
Bulletin of TICMI
Vol. 16, No. 1, 2012, 15–26

The Basic Boundary Value Problems of the Theory of

Consolidation With Double Porosity for the Sphere

Basheleishvili Mikheil and Bitsadze Lamara∗

Ilia State University,32,I.Chavchavadze Av., Tbilisi, 0179, Georgia

The purpose of this paper is to solve explicitly the basic first and second boundary value
problems (BVPs) of the theory of consolidation with double porosity for the sphere and for
the whole space with a spherical cavity. The obtained solutions are represented as absolutely
and uniformly convergent series.
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Introduction

Theory of consolidation with double porosity has been proposed by Aifantis (see,
e.g.,[1],[2]). In a material with two degrees of porosity, there are two pore systems,
the primary and the secondary. For example in fissured rocks (i.e., a mass of porous
blocks separated from each other by an interconnected and continuously distributed
system of fissures) most of the porosity is provided by the pores of the blocks of
the primary porosity, while most of permeability is provided by the fissures of the
secondary porosity. When fluid flows and deformation processes occur simultane-
ously , three coupled partial differential equations can be derived [1],[2] to describe
the relationships between governing pressure in the primary and secondary pores
(and, therefore, the mass exchange between them) and the displacement of the
solid. Inertia effects are neglected like Biot’s theory.

The physical and mathematical foundations of the theory of double porosity
were considered in the papers [1]-[3]. R. K. Wilson and E. C. Aifantis [1] gave
detailed physical interpretations of the phenomenological coefficients appearing in
the double porosity theory. They also solved several representative boundary value
problems. Uniqueness and variational principle were established by D. E. Beskos
and E. C. Aifantis [2] for the equations of double porosity, while Khaled, Beskos
and Aifantis [3] provided a related finite element to consider the numerical solution
of Aifantis’ equations of double porosity (see [1],[2],[3] and the references therein).
The basic results and the historical information on the theory of porous media were
summarized by Boer [4].

The main goal of the present investigation is to construct explicitly, in the
form of absolutely and uniformly convergent series, the solutions of the first
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and the second boundary value problems (BVPs) of the theory of consolida-
tion with double porosity for the sphere and for the whole space with spherical cave.

1. Formulation of Boundary Value Problems and uniqueness theorems

The basic Aifantis equations of statics of the theory of consolidation with double
porosity are given by the partial differential equations in the following form [1], [2]

µ∆u + (λ + µ)graddivu− grad(β1p1 + β2p2) = 0, (1.1)

(m1∆− k)p1 + kp2 = 0, kp1 + (m2∆− k)p2 = 0, (1.2)

where u := (u1, u2, u3) is the displacement vector, p1 and p2 are the fluid pressures
within the primary and the secondary pores, respectively. The constant λ is the
Lame modulus, µ is the shear modulus and the constants β1 and β2 measure the

change of porosities due to an applied volumetric strain. mj =
kj

µ∗
, j = 1, 2. The

constants k1 and k2 are the permeabilities of the primary and secondary systems
of pores, the constant µ∗ denotes the viscosity of the pore fluid and the constant k
measures the transfer of fluid from the secondary pores to the primary pores. The
quantities λ, µ, k, βj , kj (j = 1, 2) and µ∗ are positive constants. 4
is the Laplace operator.

Let D+ be the ball, with the radius a , bounded by the spherical surface S.
Denote by D− the whole space with a spherical cave.

Definition 1. A vector-function U(x) = (u1, u2, u3, p1, p2) defined in the do-
main D+(D−) is called regular if it has integrable continuous second derivatives in
D+(D−), and U itself and its first order derivatives are continuously extendable
at every point of the boundary of D+(D−), i.e., U ∈ C2(D+)

⋂
C1(D+), (U ∈

C2(D−)
⋂

C1(D−)). Note that for the infinite domain D− the vector U(x) addi-
tionally satisfies the following conditions at infinity:

U(x) = O(|x|−1),
∂Uk

∂xj
= O(|x|−2), |x|2 = x2

1 + x2
2 + x3

2, j = 1, 2, 3. (1.3)

For system (1.1),(1.2) we pose the following boundary value problems:
Find a regular vector U , satisfying in D+(D−) system (1.1),(1.2), and on the

boundary S one of the following conditions:
Problem (I)± The displacement vector and the fluid pressures are given

u±(z) = f(z)±, p±1 (z) = f±4 , p±2 (z) = f±5 (z), z ∈ S,

where f±(f1, f2, f3) ∈ C1,α(S), f±k ∈ C1,α(S), 0 < α ≤ 1, k = 4, 5, are
prescribed functions;

Problem (II)± The stress vector and the normal derivatives of the pressure
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∂pj

∂n
are given

(Pu)± = f(z)±,

(
∂p1(z)

∂n

)±
= f±4 ,

(
∂p2(z)

∂n

)±
= f±5 (z), z ∈ S,

where f±(f1, f2, f3) ∈ C1,α(S), f±k ∈ C1,α(S), 0 < α ≤ 1, k = 4, 5, are
prescribed functions, Pu is a stress vector, which acts on an element of the S with
the normal n := (n1, n2, n3),

P (∂x, n)u := T (∂x, n)u− n(β1p1 + β2p2), (1.4)

here T (∂x, n) is a stress tensor [7]

T (∂x, n) :=‖ Tkj(∂x, n) ‖3×3,

Tkj(∂x, n) := µδkj
∂

∂n
+ λnk

∂

∂xj
+ µnj

∂

∂xk
, k, j,= 1, 2, 3. (1.5)

Further we assume that pj , j = 1, 2, are known, when x ∈ D+ or x ∈ D− and
rewrite (1.1) in the following form

µ∆u + (λ + µ)graddivu = grad(β1p1 + β2p2).

A particular solution of equation (1.1) is the following potential [7]

u0(x) = − 1
4π

∫ ∫

D

∫
Γ(x− y)grad(β1p1 + β2p2)dy, (1.6)

where

Γ(x− y) =
1

4µ(λ + 2µ)

∥∥∥∥
(λ + 3µ)δkj

r
+

(λ + µ)(xk − yk)(xj − yj)
r3

∥∥∥∥
3×3

,

r2 = (x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2.

Substituting the volume potential u0 into (1.1), we obtain

µ∆u0 + (λ + µ)graddivu0 = grad(β1p1 + β2p2). (1.7)

Thus, we have proved that u0(x) is a particular solution of equation (1.1). In
(1.6) D denotes either D+ or D−, grad(β1p1 + β2p2) is a continuous vector along
with its first derivatives in D+. When D = D− that the vector grad(β1p1 + β2p2)
has to satisfy the following condition at infinity

grad(β1p1 + β2p2) = O(|x|−2−α), α > 0.
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Thus, the general solution of system (1.1) is representable in the form u := V +u0,
where

A(∂x)V := µ∆V + (λ + µ)graddivV = 0. (1.8)

The last equation is the equation of an isotropic elastic body. So, we reduced
the solution of basic BVPs of the theory of consolidation with double porosity to
the solution of the basic BVPs for the equation of an isotropic elastic body.

2. Some Auxiliary Formulas

The spherical coordinates are defined by the equalities

x1 = ρ sinϑ cosϕ, x2 = ρ sinϑ sinϕ, x3 = ρ cosϑ, x ∈ D+,
y1 = a sinϑ0 cosϕ0, y2 = a sinϑ0 sinϕ0, y3 = a cosϑ0, y ∈ S,
ρ2 = x2

1 + x2
2 + x2

3, 0 ≤ ϑ ≤ π, 0 ≤ ϕ ≤ 2π.
(2.1)

Let

f(θ, ϕ) :=
∞∑

m=0

fm(ϑ, ϕ), z ∈ S,

where fm is the spherical function of order m :

fm =
2m + 1
4πa2

∫

S

Pm(cos γ)f(y)dSy,

Pm is the Legendre polynomial of the m-th order, γ is an angle between the radius-
vectors Ox and Oy,

cos γ =
1

|x||y|
3∑

l=1

xlyl.

The general solutions of the equation (∆−λ2
0)ψ = 0 in the domains D+ and D−

have, correspondingly, the following forms ([6])

ψ(x) =
∞∑

n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ), ρ < a,

ψ(x) =
∞∑

n=0

H
(2)

n+ 1
2

(iλ0ρ)
√

ρ
Yn(ϑ, ϕ), ρ > a,

(2.2)

where Jn+ 1
2
(iλ0ρ) is the Legendre function, H

(2)

n+ 1
2

(iλ0a) is the second kind Hankel
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function, Yn(ϑ, ϕ) is the spherical harmonic,

λ2
0 =

k

m1
+

k

m2
> 0.

The general solutions of the equation ∆φ = 0 in the domains D+ and D− have,
correspondingly, the following forms (see [5], p.505)

φ(x) =
∞∑

n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

φ(x) =
∞∑

n=0

an+2

(2n + 1)ρn+1
Zn(ϑ, ϕ), ρ > a,

(2.3)

Zn(θ, φ) is the spherical harmonic.
It is easily seen that the general solution of system (1.2) is representable in the

form

p1 = −m2ψ + φ, p2 = m1ψ + φ, (2.4)

where ψ and φ are arbitrary solutions of the following equations

(∆− λ2
0)ψ = 0, ∆φ = 0.

The following theorems are valid and we state them without proof.
Theorem 1.The first boundary value problem has at most one regular solution

in the domains D+(D−).
Theorem 2. A regular solution of the second boundary value problem is not

unique in the domain D+. Two regular solutions may differ by vector (u, p1, p2),
where u(x) = a + b× x + c(β1 + β2)x, and pj(x) = c, j = 1, 2, x ∈ D+, a and
b are constant vectors, while c is an arbitrary constant.

Theorem 3. The boundary value problem (II)− has a unique solution in the
domain D−.

3. Solution of the First Boundary Value Problem

Problem (I)+. First of all we will construct a solution for system (1.2). A solution
of the first boundary value problem (p+

1 (z) = f+
4 , p+

2 (z) = f+
5 (z),) is sought in

the following form:

p1 = −m2

∞∑
n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑

n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

p2 = m1

∞∑
n=0

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑

n=0

ρn

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a.

(3.1)
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Passing to the limit in (3.1) as ρ → a, we have

−m2

∞∑
n=0

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) + a

∞∑

n=0

1
(2n + 1)

Zn(ϑ0, ϕ0) =
∞∑

n=0

f̂4n(ϑ0, ϕ0),

m1

∞∑
n=0

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) + a

∞∑

n=0

1
(2n + 1)

Zn(ϑ0, ϕ0) =
∞∑

n=0

f̂5n(ϑ0, ϕ0),

(3.2)
where

f̂kn(ϑ0, ϕ0) =
2n + 1
4πa2

∫

S

Pn(cos γ)fk(y)dSy, k = 4, 5.

For coefficients Yn and Zn, (3.2) yield the following equations:

−m2

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) +

a

2n + 1
Zn(ϑ0, ϕ0) = f̂4n(ϑ0, ϕ0),

m1

Jn+ 1
2
(iλ0a)
√

a
Yn(ϑ0, ϕ0) +

a

2n + 1
Zn(ϑ0, ϕ0) = f̂5n(ϑ0, ϕ0), n = 0, 1, ...

(3.3)

By elementary calculation from (3.3) we obtain

Yn(ϑ0, ϕ0) =
f̂5n(ϑ0, ϕ0)− f̂4n(ϑ0, ϕ0)
(m1 + m2)Jn+ 1

2
(iλ0a)

√
a,

Zn(ϑ0, ϕ0) =
(2n + 1)[m1f̂4n(ϑ0, ϕ0) + m2f̂5n(ϑ0, ϕ0)]

a(m1 + m2)
.

(3.4)

Substituting (3.4) into (3.1), we obtain a solution of the BVP in the form of series

p1 =
−m2

√
a

(m1 + m2)
√

ρ

∞∑

n=0

Jn+ 1
2
(iλ0ρ)

Jn+ 1
2
(iλ0a)

(f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ))

+
1

(m1 + m2)

∞∑

n=0

ρn

an
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)],

p2 =
m1
√

a

(m1 + m2)
√

ρ

∞∑

n=0

Jn+ 1
2
(iλ0ρ)

Jn+ 1
2
(iλ0a)

(f̂5n(θ, φ)− f̂4n(ϑ, ϕ))

+
1

(m1 + m2)

∞∑

n=0

ρn

an
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ < a.

(3.5)
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Analogously, we construct a solution under boundary conditions

p−1 (z) = f−4 , p−2 (z) = f−5 (z),

in the domain D−

p1 =
−m2

√
a

(m1 + m2)
√

ρ

∞∑

n=0

H
(2)

n+ 1
2

(iλ0ρ)

H
(2)

n+ 1
2

(iλ0a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

(m1 + m2)

∞∑

n=0

an+1

ρn+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)],

p2 =
m1
√

a

(m1 + m2)
√

ρ

∞∑

n=0

H
(2)

n+ 1
2

(iλ0ρ)

H
(2)

n+ 1
2

(iλ0a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

(m1 + m2)

∞∑

n=0

an+1

ρn+1
[m1f̂4n((ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ > a.

(3.6)

For absolutely and uniformly convergence of these series together with their first
derivatives it is sufficient to assume that f±k ∈ C1,α(S), 0 < α ≤ 1, k = 4, 5.
Solutions, obtained under such conditions, are regular in D+.

For a ball the solution of system (1.8), when V ± = F± is constructed by Na-
troshvili [8] (this result can be found also in monograph [7]):

V (x) =
∫ ∫

S

(1)

K+(x, y)F+(y)dys, x ∈ D+, y ∈ S,

V (x) =
∫ ∫

S

(1)

K−(x, y)F−(y)dys, x ∈ D−, y ∈ S,

(3.7)

where
(1)

K+ :=‖
(1)

K+
kj ‖3×3,

(1)

K− :=‖
(1)

K−
kj ‖3×3,

(1)

K+
kj :=

1
4πa

[
a2 − ρ2

r3
δij + β(a2 − ρ2)

∂2Φ(x, y)
∂xi∂xj

]
, i, j = 1, 2, 3,

Φ(x, y) :=
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a
− 3tρcosγ

a2

]
dt

t1+α
,

Q(t) := (a2 − 2aρtcosγ + ρ2t2)
3
2 ,
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(1)

K−
kj :=

1
4πa

[
ρ2 − a2

r3
δij + β(ρ2 − a2)

∂2Φ∗(x, y)
∂xi∂xj

]
, i, j = 1, 2, 3,

Φ∗(x, y) :=
1∫
0

ρ2 − a2t2

Q∗(t)
tαdt, Q∗(t) := (ρ2 − 2aρtcosγ + a2t2)

3
2 ,

cosγ =
x1y1 + x2y2 + x3y3

ar
= sinθsinθ′cos(φ− φ′) + cosθcosθ′,

r2 = a2 − 2atcosγ + ρ2, β =
λ + µ

2(λ + 3µ)
, α =

λ + 2µ
2(λ + 3µ)

< 1, F± ∈ C1,α(S).

So we have proved the following
Theorem 4. The first BVP is uniquely solvable in the class of regular functions

and the solution is represented in the form of absolutely and uniformly convergent
series, if the boundary data are from the space C1,α(S), α > 1

2 .

4. Solution of the second Boundary Value Problem

Problem (II)+. In this paragraph we will construct an explicit solution of the BVP

for system (1.1),(1.2), when stresses and the normal derivatives of the pressure
∂pj

∂n
are assumed to be given on S

(Pu)+ = f(z)+,

(
∂p1(z)

∂n

)+

= f+
4 ,

(
∂p2(z)

∂n

)+

= f+
5 (z), z ∈ S,

where f+ ∈ C0,α(S), f+
k ∈ C0,α(S), 0 < α ≤ 1, k = 3, 4.

We seek the pk in the domain D+ in the form (3.1). Taking into account the fact

that
∂

∂n
=

∂

∂ρ
, from (3.1) we obtain

∂p1

∂ρ
= −m2

∞∑

n=0

∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑

n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

∂p2

∂ρ
= m1

∞∑

n=0

∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
Yn(ϑ, ϕ) +

∞∑

n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a.

(4.1)
Let us rewrite (4.1) as

∂p1

∂ρ
= −m2

∞∑

n=0

Hn(ρ)Yn(ϑ, ϕ) +
∞∑

n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

∂p2

∂ρ
= m1

∞∑

n=0

Hn(ρ)Yn(ϑ, ϕ) +
∞∑

n=0

nρn−1

(2n + 1)an−1
Zn(ϑ, ϕ), ρ < a,

(4.2)
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where Hn(ρ) :=
∂

∂ρ

Jn+ 1
2
(iλ0ρ)
√

ρ
.

Passing to the limit in (4.2) as ρ → a, we have

−m2

∞∑
n=0

Hn(a)Yn(ϑ0, ϕ0)) +
∞∑

n=0

n

(2n + 1)
Zn(ϑ0, ϕ0)) =

∞∑

n=0

f̂4n(ϑ0, ϕ0),

m1

∞∑
n=0

Hn(a)Yn(ϑ0, ϕ0) +
∞∑

n=0

n

(2n + 1)
Zn(ϑ0, ϕ0) =

∞∑

n=0

f̂5n(ϑ0, ϕ0),

(4.3)

where

f̂kn(ϑ0, ϕ0) =
2n + 1
4πa2

∫

S

Pn(cos γ)fk(y)dSy, k = 4, 5.

For the coefficients Yn and Zn (4.3) yield the following equations:

−m2Hn(a)Yn(ϑ0, ϕ0) +
n

(2n + 1)
Zn(ϑ0, ϕ0) = f̂4n(ϑ0, ϕ0),

m1Hn(a)Yn(ϑ0, ϕ0) +
n

(2n + 1)
Zn(ϑ0, ϕ0) = f̂5n(ϑ0, ϕ0), n = 0, 1, 2, ..

(4.4)

By elementary calculation from (4.4) we define Yn and Zn for n ≥ 1

Yn(ϑ0, ϕ0) =
f̂5n(ϑ0, ϕ0)− f̂4n(ϑ0, ϕ0)

(m1 + m2)Hn(a)
,

Zn(ϑ0, ϕ0) =
(2n + 1)[m1f̂4n(ϑ0, ϕ0) + m2f̂5n(ϑ0, ϕ0)]

n(m1 + m2)
, n = 1, 2, ...

(4.5)

For the regularity of solutions pj , j = 1, 2 it is sufficient that

f̂40(0, 0) =
1

4πa2

∫

S

f4dS = 0, f̂50(0, 0) =
1

4πa2

∫

S

f5dS = 0.

Then, for coefficients Z0 and Y0 (4.4) yield the following equations:

−m2H0(a)Y0(ϑ0, ϕ0) + 0 · Z0(ϑ0, ϕ0) = 0,

m1H0(a)Y0(ϑ0, ϕ0) + 0 · Z0(ϑ0, ϕ0) = 0,

whence, Z0 is an arbitrary constant and Y0 = 0.
Substituting (4.5) into (3.1), we obtain a solution of the second BVP in the form
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of series

p1 =
−m2

(m1 + m2)
√

ρ

∞∑

n=1

Jn+ 1
2
(iλ0ρ)

Hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

m1 + m2

∞∑

n=1

ρn

nan−1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)] + c,

p2 =
m1

(m1 + m2)
√

ρ

∞∑

n=1

Jn+ 1
2
(iλ0ρ)

Hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]

+
1

m1 + m2

∞∑

n=1

ρn

nan−1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)] + c, ρ < a.

(4.6)

Problem (II)− can be solved analogously

p1 =
−m2

(m1 + m2)
√

ρ

∞∑

n=1

H
(2)

n+ 1
2

(iλ0ρ)

hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]−

1
m1 + m2

∞∑

n=1

an+2

(n + 1)ρn+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)],

p2 =
m1

(m1 + m2)
√

ρ

∞∑

n=1

H
(2)

n+ 1
2

(iλ0ρ)

hn(a)
[f̂5n(ϑ, ϕ)− f̂4n(ϑ, ϕ)]−

1
m1 + m2

∞∑

n=1

an+2

(n + 1)%n+1
[m1f̂4n(ϑ, ϕ) + m2f̂5n(ϑ, ϕ)], ρ > a,

(4.7)

where hn(ρ) =
∂

∂ρ

H
(2)

n+ 1
2

(iλ0ρ)
√

ρ
.

∂pk

∂n
can be calculated from (4.6)-(4.7).

The solution of the problem (TV )± = F±, for system (1.8) for a ball is con-
structed by Natroshvili [8] (this result can be found also in monograph [7]):

V (x) =
∫ ∫

S

(2)

K+(x, y)F+(y)dys + a1 + [ω, x] +
c(β1 + β2)
3λ + 2µ

x, x ∈ D+,

TV =
1

4πρ

∫ ∫

S

‖ a2 − ρ2

r3
δij + (a2 − ρ2)

∂2Φ4(x, y)
∂xi∂xj

‖3x3 F+(y)ds, x ∈ D+,
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V (x) =
∫ ∫

S

(2)

K−(x, y)F−(y)dys, x ∈ D−,

TV =
1

4πρ

∫ ∫

S

‖ ρ2 − a2

r3
δij + (ρ2 − a2)

∂2Φ∗4(x, y)
∂xi∂xj

‖3x3 F−(y)ds, x ∈ D−,

where
(2)

K+ :=‖
(2)

K+
kj ‖3×3,

(2)

K− :=‖
(2)

K−
kj ‖3×3,

(2)

K+
kj :=

1
8µπ

[
(Φ1 + Φ2)δij +

a2 − 3ρ2

2
∂2Φ3(x, y)

∂xi∂yj
+ xj

∂

∂xi
(Φ1 − Φ2)− 2xi

∂Φ1

∂xj

]

+
1

8µπ

[
xi

∂

∂xj
(2ρ

∂Φ3

∂ρ
− Φ3) + ρ2

(
∂2Φ2(x, y)

∂xi∂yj
− ∂2Φ1(x, y)

∂xi∂yj

)]
, k, j = 1, 2, 3,

Φ1(x, y) :=
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a

]
dt

t
, Q(t) := (a2 − 2aρtcosγ + ρ2t2)

3
2 ,

Φ2(x, y) :=
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a
− 3tρcosγ

a2

]
dt

t2
,

Φ0(x, y) :=
1∫
0

[
a2 − ρ2t2

Q(t)
− 1

a

]
dt

t1+α1
, Φ3 :=

1
b1

ImΦ0, Φ4 := Re(b2Φ0),

α1 := b0 + ib1 =
µ + i

√
2λ2 + 6λµ + 3µ2

2(λ + µ)
, b2 :=

1
2

+
3λ + 4µ

2
√

2λ2 + 6λµ + 3µ2
,

(2)

K−
kj :=

1
8µπ

[
−(Φ∗1 + Φ∗2)δij +

a2 − 3ρ2

2
∂2Φ∗3(x, y)

∂xi∂yj
− xj

∂

∂xi
(Φ1 − Φ2) + 2xi

∂Φ∗1
∂xj

]

+
1

8µπ

[
xi

∂

∂xj
(2ρ

∂Φ∗3
∂ρ

− Φ∗3)− ρ

(
∂2Φ2(x, y)

∂xi∂yj
− ∂1Φ1(x, y)

∂xi∂yj

)]
, k, j = 1, 2, 3,

Φ∗l (x, y) :=
1∫
0

ρ2−a2t2

Q∗(t) tl−1dt, l = 1, 2, Φ∗3 :=
2(λ + µ)√

2λ2 + 6λµ + 3µ2
Im

1∫

0

ρ2 − a2t2

Q∗(t)
dt

tα2
,

Φ∗4(x, y) := ReA
1∫
0

ρ2 − a2t2

Q∗(t)
dt

tα2
, Q∗(t) := (ρ2 − 2aρtcosγ + a2t2)

3
2 ,

α2 :=
−µ + i

√
2λ2 + 6λµ + 3µ2

2(λ + µ)
, A :=

1
2
− i

3λ + 4µ

2
√

2λ2 + 6λµ + 3µ2
.
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Thus, we have proved the following
Theorem 5. For the solvability of the BVP (II)+ it is necessary that the princi-

pal vector and the principal moment of external forces be equal to zero. The BVP
(II)+ is solvable in the class of regular functions and the solution is represented
in the form of absolutely and uniformly convergent series if the boundary data are
from space C0,α(S), α > 1

2 . Two regular solutions of BVP (II)+ may differ only
with an additive vector

a + [b, x] +
c(β1 + β2)
3λ + 2µ

,

where a, b, c are arbitrary real constant vectors, x := x(x1, x2, x3). The BVP (II)−is
solvable in the class of regular functions and the solution is represented in the form
of absolutely and uniformly convergent series.
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