
Bulletin of TICMI
Vol. 16, No. 1, 2012, 27–33

An Iteration Method for the Kirchhoff Static Beam

Peradze Jemal

I. Javakhishvili Tbilisi State University, Georgian Technical University

The iteration method uiv
k − (λ + 2/L

∫ L
0 u′2k−1dx)u′′k = f , k = 1, 2, . . . , is used to solve the

boundary value problem for the nonlinear differential equation uiv−(λ+2/L
∫ L
0 u′2dx)u′′ = f .

The approximation uk is expressed as well-defined integrals of the functions uk−1 and f . The
method error uk − u is estimated.
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1. Statement of the problem

We consider the following boundary value problem

uıv(x)−
(

λ +
2
L

∫ L

0
u′2(x) dx

)
u′′(x) = f(x), (1.1)

0 < x < L, λ = const > 0,

u(0) = u(L) = 0, u′′(0) = u′′(L) = 0, (1.2)

where f(x) is a given continuous function, and u(x) is the sought solution.
Equation (1.1) is the stationary problem related to the equation

∂2u

∂t2
+ α0

∂4u

∂x4
−

(
α1 + α2

∫ L

0

(
∂u

∂x

)2

dx

)
∂2u

∂x2
= 0, (1.3)

which was proposed by Woinowsky–Krieger [9] in 1950 as a model for the deflec-
tion of an extensible dynamic beam with hinged ends. The nonlinear term of this
equation was for the first time used by Kirchhoff [4] who generalized D’Alembert’s
classical model. Therefore equations (1.1) and (1.3) are frequently called a Kirch-
hoff type equation for a dynamic and a static beam, respectively. The results of
one of the initial mathematical studies of equations of (1.3) type are presented in
[1] and [2].

For equation (1.1) and its generalizations, as well as for equations similar to
(1.1), the problem of construction of numerical algorithms and estimation of their
accuracy is studied in [3], [5]–[8]. Each of the algorithms used in these papers is
a combination of two approximate methods, one of which reduces the problem to
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the finite-dimensional one and the other is some iterative process of solution of
the discrete system. In the present paper, a technique somewhat different from
the above-mentioned one is proposed to solve problem (1.1),(1.2). The differential
equation (1.1) is solved by an iteration method. At each iteration step, a bound-
ary value problem is obtained for a linear differential equation whose solution is
written in integrals. The algorithm accuracy is estimated by the method of a priori
inequalities.

2. The algorithm

On choosing a function u0(x), 0 ≤ x ≤ L, that together with its second derivative
vanishes for x = 0 and x = L, we will seek for a solution of problem (1.1),(1.2)
using the iteration process

uıv
k (x)−

(
λ +

2
L

∫ L

0
u′2k−1(x) dx

)
u′′k(x) = f(x), (2.4)

0 < x < L,

uk(0) = uk(L) = 0, u′′k(0) = u′′k(L) = 0, (2.5)

k = 1, 2, . . . ,

where uk(x) is the k-th approximation of the solution of problem (1.1),(1.2), k =
0, 1, . . . .

The considered algorithm makes it possible to express uk(x) through the preced-
ing approximation in the integral form. Indeed, on denoting

αk = λ +
2
L

∫ L

0
u′2k (x) dx,

we introduce the function vk(x) = u′′k(x), k = 0, 1, . . . .
Now, (2.4),(2.5) can be rewritten as relations

u′′k(x) = vk(x), 0 < x < L,

uk(0) = uk(L) = 0

and

v′′k(x)− αk−1vk(x) = f(x), 0 < x < L,

vk(0) = vk(L) = 0.

For uk(x) we have

uk(x) =
1
L

(
(x− L)

∫ x

0
ξvk(ξ) dξ + x

∫ L

x
(ξ − L)vk(ξ) dξ

)
(2.6)
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and vk(x) is representable in the form

vk(x) =
1√

αk−1 sinh(√αk−1 L)

×
(

sinh
(√

αk−1 (x− L)
) ∫ x

0
sinh

(√
αk−1 ξ

)
f(ξ) dξ

+ sinh
(√

αk−1 x
) ∫ L

x
sinh

(√
αk−1 (ξ − L)

)
f(ξ) dξ

)
. (2.7)

Substituting (2.7) into (2.6) and applying the well-known equalities for hyperbolic
functions, we obtain the desired formula

uk(x) = − 1
αk−1L

(
(x− L)

∫ x

0
ξf(ξ) dξ + x

∫ L

x
(ξ − L)f(ξ) dξ

)

+
1

αk−1
√

αk−1 sinh(√αk−1 L)

(
sinh

(√
αk−1(x−L)

)∫ x

0
sinh

(√
αk−1 ξ

)
f(ξ) dξ

+ sinh
(√

αk−1 x
) ∫ L

x
sinh

(√
αk−1 (ξ − L)

)
f(ξ) dξ

)
, k = 1, 2, . . . , (2.8)

which makes it possible to obtain approximations uk(x) evading the differential
problem (2.4),(2.5). Therefore approximations uk(x) are found by means of (2.8).

3. Error of the algorithm and the equation for it

Let us define the algorithm error as a difference

∆uk(x) = uk(x)− u(x), k = 0, 1, . . . ,

between an approximate and an exact solutions.
Subtracting the respective relations in (1.1) and (1.2) from (2.4) and (2.5), we

obtain

∆uıv
k (x)−

(
λ +

1
L

∫ L

0

(
u′2k−1(x) + u′2(x)

)
dx

)
∆u′′k(x)

− 1
L

( ∫ L

0

(
u′k−1(x) + u′(x)

)
∆u′k−1(x) dx

)
(u′′k(x) + u′′(x)) = 0, (3.9)

∆uk(0) = ∆uk(L) = 0, ∆u′′k(0) = ∆u′′k(L) = 0. (3.10)

We use (3.9), (10) to estimate the algorithm accuracy. For this, we need some a
priori relations which are derived in the next paragraph.
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4. Auxiliary inequalities

For the well-defined functions, sufficiently smooth for 0 ≤ x ≤ L, we introduce the
notation

(u(x), v(x)) =
∫ L

0
u(x)v(x) dx,

‖u(x)‖p =
( ∫ L

0

(
dpu(x)

dxp

)2

dx

) 1
2

, p = 0, 1, 2, ‖u(x)‖ = ‖u(x)‖0 .

Lemma 4.1: For a twice differentiable function u(x), 0 ≤ x ≤ L, that vanishes
at x = 0 and x = L the inequalities

√
2

L
‖u(x)‖ ≤ ‖u(x)‖1 ≤ L√

2
‖u(x)‖2 (4.11)

are valid.

Proof : We have

u(x) =
∫ x

0
u′(ξ) dξ.

Hence

|u(x)| ≤
(∫ x

0
dξ

) 1
2
( ∫ x

0
u′2(ξ) dξ

) 1
2

≤ x
1
2 ‖u‖1.

Therefore

‖u(x)‖2 ≤ L2

2
‖u‖2

1,

which implies the left inequality of (4.11). Using the latter and taking into account
that

‖u(x)‖2
1 = u(x)u′(x)

∣∣L
0
− (u(x), u′′(x)) = −(u(x), u′′(x)),

we complete the proof. ¤

Lemma 4.2: For the solution of problem (1.1), (1.2) we have the inequality

‖u(x)‖1 ≤ c1, (4.12)

where c1 is the constant calculated by the formula

c1 =
L

2

(
2
L

+ λL

)− 1
4

‖f(x)‖ 1
2 . (4.13)
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Proof : We multiply equation (1.1) by u(x) and then integrate the obtained equal-
ity with respect to x from 0 to L. Using (1.2), we get the relation

‖u(x)‖2
2 +

(
λ +

2
L
‖u(x)‖2

1

)
‖u(x)‖2

1 = (f(x), u(x)) ,

which, together with (4.11), yields

(
λ +

2
L2

+
2
L
‖u(x)‖2

1

)
‖u(x)‖2

1 ≤
L√
2
‖f(x)‖ ‖u(x)‖1 .

Thus we obtain the inequality

2
L
‖u(x)‖4

1 ≤
L2

8

(
2
L2

+ λ

)−1

‖f(x)‖2,

which implies estimate (4.12). ¤

Lemma 4.3: The solution of problem (2.4), (2.5) satisfies the relation

‖uk(x)‖1 ≤ c2 , k = 1, 2, . . . , (4.14)

where c2 is a constant independent of k and defined by

c2 =
L2

√
2

(
2
L

+ λL

)−1

‖f(x)‖. (4.15)

Proof : We multiply equation (2.4) by uk(x) and integrate with respect to x from
0 to L. Taking (2.5) into account, we see

‖uk(x)‖2
2 +

(
λ +

2
L
‖uk−1(x)‖2

1

)
‖uk(x)‖2

1 = (f(x), uk(x)) .

By applying (4.11) we find

(
λ +

2
L2

+
2
L
‖uk−1(x)‖2

1

)
‖uk(x)‖2

1 ≤
L√
2
‖f(x)‖ ‖uk(x)‖1.

This implies (4.14). ¤
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5. Estimation of the algorithm error

We multiply equation (3.9) by ∆uk(x) and integrate the obtained equality with
respect to x from 0 to L. Applying (3.10) we obtain

‖∆uk(x)‖2
2 +

(
λ +

1
L

(‖uk−1(x)‖2
1 + ‖u(x)‖2

1

)) ‖∆uk(x)‖2
1

+
1
L

1∏

p=0

(
u′k−p(x) + u′(x), ∆u′k−p(x)

)
= 0.

By (4.11)

(
λ +

2
L2

+
1
L

(‖uk−1(x)‖2
1 + ‖u(x)‖2

1

)) ‖∆uk(x)‖2
1

≤ 1
L

1∏

p=0

(‖uk−p(x)‖1 + ‖u(x)‖1) ‖∆uk−p(x)‖1.

Therefore

‖∆uk(x)‖1 ≤
(

2
L

) 1
2
(

1
L

(‖uk−1(x)‖2
1 + ‖u(x)‖2

1

)) 1
2

×
(

λ +
2
L2

+
1
L

(‖uk−1(x)‖2
1 + ‖u(x)‖2

1

))−1

× (‖uk(x)‖1 + ‖u(x)‖1) ‖∆uk−1(x)‖1.

Since max
0≤y<∞

y
α+y2 = 1

2 α−1/2 holds for α > 0, we have

‖∆uk(x)‖1 ≤
(

2
(

2
L

+ λL

))− 1
2

(‖uk(x)‖1 + ‖u(x)‖1) ‖∆uk−1(x)‖1 . (5.16)

Let the condition q =
(
2

(
2
L + λL

))− 1
2 (c1 + c2) < 1 be fulfilled, which, as follows

from (4.13) and (4.15), is equivalent to the requirement

q =
1
4

2∑

p=1

(
L
√

2
(

2
L

+ λL

)− 3
4

‖f(x)‖ 1
2

)p

< 1.

Then, by virtue of (5.16), (4.12), (4.14) and (4.11), we come to a conclusion that
the iteration method (2.4),(2.5) or, which is the same, (2.8) reduces to the solution
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of problem (1.1),(1.2) and the estimate

‖∆uk(x)‖p ≤
(

L√
2

)1−p

qk‖∆u0(x)‖1,

k = 1, 2, . . . , p = 0, 1,

holds for the error of the method.
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