THE FIRST BVP OF THERMOELASTICITY FOR A TRANSVERSALLY ISOTROPIC PLANE WITH CURVILINEAR CUTS

L. Bitsadze
I. Vekua Institute of Applied Mathematics, of Iv. Javakhishvili
Tbilisi State University, University Str., 2, 0186, Tbilisi, Georgia
E-mail:lamarabits@yahoo.com

Abstract: In the present paper the first boundary value problem of the theory of thermoelasticity is investigated for a transversally isotropic plane with curvilinear cuts .For solution we used the potential method and constructed the special fundamental matrices, which reduced the problem to a Fredholm integral equations of the second kind. The solvability of a system of singular integral equations is proved by using the potential method and the theory of singular integral equations. For the equation of statics of thermoelasticity we construct one particular solution and we reduce the solution of the first BVP problem of the theory of thermoelasticity to the solution of the first BVP problem for the equation of transversally-isotropic body.

Key words: Potential method, integral equation, thermoelasticity
MSC 2000: 74G05,74E10, 74F05
In this present paper the first boundary value problem (BVP) of thermoelasticity theory is investigated for a transversally-isotropic plane with curvilinear cuts. The boundary value problems of elasticity for anisotropic media with cuts were considered in $[1,2]$. In this paper we intend this result to BVP of thermoelasticity for a transversally-isotropic thermoelastic body. Here we shall be concerned with the plane problem of thermoelasticity (it is assumed that the second component of the three-dimensional displacement vector equals to zero and the other components u_{1}, u_{3} and u_{4} depend only on the variable x_{1}, x_{3}. In this case the basic two-dimensional equations thermoelasticity for the transversally-isotropic body can be written as follows [3]

$$
\begin{gather*}
C(\partial x) u=\text { Bgradu }_{4}, \tag{1}\\
\Delta_{4} u_{4}=a_{4} \frac{\partial^{2} u_{4}}{\partial x_{1}^{2}}+\frac{\partial^{2} u_{4}}{\partial x_{3}^{2}}=0, \quad j=0,1, \tag{2}
\end{gather*}
$$

where

$$
\begin{aligned}
& C(\partial x)=\left\|C_{p q}(\partial x)\right\|_{2 x 2}, \quad B=\left\|B_{p q}\right\|_{2 x 2}, \quad B_{11}=\beta_{1}, \quad B_{22}=\beta^{\prime}, \\
& B_{12}=B_{21}=0, \quad C_{11}(\partial x)=c_{11} \frac{\partial^{2}}{\partial x_{1}^{2}}+c_{44} \frac{\partial^{2}}{\partial x_{3}^{2}}, \quad C_{21}(\partial x)= \\
& C_{12}(\partial x)=\left(c_{13}+c_{44}\right) \frac{\partial^{2}}{\partial x_{1} \partial x_{3}}, \quad C_{22}(\partial x)=c_{11} \frac{\partial^{2}}{\partial x_{1}^{2}}+c_{44} \frac{\partial^{2}}{\partial x_{3}^{2}},
\end{aligned}
$$

$c_{p q}$ are Hooke's coefficients, $\beta=c_{13} \alpha^{\prime}+2 \alpha\left(c_{11}-c_{66}\right), \beta^{\prime}=c_{33} \alpha^{\prime}+2 \alpha c_{13}, a_{4}=$ $\frac{k}{k^{\prime}}, \alpha, \alpha^{\prime}$ are coefficients of temperature extension, k, k^{\prime} are coefficients of thermal conductivity, $u=\left(u_{1}, u_{3}\right)$ is a displacement vector, u_{4} is the temperature of body.

Let the plane be weakened by curvilinear cuts $l_{j}=a_{j} b_{j}, j=1,2, . ., p$. Assume that the cuts $l_{j}, j=1, \ldots, p$, are simple nonintersecting open Lyapunov's arcs. The direction from a_{j} to b_{j} is taken as the positive one on l_{j}. The normal to l_{j} will be drawn to the right relative to motion in the positive direction. Denote by D the plane with curvilinear cuts $l_{j}, j=1,2, . ., p . L=\bigcup_{j=1}^{p} l_{j}$. Let the domain D is filled by homogeneous transversally-isotropic material with the coefficients $c_{p q}$

We introduce the notations: $z=x_{1}+i x_{3}, \quad \zeta_{k}=y_{1}+\alpha_{k} y_{3}, \quad \tau_{k}=t_{1}+$ $\alpha_{k} t_{3}, \quad \sigma_{k}=z_{k}-\varsigma_{k}, z_{k}=z_{1}+\alpha_{k} z_{3}, \quad \tau=t_{1}+i t_{3}$.

For equations (1)-(2) we pose the following first boundary value problem of static of the theory of thermoelasticity. Find in the domain D a regular solution $u(x)$, and $u_{4}(x)$, of equation (1)-(2), when the boundary values of the displacement vector u and the boundary value of temperature $u_{4}(x)$, are given on both edges of the arc l_{j}. Further, assume that at infinity the principal vector of external forces acting on l, stress vector, u, u_{4} and the rotation are equal to zero. It is required to define the deformed state of the plane.

If we denote by $u^{+}\left(u^{-}\right), u_{4}^{+}\left(u_{4}^{-}\right)$the limits of u and u_{4} on l from the left (right), then the boundary conditions of the problem will take the form

$$
\begin{equation*}
u^{+}=f^{+}, u^{-}=f^{-}, u_{4}^{+}=f_{4}^{+}, u_{4}^{-}=f_{4}^{-} \tag{3}
\end{equation*}
$$

where f^{+}, f^{-}, f_{4}^{+}, and f_{4}^{-}are the known functions on l of the Holder class H, which have derivatives in the class H^{*} (for the definitions of the classes H and H^{*} see[4]) and satisfying at the ends a_{j} and b_{j} of l_{j}, the conditions

$$
f^{+}\left(a_{j}\right)=f^{-}\left(a_{j}\right), \quad f^{+}\left(b_{j}\right)=f^{-}\left(b_{j}\right), \quad f_{4}^{+}\left(a_{j}\right)=f_{4}^{-}\left(a_{j}\right), \quad f_{4}^{+}\left(b_{j}\right)=f_{4}^{-}\left(b_{j}\right)
$$

It is obvious that displacement vector discontinuities along the cut l_{j} generate a singular stress field in the medium. Hence it is of interest for us to study the solution behavior in the neighborhood of the cuts.

Further we assume that u_{4} is known, when $x \in D$. Substitute the u_{4} in (1) and search the particular solution of the following equation

$$
C(\partial x) u=\operatorname{grad}_{4} .
$$

It is easy to prove that $u_{0}(x)$ is a particular solution of the equation (1)

$$
\begin{equation*}
u_{0}=-\frac{1}{2 \pi} \int_{D} \int \Gamma(x-y) g r a d u_{4} d v \tag{4}
\end{equation*}
$$

where $\Gamma(x-y)$ is the basic fundamental matrix for equation $C \partial x) u=0$,

$$
\begin{aligned}
& \Gamma(x-y)=2 \operatorname{Im} \sum_{2}^{3}\left\|A_{p q}^{(k)}\right\|_{2 x 2} \ln \sigma_{k}, \\
& A_{11}^{(k)}=\frac{i(-1)^{k}\left(c_{44}-c_{33} a_{k}\right)}{c_{44} c_{33}\left(a_{2}-a_{3}\right)}, \quad A_{12}^{(k)}=\frac{(-1)^{k}\left(c_{44}+c_{13}\right)}{c_{44} c_{33}\left(a_{2}-a_{3}\right)} \\
& A_{22}^{(k)}=\frac{i(-1)^{k}\left(c_{11}-c_{44} a_{k}\right)}{c_{44} c_{33}\left(a_{2}-a_{3}\right)}, \quad \sigma_{k}=x_{1}-y_{1}+\alpha_{k}\left(x_{3}-y_{3}\right), \quad \alpha_{k}=i \sqrt{a_{k}},
\end{aligned}
$$

$a_{k}, \quad k=2,3$ are the positive roots of a characteristic equation

$$
c_{44} c_{33} a_{k}^{2}-\left[c_{11} c_{33}+c_{44}^{2}-\left(c_{13}+c_{44}\right)^{2}\right] a_{k}+c_{44} c_{11}=0 .
$$

In (4) gradu $_{4}$ is a continuous vector in D along with its first derivatives and satisfy the following condition at infinity

$$
\operatorname{gradu}_{4}=O\left(|x|^{-1-\alpha}\right), \alpha>0 .
$$

Thus the general solution of the equation (1) is $u=V+u_{0}$, where

$$
\begin{align*}
& C(\partial x) V=0, \quad V^{+}(x)=f^{+}(z)-u_{0}^{+}(z)=F^{+}(z), \\
& V^{-}(z)=f^{-}(z)-u_{0}^{-}(z)=F^{-}(z) . \tag{5}
\end{align*}
$$

This equation is the equation of a transversally-isotropic elastic body. i.e.. we reduce the solution of basic BVP of the theory of thermoelasticity to the solution of the basic BVP for the equation of a transversally-isotropic elastic body.

A solution of the problem (5) we seek in the form

$$
\begin{equation*}
V=\frac{1}{\pi} \operatorname{Im} \int_{L} \sum_{k=2}^{3} N^{(k)} \frac{\partial \ln \sigma_{k}}{\partial s}[g(s)+i h(s)] d s+\sum_{2}^{p} V_{J}(z)+M^{(p+1)} \tag{6}
\end{equation*}
$$

where $g(t), h(t)$ are unknown densities,

$$
\begin{gathered}
N^{(k)}(y-x)=2 \operatorname{Im} \sum_{2}^{3}\left\|N_{p q}^{(k)}(\partial x)\right\|_{2 x 2} \\
N_{11}^{(k)}=(-1)^{k} b\left(c_{33} a_{k}-c_{44}\right) \sqrt{\frac{a_{2} a_{3}}{a_{k}}}, j=0,1, \\
N_{21}^{(k)}=(-1)^{k} i b\left(c_{13}+c_{44}\right) \sqrt{a_{2} a_{3}}=\sqrt{a_{2} a_{3}} \\
N_{12}^{(k)}, N_{22}^{(k)}=(-1)^{k} b\left(c_{44} a_{k}-c_{11}\right) \frac{1}{\sqrt{a_{k}}}, \\
b=\left(\sqrt{a_{2}}-\sqrt{a_{3}}\right)^{-1}\left(c_{33} \sqrt{a_{2} a_{3}}+c_{44}\right)^{-1}, \\
\sigma_{k}=z_{k}-\zeta_{k}, \quad z_{k}=x_{1}+\alpha_{k} x_{3}, \quad \zeta_{k}=y_{1}+\alpha_{k} y_{3}, \\
V_{j}(z)=\frac{1}{\pi} \operatorname{Im} \sum_{k=2}^{3}\left\|A_{p q}^{(k)}\right\|_{2 x 2} \frac{\left(z_{k}-b_{j}^{(k)}\right) \ln \left(z_{k}-b_{j}^{(k)}\right)-\left(z_{k}-a_{j}^{(k)}\right) \ln \left(z_{k}-a_{j}^{(k)}\right)}{b_{j}^{(k)}-a_{j}^{(k)}} M^{j},
\end{gathered}
$$

$$
a_{j}^{(k)}=\operatorname{Re}_{j}+\alpha_{k} \operatorname{Ima}_{j}, \quad b_{j}^{(k)}=\operatorname{Reb}_{j}+\alpha_{k} \operatorname{Imb} b_{j} .
$$

$M^{(j)}, j=1, . ., p+1$, are the unknown real constant vectors to be defined later on.

The vector $V_{j}(z)$ satisfies the following conditions:

1. $V_{j}(z)$ has the logarithmic singularity at infinity

$$
V_{j}=\frac{1}{\pi} \operatorname{Im} \sum_{k=2}^{3}\left\|A_{p q}^{(k)}\right\|_{2 x 2}\left(-\ln z_{k}+1\right) M^{j}+O\left(z_{k}^{-1}\right) .
$$

2. By V_{j} is meant a branch, which is uniquely defined on the plane cut along l_{j}.
3. V_{j} is continuously extendable on l_{j} from the left and right, the end points a_{j} and b_{j} inclusive, i.e., we have the equalities

$$
\begin{aligned}
& V_{j}^{+}\left(a_{j}\right)=V_{j}^{-}\left(a_{j}\right), \quad V_{j}^{+}\left(b_{j}\right)=V_{j}^{-}\left(b_{j}\right), \\
& V_{j}^{+}-V_{j}^{-}=2 \operatorname{Re} \sum_{k=2}^{3}\left\|A_{p q}^{(k)}\right\|_{2 x 2} \frac{\tau_{k}-a_{j}^{(k)}}{b_{j}^{(k)}-a_{j}^{(k)}} M^{j}, j=1, . . p .
\end{aligned}
$$

Taking into account the boundary condition, for the determination of the unknown densities, we obtain a system of singular integral equation of normal type

$$
\begin{aligned}
\pm g(\tau) & +\frac{1}{\pi} I m \sum_{k=2}^{3} N^{(k)} \int_{L} \frac{\partial \ln \left(\tau_{k}-\varsigma_{k}\right)}{\partial s}(g+i h) d s \\
& +\sum_{j=1}^{p} V_{j}^{ \pm}+M_{j}^{p+1}=F^{ \pm}(\tau) .
\end{aligned}
$$

This formula implies

$$
\begin{align*}
& 2 g(\tau)=F^{+}-F^{-}-R e \sum_{j=1}^{p} \sum_{k=2}^{3}\left\|A_{p q}^{(k)}\right\|_{2 x 2} \frac{\tau_{k}-a_{j}^{(k)}}{b_{j}^{(k)}-a_{j}^{(k)}} M^{j}, \tag{7}\\
& \frac{1}{\pi} \int_{L} \frac{h(\varsigma) d s}{\varsigma-\tau}+\frac{1}{\pi} \int_{L} K(\tau, \varsigma) h(\varsigma) d s=\Omega(\tau),
\end{align*}
$$

where

$$
\begin{aligned}
& K(\tau, \varsigma)=-i \frac{\partial \theta}{\partial s} E+R e \sum_{k=2}^{3} N^{(k)} \frac{\partial}{\partial s} \ln \left(1+\lambda_{k} \frac{\bar{\tau}-\bar{\varsigma}}{\tau-\varsigma}\right), \lambda_{k}=\frac{1+i \alpha_{k}}{1-i \alpha_{k}}, \\
& \theta=\arg (\tau-\varsigma), \quad \Omega(\tau)=\frac{1}{2}\left(F^{+}+F^{-}\right)-\frac{1}{2} \sum_{j=1}^{p}\left(V_{j}^{+}+V_{j}^{-}\right) \\
& \quad-M^{p+1}-\frac{1}{\pi} \operatorname{Im} \sum_{k=2}^{3} N^{(k)} \int_{L} \frac{\partial \ln \left(\tau_{k}-\varsigma_{k}\right)}{\partial s} g d s .
\end{aligned}
$$

Thus we have defined the vector g on l. It is not difficult to verify that $g \in H, g^{\prime} \in H^{*}, g\left(a_{j}\right)=g\left(b_{j}\right)=0, \Omega \in H, \Omega^{\prime} \in H^{*}$. Formula (7) is a system of singular integral equations of the normal type with respect to the vector h. The points a_{j} and b_{j} are nonsingular, while the total index of the class $h_{2 p}$ is equal to $-2 p$ (definition of the classes H, H^{*} and $h_{2 p}$ can be found in [4]).

A solution of system (7), if it exists, will be expressed by a vector of the Holder class that vanishes at the points a_{j}, b_{j}, and has derivatives in the class H^{*}.

Next we shall prove that the homogeneous system of equations corresponding to (7) admits on a trivial solution in the class $h_{2 p}$. Let the contrary be true. Assume $h^{(0)}$ to be nontrivial solution of the homogeneous system corresponding to (7) in the class $h_{2 p}$ and construct the potential

$$
U_{0}(z)=\frac{1}{\pi} R e \sum_{k=2}^{3} N^{(k)} \int_{L} \frac{\partial \ln \left(z_{k}-\varsigma_{k}\right)}{\partial s} h^{(0)}(s) d s
$$

Clearly, $U_{0}^{+}(z)=U_{0}^{-}(z)=0$ and by the uniqueness theorem we have $U_{0}(z)=$ $0, z \in D$.Then $T U_{0}(z)=0, z \in D$ and

$$
\left(T U_{0}(z)\right)^{+}-\left(T U_{0}(z)\right)^{-}=A \frac{\partial h^{0}}{\partial s}=0
$$

where A is a constant matrix.
Therefore, since $h^{(0)}\left(a_{j}\right)=0$, we obtain $h^{(0)}(z)=0$, which completes the proof. Thus the homogeneous system adjoint to (7) will have $2 p$ linearly independent solutions $\sigma_{j}, j=1, \ldots, 2 p$, in the adjoint class and the condition for system (7) to be solvable will be written as

$$
\begin{equation*}
\int_{L} \Omega \sigma_{j} d s=0, j=1, . ., 2 p \tag{8}
\end{equation*}
$$

Taking into account the latter conditions and that

$$
\begin{equation*}
\int_{L}\left[(T U)^{+}-(T U)^{-}\right] d s=0=-2 \sum_{k=1}^{p} M^{(k)} \tag{9}
\end{equation*}
$$

we obtain a system of $2 p+2$ algebraic equations with the same number of unknowns with respect to the components of the unknown vector M^{j}.

We shall show that system (8)-(9) is solvable. Assume that homogeneous system obtained from (8)-(9) has a nontrivial solution $M_{j}^{0}=\left(M_{1 j}^{0}, M_{2 j}^{0}\right)$, $j=1, . ., p+1$, and construct the potential

$$
U_{0}(z)=\frac{1}{\pi} I m \sum_{k=2}^{3} N^{(k)} \int_{L} \frac{\partial \ln \left(z_{k}-\varsigma_{k}\right)}{\partial s}\left(g^{0}+i h^{0}\right)(s) d s+\sum_{j=1}^{p} V_{j}^{0}(z)+M_{p+1}^{0}
$$

where

$$
\begin{gathered}
g_{0}(\tau)=-\operatorname{Re} \sum_{j=1}^{p} \sum_{k=2}^{3}\left\|A_{p q}^{(k)}\right\|_{2 x 2} \frac{\tau_{k}-a_{j}^{(k)}}{b_{k}-a_{j}^{(k)}} M_{j}^{0}, \\
V_{j}^{0}(z)=\frac{1}{\pi} \operatorname{Im} \sum_{k=2}^{3}\left\|A_{p q}^{(k)}\right\|_{2 x 2} \frac{\left(z_{k}-b_{j}^{(k)}\right) \ln \left(z_{k}-b_{j}^{(k)}\right)-\left(z_{k}-a_{j}^{(k)}\right) \ln \left(z_{k}-a_{j}^{(k)}\right)}{b_{j}^{(k)}-a_{j}^{(k)}} M_{j}^{0},
\end{gathered}
$$

It is obvious that $U_{0}^{+}=U_{0}^{-}=0$. Applying the formulas $\sum_{k=1}^{p} M_{(k)}^{0}=0$ and $\int_{l j}\left[T U_{0}(z)-T U_{0}(z)\right] d s=-2 M_{j}^{0}=0, j=1, . ., p, U_{0}(\infty)=M_{j}^{p+1}=0$, we obtain $M_{j}^{0}=0$, which contradicts the assumption. Therefore system (8)-(9) has a unique solution.

For M_{j}^{0} system (7) is solvable in the class $h_{2 p}$. The solution of the problem posed is given by potential (3) constructed using the solution h of system (7) and the vector g.

Repeating word by word the above reasoning we can show that

$$
u_{4}(z)=\frac{1}{\pi} \operatorname{Im} \int_{L} \frac{\partial \ln \left(z_{4}-\varsigma_{4}\right)}{\partial s}\left(g_{4}+i h_{4}\right)(s) d s+\sum_{j=1}^{p} V_{j 4}(z)+K_{p+1},
$$

where $z_{4}=x_{1}+\alpha_{4} x_{3}, \quad \varsigma_{4}=y_{1}+\alpha_{4} y_{3}, \quad \alpha_{4}=i \sqrt{a_{4}}$,

$$
\begin{gathered}
V_{j 4}(z)=\frac{1}{\pi} \operatorname{Im} \frac{\left(z_{4}-b_{j}^{(4)}\right) \ln \left(z_{4}-b_{j}^{(4)}\right)-\left(z_{4}-a_{j}^{(4)}\right) \ln \left(z_{4}-a_{j}^{(4)}\right)}{b_{j}^{(4)}-a_{j}^{(4)}} K^{j}, \\
a_{j}^{(4)}=R e a_{j}+\alpha_{4} \operatorname{Ima}_{j}, \quad b_{j}^{(4)}=\operatorname{Re}_{j}+\alpha_{4} \operatorname{Im} b_{j}, \\
2 g_{4}(\tau)=f_{4}^{+}-f_{4}^{-}-\operatorname{Im} \sum_{j=1}^{p} \frac{\tau_{4}-a_{j}^{(4)}}{b_{j}^{(4)}-a_{j}^{(4)}} K^{j},
\end{gathered}
$$

h_{4} is a solution of the following integral equation

$$
\begin{equation*}
\frac{1}{\pi} \int_{L} \frac{h_{4}(\varsigma) d s}{\varsigma-\tau}+\frac{1}{\pi} \int_{L} K(\tau, \varsigma) h_{4}(\varsigma) d s=\Omega(\tau) \tag{10}
\end{equation*}
$$

where

$$
\begin{aligned}
& K(\tau, \varsigma)=-i \frac{\partial \theta}{\partial s} E+R e \frac{\partial}{\partial s} \ln \left(1+\lambda_{4} \frac{\bar{\tau}-\bar{\varsigma}}{\tau-\varsigma}\right), \lambda_{4}=\frac{1+i \alpha_{4}}{1-i \alpha_{4}}, \\
& \theta=\arg (\tau-\varsigma), \quad \Omega(\tau)=\frac{1}{2}\left(f_{4}^{+}+f_{4}^{-}\right)-\frac{1}{2} \sum_{j=1}^{p}\left(V_{j 4}^{+}+V_{j 4}^{-}\right) \\
& \\
& -K_{p+1}-\frac{1}{\pi} \operatorname{Im} \int_{L} \frac{\partial \ln \left(\tau_{4}-\varsigma_{4}\right)}{\partial s} g_{4} d s .
\end{aligned}
$$

$K^{(j)}, j=1, . ., p+1$, are the unknown real constant vectors to be defined from the equation analogously (8)-(9).

References

[1] Sh. Zazashvili, Mixed Boundary Value Problem for an Infinite Plane with a Rectilinear Cut, (Russian),Reports of Enlarged Sessions of the Seminar of I. Vekua Inst.of Appl. Math., 4, 2(1989), 95-98.
[2] Sh. Zazashvili, Contact Problem for two Anisotropic Half-plane with a Cut along the Contact Line, (Russian), Bull. Acad. Sci. Georgia 145, 2(1992), 283-285.
[3] Nowachi W., Thermoelasticity, Moscow(Russian), 1962.
[4] N. I. Muskhelishvili, Singular Integral Equations. Boundary Problems of the Theory of Functions and some their Applications in Mathematical Physics. (Russian) 3rd ed.Nauka,Moscow,1968; English Translation from 2nd Russian ed.(1946):P. Noordhoff, Groningen, 1953, CorrectedReprintDoverPublications,Inc.,N.Y.,1992.
[5] Kupradze V.D., Gegelia T.G., Basheleishvili M.O. and Burchuladze T.V., Threedimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity, NorthHolland Publ. Company, Amsterdam-New -York- Oxford, 1979.

Received May, 2, 2011; Revised December 9, 2011; Accepted December, 24, 2011.

