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Abstract: In the present paper the first boundary value problem of the the-
ory of thermoelasticity is investigated for a transversally isotropic plane with
curvilinear cuts .For solution we used the potential method and constructed
the special fundamental matrices, which reduced the problem to a Fredholm
integral equations of the second kind.The solvability of a system of singular
integral equations is proved by using the potential method and the theory of
singular integral equations. For the equation of statics of thermoelasticity we
construct one particular solution and we reduce the solution of the first BVP
problem of the theory of thermoelasticity to the solution of the first BVP
problem for the equation of transversally-isotropic body.
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In this present paper the first boundary value problem (BVP) of thermoe-
lasticity theory is investigated for a transversally-isotropic plane with curvi-
linear cuts. The boundary value problems of elasticity for anisotropic media
with cuts were considered in [1,2]. In this paper we intend this result to BVP
of thermoelasticity for a transversally-isotropic thermoelastic body. Here we
shall be concerned with the plane problem of thermoelasticity (it is assumed
that the second component of the three-dimensional displacement vector equals
to zero and the other components u1, u3 and u4 depend only on the variable
x1, x3. In this case the basic two-dimensional equations thermoelasticity for
the transversally-isotropic body can be written as follows [3]

C(∂x)u = Bgradu4, (1)
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∂2u4

∂x2
1

+
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∂x2
3

= 0, j = 0, 1, (2)
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cpq are Hooke’s coefficients, β = c13α
′+2α(c11−c66), β′ = c33α

′+2αc13, a4 =
k

k′ , α, α
′ are coefficients of temperature extension, k, k′ are coefficients of ther-

mal conductivity, u = (u1, u3) is a displacement vector, u4 is the temperature
of body.

Let the plane be weakened by curvilinear cuts lj = ajbj, j = 1, 2, .., p. As-
sume that the cuts lj, j = 1, ..., p, are simple nonintersecting open Lyapunov’s
arcs. The direction from aj to bj is taken as the positive one on lj. The normal
to lj will be drawn to the right relative to motion in the positive direction.

Denote by D the plane with curvilinear cuts lj, j = 1, 2, .., p.L =
p∪

j=1

lj. Let

the domain D is filled by homogeneous transversally-isotropic material with
the coefficients cpq

We introduce the notations: z = x1 + ix3, ζk = y1 + αky3, τk = t1 +
αkt3, σk = zk − ςk, zk = z1 + αkz3, τ = t1 + it3.

For equations (1)-(2) we pose the following first boundary value problem
of static of the theory of thermoelasticity. Find in the domain D a regular
solution u(x), and u4(x), of equation (1)-(2), when the boundary values of
the displacement vector u and the boundary value of temperature u4(x), are
given on both edges of the arc lj. Further, assume that at infinity the principal
vector of external forces acting on l, stress vector, u, u4 and the rotation are
equal to zero. It is required to define the deformed state of the plane.

If we denote by u+(u−), u+
4 (u

−
4 ) the limits of u and u4 on l from the left

(right), then the boundary conditions of the problem will take the form

u+ = f+, u− = f−, u+
4 = f+

4 , u−
4 = f−

4 , (3)

where f+ , f−, f+
4 , and f−

4 are the known functions on l of the Holder class
H, which have derivatives in the class H∗ (for the definitions of the classes H
and H∗ see[4]) and satisfying at the ends aj and bj of lj, the conditions

f+(aj) = f−(aj), f+(bj) = f−(bj), f+
4 (aj) = f−

4 (aj), f+
4 (bj) = f−

4 (bj).

It is obvious that displacement vector discontinuities along the cut lj generate
a singular stress field in the medium. Hence it is of interest for us to study the
solution behavior in the neighborhood of the cuts.

Further we assume that u4 is known, when x ∈ D. Substitute the u4 in (1)
and search the particular solution of the following equation

C(∂x)u = gradu4.

It is easy to prove that u0(x) is a particular solution of the equation (1)

u0 = − 1

2π

∫
D

∫
Γ(x− y)gradu4dv, (4)
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where Γ(x− y) is the basic fundamental matrix for equation C∂x)u = 0,

Γ(x− y) = 2Im
3∑
2

∥A(k)
pq ∥2x2 lnσk,

A
(k)
11 =

i(−1)k(c44 − c33ak)

c44c33(a2 − a3)
, A

(k)
12 =

(−1)k(c44 + c13)

c44c33(a2 − a3)

A
(k)
22 =

i(−1)k(c11 − c44ak)

c44c33(a2 − a3)
, σk = x1 − y1 + αk(x3 − y3), αk = i

√
ak,

ak, k = 2, 3 are the positive roots of a characteristic equation

c44c33a
2
k − [c11c33 + c244 − (c13 + c44)

2]ak + c44c11 = 0.

In (4) gradu4 is a continuous vector in D along with its first derivatives and
satisfy the following condition at infinity

gradu4 = O(|x|−1−α), α > 0.

Thus the general solution of the equation (1) is u = V + u0, where

C(∂x)V = 0, V +(x) = f+(z)− u+
0 (z) = F+(z),

V −(z) = f−(z)− u−
0 (z) = F−(z).

(5)

This equation is the equation of a transversally-isotropic elastic body. i.e..
we reduce the solution of basic BVP of the theory of thermoelasticity to the
solution of the basic BVP for the equation of a transversally-isotropic elastic
body.

A solution of the problem (5) we seek in the form

V =
1

π
Im

∫
L

3∑
k=2

N (k)∂ lnσk

∂s
[g(s) + ih(s)]ds+

p∑
2

VJ(z) +M (p+1), (6)

where g(t), h(t) are unknown densities,

N (k)(y − x) = 2Im
3∑
2

∥N (k)
pq (∂x)∥2x2
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√
a2a3
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, j = 0, 1,

N
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1
√
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,
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√
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c33
√
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)−1
,

σk = zk − ζk, zk = x1 + αkx3, ζk = y1 + αky3,

Vj(z) =
1

π
Im

3∑
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∥A(k)
pq ∥2x2
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(k)
j )ln(zk − b

(k)
j )− (zk − a
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j )ln(zk − a
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j )

b
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j − a

(k)
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a
(k)
j = Reaj + αkImaj, b

(k)
j = Rebj + αkImbj.

M (j), j = 1, .., p+ 1, are the unknown real constant vectors to be defined later
on.

The vector Vj(z) satisfies the following conditions:
1. Vj(z) has the logarithmic singularity at infinity

Vj =
1

π
Im

3∑
k=2

∥A(k)
pq ∥2x2(−lnzk + 1)M j +O(z−1

k ).

2. By Vj is meant a branch, which is uniquely defined on the plane cut
along lj.

3. Vj is continuously extendable on lj from the left and right, the end
points aj and bj inclusive, i.e., we have the equalities

V +
j (aj) = V −

j (aj), V +
j (bj) = V −

j (bj),

V +
j − V −

j = 2Re
3∑

k=2

∥A(k)
pq ∥2x2

τk − a
(k)
j

b
(k)
j − a

(k)
j

M j, j = 1, ..p.

Taking into account the boundary condition , for the determination of the
unknown densities, we obtain a system of singular integral equation of normal
type

±g(τ) +
1

π
Im

3∑
k=2

N (k)

∫
L

∂ln(τk − ςk)

∂s
(g + ih)ds

+
p∑

j=1

V ±
j +Mp+1

j = F±(τ).

This formula implies

2g(τ) = F+ − F− −Re
p∑

j=1

3∑
k=2

∥A(k)
pq ∥2x2

τk − a
(k)
j

b
(k)
j − a

(k)
j

M j,

1

π

∫
L

h(ς)ds

ς − τ
+

1

π

∫
L

K(τ, ς)h(ς)ds = Ω(τ),

(7)
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where

K(τ, ς) = −i
∂θ

∂s
E +Re

3∑
k=2

N (k) ∂

∂s
ln

(
1 + λk

τ − ς

τ − ς

)
, λk =

1 + iαk

1− iαk

,

θ = arg(τ − ς), Ω(τ) =
1

2
(F+ + F−)− 1

2

p∑
j=1

(V +
j + V −

j )

−Mp+1 − 1

π
Im

3∑
k=2

N (k)

∫
L

∂ln(τk − ςk)

∂s
gds.

Thus we have defined the vector g on l. It is not difficult to verify that
g ∈ H, g′ ∈ H∗, g(aj) = g(bj) = 0,Ω ∈ H,Ω′ ∈ H∗. Formula (7) is a system
of singular integral equations of the normal type with respect to the vector h.
The points aj and bj are nonsingular, while the total index of the class h2p is
equal to −2p (definition of the classes H, H∗ and h2p can be found in [4]).

A solution of system (7), if it exists, will be expressed by a vector of the
Holder class that vanishes at the points aj, bj, and has derivatives in the class
H∗.

Next we shall prove that the homogeneous system of equations correspond-
ing to (7) admits on a trivial solution in the class h2p. Let the contrary be true.
Assume h(0) to be nontrivial solution of the homogeneous system corresponding
to (7) in the class h2p and construct the potential

U0(z) =
1

π
Re

3∑
k=2

N (k)

∫
L

∂ln(zk − ςk)

∂s
h(0)(s)ds.

Clearly, U+
0 (z) = U−

0 (z) = 0 and by the uniqueness theorem we have U0(z) =
0, z ∈ D.Then TU0(z) = 0, z ∈ D and

(TU0(z))
+ − (TU0(z))

− = A
∂h0

∂s
= 0,

where A is a constant matrix.
Therefore, since h(0)(aj) = 0, we obtain h(0)(z) = 0, which completes the

proof. Thus the homogeneous system adjoint to (7) will have 2p linearly in-
dependent solutions σj, j = 1, .., 2p, in the adjoint class and the condition for
system (7) to be solvable will be written as∫

L

Ωσjds = 0, j = 1, .., 2p. (8)

Taking into account the latter conditions and that∫
L

[(TU)+ − (TU)−]ds = 0 = −2

p∑
k=1

M (k), (9)
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we obtain a system of 2p + 2 algebraic equations with the same number of
unknowns with respect to the components of the unknown vector M j.

We shall show that system (8)-(9) is solvable. Assume that homogeneous
system obtained from (8)-(9) has a nontrivial solution M0

j =
(
M0

1j,M
0
2j

)
,

j = 1, .., p+ 1, and construct the potential

U0(z) =
1

π
Im

3∑
k=2

N (k)

∫
L

∂ln(zk − ςk)

∂s
(g0 + ih0)(s)ds+

p∑
j=1

V 0
j (z) +M0

p+1,

where

g0(τ) = −Re
p∑

j=1

3∑
k=2

∥A(k)
pq ∥2x2

τk − a
(k)
j

bk − a
(k)
j

M0
j ,

V 0
j (z) =

1

π
Im

3∑
k=2

∥A(k)
pq ∥2x2

(zk − b
(k)
j )ln(zk − b

(k)
j )− (zk − a

(k)
j )ln(zk − a

(k)
j )

b
(k)
j − a

(k)
j

M0
j ,

It is obvious that U+
0 = U−

0 = 0. Applying the formulas
p∑

k=1

M0
(k) = 0 and∫

lj

[TU0(z)−TU0(z)]ds = −2M0
j = 0, j = 1, .., p, U0(∞) = Mp+1

j = 0, we obtain

M0
j = 0, which contradicts the assumption. Therefore system (8)-(9) has a

unique solution.
For M0

j system (7) is solvable in the class h2p.The solution of the problem
posed is given by potential (3) constructed using the solution h of system (7)
and the vector g.

Repeating word by word the above reasoning we can show that

u4(z) =
1

π
Im

∫
L

∂ln(z4 − ς4)

∂s
(g4 + ih4)(s)ds+

p∑
j=1

Vj4(z) +Kp+1,

where z4 = x1 + α4x3, ς4 = y1 + α4y3, α4 = i
√
a4,

Vj4(z) =
1

π
Im

(z4 − b
(4)
j )ln(z4 − b

(4)
j )− (z4 − a

(4)
j )ln(z4 − a

(4)
j )

b
(4)
j − a

(4)
j

Kj,

a
(4)
j = Reaj + α4Imaj, b

(4)
j = Rebj + α4Imbj,

2g4(τ) = f+
4 − f−

4 − Im

p∑
j=1

τ4 − a
(4)
j

b
(4)
j − a

(4)
j

Kj,

h4 is a solution of the following integral equation

1

π

∫
L

h4(ς)ds

ς − τ
+

1

π

∫
L

K(τ, ς)h4(ς)ds = Ω(τ), (10)



Volume 15, 2011 53

where

K(τ, ς) = −i
∂θ

∂s
E +Re

∂

∂s
ln

(
1 + λ4

τ − ς

τ − ς

)
, λ4 =

1 + iα4

1− iα4

,

θ = arg(τ − ς), Ω(τ) =
1

2
(f+

4 + f−
4 )−

1

2

p∑
j=1

(V +
j4 + V −

j4 )

−Kp+1 −
1

π
Im

∫
L

∂ln(τ4 − ς4)

∂s
g4ds.

K(j), j = 1, .., p+ 1, are the unknown real constant vectors to be defined from
the equation analogously (8)-(9).
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