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Boundary Value Problems for the Adjoint System of Differential

Equations of the Thermoelasticity Theory of Hemitropic Solids
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0175, Georgia

The differential operator, generated by the system of differential equations of the thermoe-
lasticity theory of hemitropic solids, is not formally self-adjoint. In the study of boundary
value problems (BVP) by the potential method, we have to consider adjoint integral opera-
tors which correspond to the adjoint differential operator. Therefore we need to investigate
the BVPs for the adjoint differential operator. Due to the specific structure of the problems
under consideration, we need to prove uniqueness of solutions in the spaces of vector func-
tions bounded at infinity. This essentially complicates the study. We introduce a special class
Z∗(Ω−) of vector-functions, bounded at infinity in the case of an unbounded domain Ω − and
show that the layer potentials belong to this class. These results play an important role in the
study of the direct boundary value problems for differential equations of the thermoelasticity
theory of hemitropic solids.
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The problems, treated in the paper, are closely related to the mathematical prob-
lems of the theory of thermoelastostatics for hemitropic continua. The boundary
value problems for the adjoint operator arise naturally when the potential method
is applied in the study of direct boundary value problems (for details and historical
notes see [1], [2], [3], [8], [10], [11], [13] and the reference therein).

Let Ω+ ⊂ R3 be a bounded domain. Set ∂Ω+ =: S ∈ C2,κ with 0 < κ ≤ 1,
Ω+ = Ω+ ∪ S, and Ω− = R3 \ Ω+.

The basic governing homogeneous equations of the theory of thermoelastostatics
for hemitropic materials read as (see [13])

(µ + α)∆u(x) + (λ + µ− α) grad divu(x) + (χ + ν)∆ω(x)
+(δ + χ− ν) grad divω(x) + 2α curlω(x)− η gradϑ(x) = 0,

(χ + ν)∆u(x) + (δ + χ− ν) grad divu(x) + 2α curlu(x) + (γ + ε)∆ω(x)
+(β + γ − ε) grad divω(x) + 4ν curlω(x)− ζ gradϑ(x)− 4αω(x) = 0,

κ
′
∆ϑ(x) = 0,

where u = (u1, u2, u3)> and ω = (ω1, ω2, ω3)> are the displacement vector and
the microrotation vector respectively, ϑ is the temperature distribution function,
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α, β, γ, δ, λ, µ, ν, χ, ε, η, ζ, and κ ′ are the material constants, ∂ = (∂1, ∂2, ∂3),
∂j = ∂/∂xj , j = 1, 2, 3, the symbol (·)> denotes transposition.

The matrix differential operator, generated by these equations, is not formally
self-adjoint and has the form

L(∂) =




L(1)(∂) L(2)(∂) L(5)(∂)
L(3)(∂) L(4)(∂) L(6)(∂)
[0]1×3 [0]1×3 κ

′
∆




7×7

, (1)

where

L(1)(∂) := (µ + α)∆I3 + (λ + µ− α)Q(∂),

L(2)(∂) = L(3)(∂) := (χ + ν)∆I3 + (δ + χ− ν)Q(∂) + 2αR(∂),

L(4)(∂) := [(γ + ε)∆− 4α]I3 + (β + α− ε)Q(∂) + 4νR(∂), (2)

L(5)(∂) := −η∇>, L(6)(∂) := −ζ∇>,

R(∂) := [−εpqj∂j ]3×3, Q(∂) := [ ∂k∂j ]3×3.

Here and in what follows εpqj denotes the permutation (Levi-Civitá) symbol and Ik

stands for the k× k unit matrix . Throughout the paper summation over repeated
indexes is meant from one to three if not otherwise stated.

Denote by L∗(∂) the operator, formally adjoint to L(∂): L∗(∂) := L>(−∂). In-
troduce the generalized stress operators [9], [12], [13]

P(∂, n) =




T (1)(∂, n) T (2)(∂, n) −ηn>

T (3)(∂, n) T (4)(∂, n) −ζn>

[0]1×3 [0]1×3 κ
′
∂n




7×7

, (3)

P∗(∂, n) =




T (1)(∂, n) T (2)(∂, n) [0]3×1

T (3)(∂, n) T (4)(∂, n) [0]3×1

[0]1×3 [0]1×3 κ
′
∂n




7×7

, (4)

where

T (j) = [T (j)
pq ]3×3, j = 1, 4, n = (n1, n2, n3),

T
(1)
pq (∂, n) = (µ + α)δpq∂n + (µ− α)nq∂p + λnp∂q,

T
(2)
pq (∂, n) = (χ + ν)δpq∂n + (χ− ν)nq∂p + δnp∂q − 2αεpqknk,

T
(3)
pq (∂, n) = (χ + ν)δpq∂n + (χ− ν)nq∂p + δnp∂q,

T
(4)
pq (∂, n) = (γ + ε)δpq∂n + (γ − ε)nq∂p + βnp∂q − 2νεpqknk.

(5)

Here ∂n = ∂/∂n denotes the usual normal derivative.
Let us consider the following homogeneous “adjoint” equation

L∗(∂)U(x) = Φ(x), x ∈ Ω±,
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where

Φ = (Φ̃, Φ7)> = (Φ1, Φ2, ...,Φ7)> ∈ [C0,σ(Ω±)]7, Φ̃ = (Φ1, Φ2, ...,Φ6)>,

U = (u, ω, ϑ)> ∈ [C1,σ(Ω±)]7 ∩ [C2,σ(Ω±)]7 with 0 < σ < 1.

Further, we introduce the “adjoint” layer potentials, associated with the operator
L∗(∂),

V ∗(g)(x) :=
∫

S

Γ∗(x− y g(y) dSy, x ∈ R3 \ S, (6)

W ∗(g)(x) :=
∫

S

[P(
∂y, n(y)

)[
Γ∗(x− y)

]>]>
g(y) dSy, x ∈ R3 \ S, (7)

N∗
Ω±(h)(x) :=

∫

Ω±

Γ∗(x− y) h(y) dy, x ∈ R3, (8)

where g = (g1, g2, ..., g7)> and h = (h1, h2, ..., h7)> are density vector-functions,
defined on S and Ω± respectively. We assume that in the case of an unbounded
exterior domain Ω− the support of the vector-function h is compact. By Γ∗(x −
y) = Γ>(y − x) is denoted the fundamental matrix of the operator L∗(∂) which is
constructed explicitly and has the following form:

Γ(x) =




[Γ(1)
pq (x)]3×3 [Γ(2)

pq (x)]3×3 [Γ(5)
pq (x)]3×1

[Γ(3)
pq (x)]3×3 [Γ(4)

pq (x)]3×3 [Γ(6)
pq (x)]3×1

[Γ(7)
pq (x)]1×3 [Γ(8)

pq (x)]1×3 Γ(9)(x)




7×7

=
1
4π




Ψ̃1(x)I3 Ψ̃2(x)I3 [0]3×1

Ψ̃3(x)I3 Ψ̃4(x)I3 [0]3×1

[0]1×3 [0]1×3 Ψ̃5(x)




7×7

− 1
4π




Q(∂)Ψ̃6(x) Q(∂)Ψ̃7(x) [0]3×1

Q(∂)Ψ̃8(x) Q(∂)Ψ̃9(x) [0]3×1
[0]1×3 [0]1×3 0




7×7

+
1
4π




R(∂)Ψ10(x) R(∂)Ψ11(x) ∇>Ψ14(x)
R(∂)Ψ12(x) R(∂)Ψ13(x) ∇>Ψ15(x)

[0]1×3 [0]1×3 0




7×7

,

where

Ψ1(x) =− γ + ε

d1|x| −
1

d2
1(λ

2
2 − λ2

3)

3∑

j=2

(−1)j
{

4[αd1 + αµ(γ + ε) + 4ν(αχ− µν)]

+ d1(γ + ε)λ2
1 +

16α2µ

λ2
j

}eiλj |x| − 1
|x| ,

Ψ2(x) =Ψ3(x) =
χ + ν

d1|x| +
1

d2
1(λ

2
2 − λ2

3)

3∑

j=2

(−1)j
{

4α[µ(χ + ν) + 2(αχ− µν)]
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+ d1(χ + ν)λ2
j

}eiλj |x| − 1
|x| ,

Ψ4(x) =− µ + α

d1|x| −
µ + α

d2
1(λ

2
2 − λ2

3)

3∑

j=2

(−1)j(d1λ
2
j + 4αµ)

eiλj |x| − 1
|x| ,

Ψ5(x) =− 1
κ′ |x| ,

Ψ6(x) =− (λ + µ)|x|
2µ(λ + 2µ)

+
(δ + 2χ)2d2

4α(λ + 2µ)2
e−λ1|x| − 1

|x| +
1

λ2
2 − λ2

3

3∑

j=2

(−1)j
{γ + ε

d1

+
4

d2
1λ

2
j

[αd1 + αµ(γ + ε) + 4ν(αχ− µν)] +
16α2µ

d2
1λ

4
j

}eiλj |x| − 1
|x| ,

Ψ7(x) =Ψ8(x) = − δ + 2χ
4α(λ + 2µ)

e−λ1|x| − 1
|x| − 1

λ2
2 − λ2

3

3∑

j=2

(−1)j
{χ + ν

d1

+
4α

d2
1λ

2
j

[
µ(χ + ν) + 2(αχ− µν)

]}eiλj |x| − 1
|x| ,

Ψ9(x) =
1
4α

e−λ1|x| − 1
|x| +

1
λ2

2 − λ2
3

3∑

j=2

(−1)j µ + α

d2
1

(
d1 +

4αµ

λ2
j

)eiλj |x| − 1
|x| ,

Ψ10(x) =
4

d2
1(λ

2
2 − λ2

3)

3∑

j=2

(−1)j
[
νd1 + (γ + ε)(αχ− µν) +

4α2χ

λ2
j

]eiλj |x| − 1
|x| ,

Ψ11(x) =Ψ12(x) =
2

d2
1(λ

2
2 − λ2

3)

3∑

j=2

(−1)j
[
2(χ + ν)(µν − αχ)− αd1

− 4α2µ

λ2
j

]eiλj |x| − 1
|x| ,

Ψ13(x) =
4(µ + α)(αχ− µν)

d2
1(λ

2
2 − λ2

3)
eiλ2|x| − eiλ3|x|

|x| ,

Ψ14(x) =
1
κ′

{
− η|x|

2(λ + 2µ)
+

[
ζ(λ + 2µ)−η(δ + 2χ)

] δ + 2χ
4α(λ + 2µ)2

e−λ1|x| − 1
|x|

}
,

Ψ15(x) =
η(δ + 2χ)− ζ(λ + 2µ)

4κ′α(λ + 2µ)
e−λ1|x| − 1

|x| ;

Evidently, the layer potentials solve the homogeneous equation L∗(∂)V ∗(x) =
L∗(∂)W ∗(x) = 0, x ∈ Ω±.

Due to the specific structure of the problems under consideration, we need to
prove uniqueness of solutions in the spaces of vector functions, bounded at infinity.
In this respect, we introduce a special class Z∗(Ω−) of vector-functions bounded
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at infinity in the case of an unbounded domain Ω− and show that the potentials
belong to this class.

Definition 1: A vector-function U∗ = (u∗, ω∗, ϑ∗)> is said to belong to the class
Z∗(Ω−) if it is continuous in a neighbourhood of infinity and satisfies the following
asymptotic conditions

(i) u∗(x) = O(|x|−1), ω∗(x) = O(|x|−2), ϑ∗(x) = O(1), (9)

(ii) lim
R→∞

1
4πR2

∫

Σ(0,R)

ϑ∗(x) dΣ(0, R) = 0, x ∈ Ω−, (10)

where Σ(0, R) is a sphere centered at the origin and radius R.

Let Ũ = (u, ω, ϑ)>, Ũ ′ = (u′, ω′, ϑ′)> ∈ [C2(Ω+)]7. Then the following Green
formula holds

∫

Ω+

[
U ′ · L(∂)U−L∗(∂)U ′ · U]

dx

=
∫

∂Ω+

[{U ′}+ · {P(∂, n)U}+−{P∗(∂, n)U ′}+ · {U}+
]
dS, (11)

where the operators L(∂), L∗(∂) = L>(−∂), P(∂, n), and P∗(∂, n) are defined by
relations (1), (3), and (4). Here and in the sequel, the symbols { · }± denote the
limiting values on ∂Ω± from Ω± respectively and the central dot stands for the
scalar product of two vectors.

Theorem 2 : Let ∂Ω+ = S ∈ C1,κ, 0 < κ 6 1, and U be a regular vector-function
from the space [C2(Ω+)]7. Then the following integral representation formula holds

W ∗({U}+
)
(x)− V ∗({PU}+

)
(x) + N∗

Ω+

(
L∗(∂)U

)
(x) =

{
U(x), x ∈ Ω+,
0, x ∈ Ω−.

(12)

Proof: It is standard and follows from Green’s formula (11). 2

Lemma 3: The single and double layer potentials V ∗(g) and W ∗(g), defined by
formulae (6) and (7), belong to the class Z∗(Ω−) and the following operators

V ∗ : [Ck, σ(S)]7 → [Ck+1, σ(Ω±)]7,

W ∗ : [Ck, σ(S)]7 → [Ck, σ(Ω±)]7
(13)

are continuous, provided S ∈ Ck+1,κ, where k > 0 is an intiger number and 0 <
σ < κ 6 1.

Proof: The mapping properties (13) can be established by standard arguments,
applied, e.g. in the references [4], [5], [6], [7], [9].

To prove the properties (9)-(10) for the layer potentials, note that in view of the
equality Γ∗(x − y) = Γ>(y − x), in a vicinity of infinity the following asymptotic
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relation

Γ(x− y) =




[O(|x|−1)]3×3 [O(|x|−2)]3×3 [0]3×1

[O(|x|−2)]3×3 [O(|x|−2)]3×3 [0]3×1

[χ0
xj

|x| +O(|x|−2)]1×3 [O(|x|−2)]1×3 O(|x|−1)




7×7

as |x| → ∞

holds with χ0 = − η

2(λ + 2µ)
, whence we conclude that

[
V ∗(g)(x)

]
k

=
∫

S

Γ∗kj(x− y) gj(y) dSy

=





O(|x|−1), k = 1, 2, 3,
O(|x|−2), k = 4, 5, 6,

O(|x|−1) + χ0
xk

|x|
∫

S

g7(y) dSy, k = 7.
(14)

Thus, if V ∗(g) =: (u∗, ω∗, ϑ∗)>, then

u∗(x) = O(|x|−1), ω∗(x) = O(|x|−2), ϑ∗(x) = O(1) = χ1
xk

|x| +O(|x|−1),

with a constant factor χ1, defined by the equality

χ1 = χ0

∫

S

g7(y) dS .

Now, we show that the function V ∗
7 (g) = ϑ∗ satisfies the condition (10). Indeed,

using the third asymptotic relation in (14), we get

lim
R→∞

1
4πR2

∫

Σ(0,R)

ϑ∗(x) dΣ(0, R) = lim
R→∞

χ1

4πR2

∫

Σ(0,R)

x

R
dΣ(0, R)

= lim
R→∞

χ1

4πR2

∫

Σ(0,R)

n(x)dΣ(0, R),

where n(x) = x
R is the exterior unit normal vector to the spherical surface Σ(0, R)

at the point x ∈ Σ(0, R). Due to the Gauss formula we have

∫

∂Ω

nk(x)dS =
∫

Ω

∂ 1
∂xk

dx = 0, k = 1, 2, 3,

for arbitrary bounded domain Ω with n = (n1, n2, n3) being the exterior unit
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normal vector to the boundary surface ∂Ω. Consequently,

∫

Σ(0,R)

n(x) dΣ(0, R) = 0

and the relation (10) follows. Since the conditions (9) are satisfied automatically
for the components of the vector V ∗(g), finally we get V ∗(g) ∈ Z∗(Ω−).

Now we show that W ∗(g) ∈ Z∗(Ω−). To this end, let us note that the following
asymptotic relation

[
P(∂, n)

(
Γ∗(x− y)

)>]>
=




[O(|x|−2)]3×3 [O(|x|−2)]3×3 [0]3×1

[O(|x|−2)]3×3 [O(|x|−2)]3×3 [0]3×1

[O(|x|−1)]1×3 [O(|x|−1)]1×3 O(|x|−2)




7×7

holds for sufficiently large |x|. In accordance with (7), the last equality implies

[
W ∗(g)(x)

]
k

=




O(|x|−2), k = 1, 2, 3,
O(|x|−2), k = 4, 5, 6,
O(|x|−1), k = 7,

whence the inclusion W ∗(g) ∈ Z∗(Ω−) follows. 2

Further we describe the jump relations for the layer potentials.

Theorem 4 : Let S ∈ C1,κ, g ∈ [C0,σ(S)]7 and h ∈ [C1,σ(S)]7 with 0 < σ < κ 6
1. Then for all points x ∈ S the following relations hold true:

{V ∗(g)(x)}± = V ∗(g)(x) = H∗g(x), (15)

{P∗(∂x, n(x))V ∗(g)(x)}± = [∓2−1I7 +K∗]g(x), (16)

{W ∗(g)(x)}± = [±2−1I7 +N ∗]g(x), (17)

{P∗(∂x, n(x))W ∗(h)(x)}+ = {P∗(∂x, n(x))W ∗(h)(x)}− = L∗h(x), (18)

S ∈ C2,κ,

where the operators H∗, K∗, N ∗, and L∗ are pseudodifferential operators of order
−1, 0, 0, and 1, respectively, and are defined by the formulae

H∗g(x) :=
∫

S

Γ∗(x− y)g(y)dSy, (19)

K∗g(x) :=
∫

S

[
P∗(∂x, n(x)

)
Γ∗(x− y)

]
g(y)dSy, (20)

N ∗g(x) :=
∫

S

[
P(

∂y, n(y)
)[

Γ∗(x− y)
]>]>

g(y)dSy, (21)



8 Bulletin of TICMI

L∗h(x) := lim
Ω±3z→x∈S

P∗(∂z, n(x)
) ∫

S

[
P(

∂y, n(y)
)[

Γ∗(z − y)
]>]>

g(y)dSy. (22)

Proof: The jump relations (19)-(21) can be proved by standard arguments, de-
scribed, e.g., in the references [4], [5], [6], [7], [9].

The equality (22), i.e., the relation

{P∗(∂x, n(x)
)
W ∗(h)(x)

}+ =
{P∗(∂x, n(x)

)
W ∗(h)(x)

}−
, x ∈ S,

is called the Lyapunov-Tauber type theorem for the double layer potential. We
demonstrate here the simplest method of the proof of the property (22). We
set U∗ ≡ W ∗(h). Since S ∈ C2,κ and h ∈ [C1,σ(S)]7 we have U∗ = W ∗(h) ∈
[C1,σ(Ω±)]7 ∩ [C∞(Ω±)]7 in view of Lemma 3. Moreover, U∗ solves the homoge-
neous equation L∗(∂)U∗ = 0 in Ω± and U∗ ∈ Z(Ω−). It can be shown that then
the integral representation formula, the so called Green’s third formula holds for
the domains Ω+ and Ω− (see Theorem 2):

W ∗({U∗}+
)
(x)− V ∗({PU∗}+

)
(x) =

{
U∗(x), x ∈ Ω+,
0, x ∈ Ω−,

−W ∗({U∗}−)
(x) + V ∗({PU∗}−)

(x) =
{

0, x ∈ Ω+,
U∗(x), x ∈ Ω−.

Take the sum of these equalities to obtain

U∗(x) = W ∗([U∗]S
)
(x)− V ∗([PU∗]S

)
(x), x ∈ Ω±, (23)

where

[U∗]S := {U∗}+ − {U∗}−, [PU∗]S := {PU∗}+ − {PU∗}− on S.

Evidently, [U∗]S := {U∗}+ − {U∗}− = {W ∗(h)}+ − {W ∗(h)}− = h on S due to
(17) and from (23) with U∗ ≡ W ∗(h) we get

W ∗(h)(x) = W ∗(h)(x)− V
(
ψ

)
(x), x ∈ Ω+ ∪ Ω−, (24)

where

ψ := [P∗(∂x, n(x))W ∗(h)]S = {PW ∗(h)}+ − {PW ∗(h)}− on S. (25)

Equation (24) yields

V
(
ψ

)
(x) = 0, x ∈ Ω+ ∪ Ω−,

and by the jump relations (16) we arrive at the equality

0 =
{P∗(∂x, n(x)

)
V ∗(ψ)

}− − {P∗(∂x, n(x)
)
V ∗(ψ)

}+ = ψ,

which along with the relation (25) completes the proof. 2
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The main goal of our investigation is to study the null spaces of the operators
∓2−1I7+K∗ and ±2−1I7+N ∗, which appear naturally in the analysis of the integral
operators corresponding to the direct boundary value problems of the thermoelas-
tostatics for hemitropic solids. To this end, we have to study the homogeneous
boundary value problems for the differential operator L∗(∂).

Let us start with the “adjoint” interior Neumann type boundary value problem:
Find a regular solution vector U∗ = (Ũ∗, ϑ∗)> = (u∗, ω∗, ϑ∗)> ∈ [C1(Ω+)]7 ∩
[C2(Ω+)]7 to the differential equation

L∗(∂)U∗(x) = 0, x ∈ Ω+, (26)

satisfying the following boundary condition

{P∗(∂, n)U∗(x)
}+ = 0, x ∈ S. (27)

Taking into account the structures of the differential operators L∗(∂) and P∗(∂, n),
equations (26) and (27) can be rewritten as follows

L̃∗(∂)Ũ∗(x) = 0, x ∈ Ω+,

− η div u∗(x)− ζ div ω∗(x) + κ′∆ϑ∗(x) = 0, x ∈ Ω+,

and

{
T (∂, n)Ũ∗(x)

}+ = 0, x ∈ S,

κ′
∂ϑ∗(x)

∂n
= 0, x ∈ S,

where

L̃∗(∂) =
[
L(1)(∂) L(2)(∂)
L(3)(∂) L(4)(∂)

]

6×6

,

while

T (∂, n) =
[
T (1)(∂, n) T (2)(∂, n)
T (3)(∂, n) T (4)(∂, n)

]

6×6

,

with L(j)(∂) and T (j)(∂, n), j = 1, 4, defined in (2) and (5). The operators L̃∗(∂)
and T (∂, n) correspond to the hemitropic elasticity when thermal effects are not
taken into consideration (see [9]). Note that the operator L̃∗(∂) is self-adjoint and
L̃∗(∂) = L̃(∂).

As we see, the boundary value problem for the vector-function Ũ∗ = (u∗, ω∗)>
is separated and reads as

L̃∗(∂)Ũ∗(x) ≡ L̃(∂)Ũ∗(x) = 0, x ∈ Ω+, (28)
{
T (∂, n)Ũ∗(x)

}+ = 0, x ∈ S. (29)
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It is shown in [9] that the general solution to the problem (28)-(29) has the following
form

Ũ∗ = (u∗, ω∗)> =
(
[a× x] + b, a

)>
, (30)

u∗(x) = [a× x] + b, ω∗(x) = a, (31)

where a and b are arbitrary three-dimensional real constant vectors.
For the vectors u∗ and ω∗, defined by equations (31), we have divu∗ = 0 and

div ω∗ = 0, and therefore for the temperature function ϑ∗ we obtain the following
Neumann type boundary value problem for Laplace equation

∆ϑ∗(x) = 0, x ∈ Ω+, (32)
{
∂nϑ∗(x)

}+ = 0, x ∈ S. (33)

Consequently,

ϑ∗(x) = const = c, x ∈ Ω+.

Thus, we have proved the following assertion.

Theorem 5 : The vector-function U∗ =
(
Ũ∗, ϑ∗

)> = ([a × x] + b, a, c)>, where
a and b are arbitrary three-dimensional real constant vectors, while c is an arbi-
trary real scalar constant, is a general solution to the homogeneous boundary value
problem (26)-(27).

Next we consider the exterior Neumann type boundary value problem: Find a
regular solution vector U∗ = (Ũ∗, ϑ∗)> = (u∗, ω∗, ϑ∗)> ∈ [C1(Ω−)]7 ∩ [C2(Ω−)]7 ∩
Z∗(Ω−) to the differential equation

L∗(∂)U∗(x) = 0, x ∈ Ω−, (34)

satisfying the homogeneous boundary condition

{P∗(∂, n)U∗(x)
}− = 0, x ∈ S. (35)

As in the case of the interior problem, this problem is decomposed into two bound-
ary value problems, the exterior counterparts of the problems (28)-(29) and (32)-
(33). Applying the corresponding uniqueness results to the exterior Neumann type
boundary value problem in the class of functions, satisfying the asymptotic decay
conditions, shown in (9) we conclude that (see [9])

u∗(x) = 0, ω∗(x) = 0, x ∈ Ω−.

Therefore the temperature function ϑ∗ solves the classical exterior Neumann type
boundary value problem

∆ϑ∗(x) = 0, x ∈ Ω−,
{
∂nϑ∗(x)

}− = 0, x ∈ S,
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in the space of bounded functions, satisfying the asymptotic constraints

ϑ∗(x) = O(1) as |x| → ∞,

lim
R→∞

1
4πR2

∫

Σ(0,R)

ϑ∗(x) dΣ(0, R) = 0.

It can be shown that this problem possesses only the trivial solution and we arrive
at the following uniqueness result.

Theorem 6 : The “adjoint” exterior Neumann type boundary value problem
(34)-(35) possesses only the trivial solution in the space of regular vector-functions
[C1(Ω−)]7 ∩ [C2(Ω−)]7 ∩ Z∗(Ω−).

Similar theorems hold also for the Dirichlet problems.

Theorem 7 : The “adjoint” interior and exterior Dirichlet type homogeneous
boundary value problems,

L∗(∂)U∗(x) = 0, x ∈ Ω±,{
U∗(x)

}± = 0, x ∈ S,

possess only the trivial solution in the space of regular vector-functions [C1(Ω±)]7∩
[C2(Ω±)]7), provided U∗ ∈ Z∗(Ω−) in the case of the exterior problem.

Now we are in a position to investigate the null spaces of the boundary integral
operators, generated by the single and double layer potentials. In particular, the
above formulated uniqueness results yield the following assertions. We start with
auxiliary lemmata.

Lemma 8: The following equalities hold in appropriate function spaces:

N ∗H∗ = H∗K∗, L∗N ∗ = K∗L∗,
H∗L∗ = −4−1 I7 + [N ∗]2, L∗H∗ = −4−1 I7 + [K∗]2. (36)

Lemma 9: Let S ∈ C2,κ and 0 < σ < κ 6 1. The integral operator

H∗ : [C0,σ(S)]7 → [C1,σ(S)]7 (37)

is invertible and

[H∗]−1 : [C1,σ(S)]7 → [C0,σ(S)]7 (38)

is a pseudodifferential operator of order 1, more precisely, it is a singular integro-
differential operator.

Proof: It is word for word of the proof of Theorem 6.6 in [13]. 2

Theorem 10 : Let S ∈ C2,κ and 0 < σ < κ 6 1. The null spaces of the singular
integral operators

2−1I7 +K∗ : [C0,σ(S)]7 → [C0,σ(S)]7, (39)



12 Bulletin of TICMI

2−1I7 +N ∗ : [C0,σ(S)]7 → [C0,σ(S)]7, (40)

are trivial, while the null spaces of the singular integral operators

− 2−1I7 +K∗ : [C0,σ(S)]7 → [C0,σ(S)]7,

− 2−1I7 +N ∗ : [C0,σ(S)]7 → [C0,σ(S)]7, (41)

have the dimension, equal to 7. Moreover, the vectors

Ψ(1)(x) = (0,−x3, x2, 1, 0, 0, 0)>, Ψ(2)(x) = (x3, 0,−x1, 0, 1, 0, 0)>,

Ψ(3)(x) = (−x2, x1, 0, 0, 0, 1, 0)>, Ψ(4)(x) = (1, 0, 0, 0, 0, 0, 0)>, (42)

Ψ(5)(x) = (0, 1, 0, 0, 0, 0, 0, 0)>, Ψ(6)(x) = (0, 0, 1, 0, 0, 0, 0)>,

Ψ(7)(x) = (0, 0, 0, 0, 0, 0, 0, 1)>,

restricted onto the surface S represent a basis
{
Ψ(k)(x)

}k=7

k=1
of the null space of the

operator −2−1I7 +N ∗.

Proof: Let g ∈ [C0,σ(S)]7 be a solution of the homogeneous integral equation

2−1 g(x) +K∗g(x) = 0, x ∈ S.

Then the vector

U∗(x) := V ∗(g)(x), x ∈ Ω±,

solves the exterior homogeneous Neumann type boundary value problem and since

U∗ = V ∗(g) ∈ [C1,σ(Ω±)]7 ∩ [C2(Ω±)]7 ∩ Z(Ω−),

by Theorem 6 we conclude U∗(x) = V ∗(g) = 0 in Ω−. Further, in view of (15), we
see that U∗(x) = V ∗(g) solves the interior Dirichlet type problem in Ω+ and due
to Theorem 7 it vanishes identically in the interior domain: U∗(x) = V ∗(g) = 0 in
Ω+. Therefore, in accordance with the jump relations (16), we finally get

{P∗(∂x, n(x))V ∗(g)(x)}− − {P∗(∂x, n(x))V ∗(g)(x)}+ = g(x) = 0, x ∈ S,

which proves that the kernel of the operator (39) is trivial.
For the operator (40) we proceed as follows. Let g ∈ [C0,σ(S)]7 be a solution of

the homogeneous integral equation

2−1 g(x) +N ∗g(x) = 0, x ∈ S.

Due to the embedding theorems for solutions to the singular integral equations (see
e.g., [6], Ch. IV), we actually have g ∈ [C1,σ(S)]7 and the vector

U∗(x) := W ∗(g)(x), x ∈ Ω±,
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solves the interior homogeneous Dirichlet type boundary value problem. Since

U∗ = W ∗(g) ∈ [C1,σ(Ω±)]7 ∩ [C2(Ω±)]7 ∩ Z(Ω−),

by Theorem 7 we conclude U∗(x) = W ∗(g)(x) = 0 in Ω+. Further, in view of (18),
we see that U∗ = W ∗(g) solves the exterior Neumann type problem in Ω− and due
to Theorem 6 it vanishes identically in the exterior domain: U∗(x) = W ∗(g)(x) = 0
in Ω−. Therefore, in accordance with the jump relations (17), we finally get

{W ∗(g)(x)}+ − {W ∗(g)(x)}− = g(x) = 0, x ∈ S,

which proves that the kernel of the operator (40) is trivial.
Next we show that the vectors (42) represent a basis in the null space of the op-

erator (41). On the one hand, using the integral representation formula (12) for the
vectors Ψ(k)(x), k = 1, 7, and taking into account that {P∗(∂x, n(x))Ψ(k)(x)}+ = 0
on S, it is easy to show that

Ψ(k)(x) = W ∗(h(k))(x), x ∈ Ω+,

with

h(k)(x) = {Ψ(k)(x)}+ = Ψ(k)(x), x ∈ S, k = 1, 7,

whence the inclusion h(k) ∈ ker {−2−1I7 +N ∗} follows immediately in view of the
jump relation (17). Consequently, dim ker {−2−1I7 + N ∗} > 7, since the system
of vectors

{
Ψ(k)(x)

}k=7

k=1
on S are linearly independent. On the other hand, for an

arbitrary solution h ∈ [C0,σ(S)]7 of the homogeneous integral equation

− 2−1 h(x) +N ∗h(x) = 0, x ∈ S,

as above, we conclude that h ∈ [C1,σ(S)]7 and the vector U∗ := W ∗(h) vanishes
identically in Ω−, since U∗ = W ∗(h) ∈ [C1,σ(Ω±)]7 ∩ [C2(Ω±)]7 ∩ Z(Ω−) and
solves the exterior homogeneous Dirichlet type problem. Further, by the Lyapunov-
Tauber type theorem (see (18)), we see that the vector-function U∗ = W ∗(h) solves
the homogeneous interior Neumann type problem and therefore by Theorem 5 we
have

U∗(x) = W ∗(h) = ([a× x] + b, a, c)>, x ∈ Ω+,

with some constant vectors a and b, and a scalar constant c. Then it follows that

h(x) = {W ∗(h)(x)}+ −W ∗(h)(x)}− = ([a× x] + b, a, c)>, x ∈ S,

which implies that h belongs to linear span of the vectors
{
Ψ(k)(x)

}k=7

k=1
, x ∈ S,

and consequently dim ker {−2−1I7 + N ∗} 6 7. This proves that the system{
Ψ(k)(x)

}k=7

k=1
is a basis of the null space ker {−2−1I7 +N ∗}.

By the similar arguments it can be shown that the system of vector-functions
defined on S

{
[H∗]−1Ψ(k)(x)

}k=7

k=1
, where [H∗]−1 is the operator inverse to [H∗] (see
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(37) and (38)) represents a basis of the null space ker{−2−1I7 + K∗}. Indeed, by
Lemmata 8 and 9 from the first relation in (36), we find that

[H∗]−1N ∗ = K∗[H∗]−1.

Therefore,

[− 2−1I7 +K∗] [H∗]−1Ψ(k) = [H∗]−1
[− 2−1I7 +N ∗]Ψ(k) = 0

since Ψ(k) ∈ ker {−2−1I7 +N ∗}, which completes the proof. 2

Remark 1 : More detailed analysis, based on the results in [13], shows that the
singular integral operators

± 2−1I7 +K∗ : [H
− 1

2
2 (S)]7 → [H

− 1
2

2 (S)]7,

± 2−1I7 +N ∗ : [H
1
2
2 (S)]7 → [H

1
2
2 (S)]7,

are Fredholm with zero index and have the same null spaces, described in Theorem
10.
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