear boundary conditions, Appl. Numer. Math., 47, no. 2 (2003), 189-196
[6] J. Peradze, A numerical algorithm for a Kirchhoff-type nonlinear static beam, J. Appl. Math., 2009, Art. ID 818269, 12 pp.
[7] J. Peradze, On an iteration method of finding a solution of a nonlinear equilibrium problem for the Timoshenko plate, Z. Angew. Math. Mech., 91, no. 12 (2011), 993-1001
[8] S. Y. Tsai, Numerical Computation for Nonlinear Beam Problems, M. Sc. Thesis, National Sun YatSen University, Kaohsiung, Taiwan, 2005
[9] S. Woynowsky-Krieger, The effect of an axial force on the vibration of hinged bars, J. Appl. Mech., 17 (1950), 35-36

