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Abstract: We investigate the three-dimensional interior and exterior Dirich-
let boundary value problems of statics of the thermo-electro-magneto-elasticity
theory. We construct explicitly the fundamental matrix of the corresponding
6 × 6 non-self-adjoint matrix differential operator and study their properties
near the origin and at infinity. We apply the potential method and reduce
the corresponding BVPs to the equivalent system of boundary integral equa-
tions. We analyze the solvability of the resulting boundary pseudodifferential
equations in the Hölder and Sobolev-Slobodetski spaces and prove the corre-
sponding existence theorems.

1. Introduction. In the study of active material systems, there is significant
interest in the coupling effects between elastic, electric, magnetic and ther-
mal fields. The mathematical model of statics of the thermo-electro-magneto-
elasticity theory is described by the non-self-adjoint 6 × 6 system of second
order partial differential equations with the appropriate boundary conditions.
The problem is to determine three components of the elastic displacement
vector, the electric and magnetic scalar potential functions and the tempera-
ture distribution. Other field characteristics (e.g., mechanical stresses, electric
and magnetic fields, electric displacement vector, magnetic induction vector,
heat flux vector and entropy density) can be then determined by the gradient
equations and the constitutive equations (for details see [2]-[5], [14], [21]).

For the equations of dynamics the uniqueness theorems of solutions for
some mixed initial-boundary value problems are well studied. In particular, in
the reference [14] the uniqueness theorem is proved without making restrictions
on the positive definiteness on the elastic moduli. However, to the best of our
knowledge, the uniqueness and existence of solutions of the boundary value
problems of statics are not studied in the scientific literature.

Essential difficulties arise in the study of exterior BVPs for unbounded
domains. The case is that one has to consider the problem in a class of vector
functions which are bounded at infinity. This complicates proof of uniqueness
theorems since Green’s formulas do not hold for such vector functions. We have
found efficient asymptotic conditions at infinity which guarantee uniqueness in
the space of bounded vector functions and established uniqueness results (see
[16]).

With the help of the potential method we reduce the three-dimensional
interior and exterior Dirichlet boundary value problems of the thermo-electro-
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magneto-elasticity theory to the equivalent 6× 6 system of pseudo-differential
equations and analyze their solvability in the Hölder and Sobolev-Slobodetski
spaces and prove the corresponding uniqueness and existence theorems.

2. Formulation of problems. Let Ω+ be a bounded domain in R3 with
a smooth boundary S = ∂Ω+ and Ω− := R3 \ Ω+. Assume that the domains
Ω± are filled with an anisotropic homogeneous material with thermo-electro-
magneto-elastic properties.

Dirichlet problems (D)±: Find a regular solution vector U = (u, φ, ψ, ϑ)⊤ ∈
[C1(Ω+)]6 ∩ [C2(Ω+)]6 (respectively U ∈ [C1(Ω−)]6 ∩ [C 2(Ω−)]6, to the system
of equations

A(∂)U = Φ in Ω± , (1)

satisfying the Dirichlet type boundary conditions

{U}± = f on S, (2)

where A(∂) is a nonselfadjoint strongly elliptic matrix partial differential op-
erator generated by the equations of statics of the theory of thermo-electro-
magneto-elasticity,

A(∂) :=


[crjkl ∂j ∂l]3×3 [elrj ∂j∂l]3×1 [qlrj ∂j∂l]3×1 [−λrj ∂j]3×1

[−ejkl ∂j∂l]1×3 κjl ∂j ∂l ajl ∂j ∂l −pj ∂j
[−qjkl ∂j∂l]1×3 ajl ∂j ∂l µjl ∂j ∂l −mj ∂j

[0]1×3 0 0 ηjl ∂j ∂l


6×6

, (3)

the symbols {·}± denote the one sided limits (the trace operators) on ∂Ω± from
Ω±, the summation over the repeated indices is meant from 1 to 3; ∂j denotes
partial differentiation with respect to xj, ∂j := ∂/∂xj. The components of
the vector U = (u1, u2, u3, φ, ψ, ϑ)

⊤ have the following physical sense: the first
three components correspond to the elastic displacement vector u = (u1, u2, u3)
in the theory of thermo-electro-magneto-elasticity, the forth and fifth ones, φ
and ψ are respectively electric and magnetic potentials and the sixth compo-
nent ϑ stands for the temperature distribution; crjkl are the elastic constants,
ejkl are the piezoelectric constants, qjkl are the piezomagnetic constants, κjk are
the dielectric (permittivity) constants, µjk are the magnetic permeability con-
stants, ajk are the coupling coefficients connecting electric and magnetic fields,
pj and mj are constants characterizing the relation between thermodynamic
processes and electromagnetic effects, λjk are the thermal strain constants, ηjk
are the heat conductivity coefficients. These constants satisfy specific symme-
try conditions [4], [14], [18].

In our analysis we need special asymptotic conditions at infinity in the case
of unbounded domains [16].

Definition 1 We say that a continuous vector U = (u, φ, ψ, ϑ)⊤ ≡ (U1, · · · , U6)
⊤

in the domain Ω− has the property Z(Ω−), if the following conditions are sat-
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isfied

Ũ(x) := (u(x), φ(x), ψ(x))⊤ = O(1),

U6(x) = ϑ(x) = O(|x|−1) as |x| → ∞,

(4)

lim
R→∞

1

4πR2

∫
ΣR

Uk(x) dΣR = 0, k = 1, 5, (5)

where ΣR is a sphere centered at the origin and radius R.

In what follows we always assume that in the case of exterior boundary value
problem a solution possesses Z(Ω−) property.

3. Potentials and their properties. Denote by Γ(x) = [Γkj(x)]6×6 the
matrix of fundamental solutions of the operator A(∂),

A(∂)Γ(x) = I6 δ(x), (6)

where δ(·) is the Dirac’s delta distribution and I6 stands for the unit 6 × 6
matrix. Applying the generalized Fourier transform the fundamental matrix
is constructed explicitly and its properties near the origin and at infinity are
established. The entries of the fundamental matrix Γ(x) are homogeneous
functions in x and

Γ(x) =

[
[O(|x|−1)]5×5 [O(1)]5×1

[0]1×5 O(|x|−1)

]
6×6

. (7)

With the help of the fundamental matrix we construct the generalized single
and double layer potentials,

V (h)(x) =

∫
S

Γ(x− y)h(y) dSy, x ∈ R3 \ S, (8)

W (h)(x) =

∫
S

[P(∂y, n(y))Γ
⊤(x− y)]⊤ h(y) dSy, x ∈ R3 \ S, (9)

NΩ±(g)(x) =

∫
Ω±

Γ(x− y) g(y) dy, x ∈ R3, (10)

where S = ∂Ω± ∈ Cm,κwithinteger m ≥ 1and 0 < κ ≤ 1; h = (h1, · · · , h6)⊤
and g = (g1, · · · , g6)⊤ are density vector-functions defined respectively on S
and in Ω±, and the so called generalized stress operator P(∂, n) is given by the
formula

P(∂, n)=[ Ppq(∂, n) ]6×6

=


[crjkl nj ∂l]3×3 [−elrj nj ∂l]3×1 [−qlrj nj ∂l]3×1 [0]3×1

[ejkl nj ∂l]1×3 κjl nj ∂l ajl nj ∂l 0
[qjkl nj ∂l]1×3 ajl nj ∂l µjl nj ∂l 0

[0]1×3 0 0 ηjl nj ∂l

 (11)
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n = (n1, n2, n3) is the outward unit normal vector with respect to Ω+ at the
point x ∈ ∂Ω+.

The qualitative and mapping properties of the layer potentials are described
by the following theorems (cf. [11], [12], [17], [18]).

Theorem 2 The generalized single and double layer potentials solve the ho-
mogeneous differential equation A(∂)U = 0 in R3 \ S and possess the property
Z(Ω−).

In what follows by Lp, W
r
p , H

s
p , and Bs

p,q (with r ≥ 0, s ∈ R, 1 < p < ∞,
1 ≤ q ≤ ∞) we denote the well-known Lebesgue, Sobolev-Slobodetski, Bessel
potential, and Besov function spaces, respectively (see, e.g., [22]). Recall that
Hr

2 = W r
2 = Br

2,2 , H
s
2 = Bs

2,2 , W
t
p = Bt

p,p , and H
k
p = W k

p , for any r ≥ 0, for
any s ∈ R, for any positive and non-integer t, and for any non-negative integer
k.

Theorem 3 Let S = ∂Ω± ∈ Cm,κ with integers m ≥ 1 and k ≤ m− 1, and
0 < κ′ < κ ≤ 1. Then the operators

V : [Ck, κ′
(S)]6 → [Ck+1, κ′

(Ω±)]6, W : [Ck, κ′
(S)]6 → [Ck, κ′

(Ω±)]6, (12)

are continuous.
For any g ∈ [C 0, κ′

(S)]6, h ∈ [C 1, κ′
(S)]6, and any x ∈ S we have the

following jump relations:

{V (g)(x) }± = V (g)(x) = H g(x), (13)

{ T (∂x, n(x))V (g)(x) }± = [∓2−1I6 +K ] g(x), (14)

{W (g)(x) }± = [±2−1I6 +N ] g(x), (15)

{ T (∂x, n(x))W (h)(x) }+ = { T (∂x, n(x))W (h)(x) }− = Lh(x), m ≥ 2,(16)

where

H g(x) :=

∫
S

Γ(x− y) g(y) dSy , (17)

K g(x) :=

∫
S

[T (∂x, n(x)) Γ(x− y)] g(y) dSy , (18)

N g(x) :=

∫
S

[P(∂y, n(y)) Γ
⊤(x− y) ]⊤ g(y) dSy , (19)

Lh(x) := lim
Ω±∋z→x∈S

T (∂z, n(x))

∫
S

[P(∂y, n(y)) Γ
⊤(z − y) ]⊤ h(y) dSy , (20)

and the matrix boundary operator T (∂, n) reads as

T (∂, n) :=


[crjkl nj ∂l]3×3 [elrj nj ∂l]3×1 [qlrj nj ∂l]3×1 [−λrj nj]3×1

[−ejkl nj ∂l]1×3 κjl nj ∂l ajl nj ∂l −pj nj

[−qjkl nj ∂l]1×3 ajl nj ∂l µjl nj ∂l −mj nj

[0]1×3 0 0 ηjl nj ∂l


6×6

.(21)
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Theorem 4 Let S be a Lipschitz surface. The operators V and W can be
extended to the continuous mappings

V : [H
− 1

2
2 (S)]6 → [H1

2 (Ω
+)]6, W : [H

1
2
2 (S)]

6 → [H1
2 (Ω

+)]6.

The jump relations (13)-(16) on S remain valid for the extended operators in
the corresponding function spaces.

Theorem 5 Let S, m, κ, κ′ and k be as in Theorem 3. Then the operators

H : [Ck, κ′
(S)]6 → [Ck+1, κ′

(S)]6 , m ≥ 1, (22)

: [H
− 1

2
2 (S)]6 → [H

1
2
2 (S)]

6 , m ≥ 1, (23)

K : [Ck, κ′
(S)]6 → [Ck, κ′

(S)]6 , m ≥ 1, (24)

: [H
− 1

2
2 (S)]6 → [H

− 1
2

2 (S)]6 , m ≥ 1, (25)

N : [Ck, κ′
(S)]6 → [Ck, κ′

(S)]6 , m ≥ 1, (26)

: [H
1
2
2 (S)]

6 → [H
1
2
2 (S)]

6 , m ≥ 1, (27)

L : [Ck, κ′
(S)]6 → [Ck−1, κ′

(S)]6 , m ≥ 2, k ≥ 1, (28)

: [H
1
2
2 (S)]

6 → [H
− 1

2
2 (S)]6 m ≥ 2, (29)

are continuous. The operators (23), (25), (27), and (29) are bounded if S is a
Lipschitz surface.

Proof. It is word for word of the proofs of the similar theorems in [6], [7], [13],
[20]. 2

The next assertion is a consequence of the general theory of elliptic pseu-
dodifferential operators on smooth manifolds without boundary (see, e.g., [1],
[4], [8], [9], [10], [23], and the references therein).

Theorem 6 Let V , W , H, K, N and L be as in Theorems 3 and let s ∈ R,
1 < p < ∞, 1 ≤ q ≤ ∞, S ∈ C∞. The layer potential operators (12) and
the boundary integral (pseudodifferential) operators (22)-(29) can be extended
to the following continuous operators

V : [Bs
p,p(S)]

6 → [H
s+1+ 1

p
p (Ω+)]6, W : [Bs

p,p(S)]
6 → [H

s+ 1
p

p (Ω+)]6,

H : [Hs
p(S)]

6 → [Hs+1
p (S)]6, K : [Hs

p(S)]
6 → [Hs

p(S)]
6,

N : [Hs
p(S)]

6 → [Hs
p(S)]

6, L : [Hs+1
p (S)]6 → [Hs

p(S)]
6.

The jump relations (13)-(16) remain valid for arbitrary g ∈ [Bs
p,q(S)]

6 with
s ∈ R if the limiting values (traces) on S are understood in the sense described
in [23].

Proof. It is word for word of the proofs of the similar theorems in [7]. 2
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Remark 7 Let either Φ ∈ [Lp(Ω
+)]6 or Φ ∈ [Lp, comp(Ω

−)]6, p > 1. Then the
Newtonian volume potential NΩ±(Φ) possesses the following properties (see,
e.g., [15]) :

NΩ+(Φ) ∈ [W 2
p (Ω

+)]6, NΩ−(Φ) ∈ [W 2
p, loc(Ω

−)]6,

A(∂)NΩ±(Φ) = Φ almosteverywherein Ω±.

Therefore, without loss of generality, we can assume that in the formulation of
the Dirichlet problems the right hand side function Φ(x) = 0 in Ω±.

4. Investigation of the interior Dirichlet BVP: double layer ap-
proach. Let us consider the Dirichlet problem for the domain Ω+:

A(∂)U(x) = 0, x ∈ Ω+, (30)

{U(x)}+ = f(x), x ∈ S, (31)

where S ∈ C2,κ with 0 < κ ≤ 1 and f ∈ C1,κ′
with 0 < κ′ < κ ≤ 1. We analyze

this problem in the space of regular vector functions [C1,κ′
(Ω+)]6 ∩ [C2(Ω+)]6.

In [16] it is shown that this problem possesses at most one solution.
We look for a solution in the form of double layer potential,

U(x) ≡ W (h)(x) =

∫
S

[P(∂y, n(y))Γ
⊤(x− y)]⊤h(y)dSy, (32)

where h = (h1, ..., h6)
⊤ ∈ [C1,κ′

(S)]6 is unknown density, while Γ and P are
defined by (7) and (11) respectively. Using the boundary condition (31) and the
jump relation for the double layer potential we arrive at the singular integral
equation for the density vector h,

[2−1I6 +N ]h = f on S. (33)

By standard approach we show that the principal homogeneous symbol matrix
of the operator 2−1I6 +N is non-degenerate and the index equals to zero (cf.
[18]). Therefore, for invertibility of the operator

2−1I6 +N : [L2(S)]
6 → [L2(S)]

6 (34)

it suffices to show that the corresponding homogeneous equation

[2−1I6 +N ]h = 0 on S (35)

possesses only the trivial solution in the space [L2(S)]
6.

Let h(0) ∈ [L2(S)]
6 be a solution of equation (35) and construct the double

layer potential W (h(0))(x) ≡ U0(x), x ∈ R3 \ S. By the embedding theo-
rems (see [13], Ch. 4), one can easily derive that actually h(0) ∈ [C1,κ′

(S)]6.
Therefore W (h(0)) ∈ [C1,κ′

(Ω±)]6 due to Theorem 3.
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It is evident that A(∂)U0 = 0 in Ω± and {U0}+ = (2−1I6 +N )h(0) = 0 on
S. Thus U0 is a solution to the homogeneous interior Dirichlet problem and
consequently U0 = 0 in Ω+ by the uniqueness theorem ([16]).

With the help of the Liapunov-Tauber theorem (see (16)) we then conclude
that {T U0}+ = {T U0}− = 0, i.e., U0 is a solution to the homogeneous exterior
Neumann boundary value problem of the thermo-electro-magneto elasticity
theory. Since U0 ∈ [C1,κ′

(Ω−)]6 ∩ Z(Ω−), we can apply the uniqueness result
obtained in [16] and conclude that U0 = W (h(0)) = 0 in Ω−. Thus U0 =
W (h(0)) = 0 in Ω+ ∪ Ω−. Whence, in view of the equality

{U0}+ − {U0}− = {W (h(0))}+ − {W (h(0))}− = h(0) = 0 on S, (36)

which shows that the null space of the operator 2−1I6+N is trivial. Therefore
the operators (34) and

2−1I6 +N : [C1,κ′
(S)]6 → [C1,κ′

(S)]6 (37)

are invertible. Then it follows that the non-homogeneous equation (33) is
uniquely solvable for arbitrary right hand side vector function f .

As a result we have the following existence theorem.

Theorem 8 Let S ∈ C 2, κ and f ∈ [C 1, κ′
(S)]6 with 0 < κ′ < κ ≤ 1. Then

the interior Dirichlet BVP (30)-(31) is uniquely solvable in the space of regular
vector-functions [C 1,κ′

(Ω+)]6 ∩ [C 2(Ω+)]6 for arbitrary f and the solution is
representable by the double layer potential, U =W (h), where the density vector
function h ∈ [C 1,κ′

(S)]6 is defined by the uniquely solvable singular integral
equation (33).

5. Investigation of the interior and exterior Dirichlet BVPs: single
layer approach. First, we consider the interior Dirichlet problem and look
for a solution to the problem (30)-(31) in the form of single layer potential

U(x) ≡ V (h)(x) =

∫
S

Γ(x− y)h(y) dSy, (38)

where Γ is given by equation (7) and h = (h1, ..., h6)
⊤ is an unknown density.

By Theorem 3 and in view of the boundary condition (31), we get the following
integral equation for the density vector function h

H h = f on S. (39)

Here H is a weakly singular integral operator defined by (17) and is a strongly
elliptic pseudodifferential operator of order -1 with index zero. Now, we show
that the null space of the operator

H : [H
− 1

2
2 (S)]6 → [H

1
2
2 (S)]

6 (40)
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is trivial. To this end, we have to show that the corresponding homogeneous
equation

H h = 0 on S (41)

has only the trivial solution. Let h(0) ∈ [H
− 1

2
2 (S)]6 be a solution of equation

(41), i.e. H h(0) = 0 on S, and construct the single layer potential U0(x) ≡
V (h(0))(x), x ∈ Ω±.

By the embedding theorems (see [13], [15]), one can easily derive that ac-
tually h(0) ∈ [C0,κ′

(S)]6 and consequently U0 ∈ [C1, κ′
(S)]6. It is clear that

A(∂)U0 = 0 in Ω±. Further, {U0}+ = H h(0) = 0 on S. Hence U0 is a solu-
tion to the homogeneous interior Dirichlet BVP. Therefore, by the uniqueness
theorem for the interior Dirichlet BVP we conclude that U0 = 0 in Ω+. Due
to the continuity of the single layer potential {U0}− = {U0}+ = Hh(0) = 0 on
S (see Theorem 3). Then it follows that the vector function U0 = V (h(0)) is
a solution of the exterior homogeneous Dirichlet BVP. Since the single layer
potential possesses the property Z(Ω−), we can apply the uniqueness theorem
for the exterior Dirichlet BVP and we arrive at the equality U0 = V (h(0)) = 0
in Ω−. Thus U0 = V (h(0)) = 0 in Ω±. Using the jump relation (14) we get

{T U0}+ −{T U0}− = {T V (h(0))}+ −{T V (h(0))}− = −h(0) = 0 on S. (42)

Therefore, the homogeneous equation (41) has only the trivial solution. Since
the operator (40) has zero index it then follows that it is invertible. Therefore
the operator

H : [Ck,κ′
(S)]6 → [Ck+1,κ′

(S)]6 (43)

is also invertible. Finally we conclude that the integral equation (39) is
uniquely solvable in the space [Ck,κ′

(S)]6 for an arbitrary right hand side
f ∈ [Ck+1,κ′

(S)]6. In particular, if S ∈ C2,κ and f ∈ [C1,κ′
(S)]6, than the

integral equation (39) has a unique solution h ∈ [C0,κ′
(S)]6. Clearly, then

V (h) ∈ [C1,κ′
(Ω±)]6 ∩ [C∞(Ω±)]6.

Thus we have the following existence theorem.

Theorem 9 Let S ∈ C 2, κ and f ∈ [C 1, κ′
(S)]6 with 0 < κ′ < κ ≤ 1. Then

the interior Dirichlet BVP (30)-(31) is uniquely solvable in the space of regular
vector-functions [C 1, κ′

(Ω+)]6 ∩ [C 2(Ω+)]6 and the solution is representable in
the form of the single layer potential, U = V (h), where the density vector
function h ∈ [C 0, κ′

(S)]6 is defined by the uniquely solvable integral equation
(39).

The proof of the following theorem is word for word.

Theorem 10 Let S ∈ C 2, κ and f ∈ [C 1, κ′
(S)]6 with 0 < κ′ < κ ≤ 1. Then

the exterior Dirichlet boundary value problem

A(∂)U(x) = 0, x ∈ Ω−, (44)

{U(x)}− = f, x ∈ S, (45)
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is uniquely solvable in the space of regular vector-functions [C 1, κ′
(Ω−)]6 ∩

[C 2(Ω−)]6 ∩ Z(Ω−) and the solution is representable in the form of the single
layer potential, U = V (h), where the density vector function h ∈ [C 0, κ′

(S)]6

is defined by the uniquely solvable integral equation (39).

Corollary 11 Denote by H−1 the operator inverse to H,

H−1 : [H
1
2
2 (S)]

6 → [H
− 1

2
2 (S)]6, H−1 : [C1,κ′

(S)]6 → [C0,κ′
(S)]6. (46)

An arbitrary solution U ∈ [C 1, κ′
(Ω+)]6∩[C 2(Ω+)]6 in Ω+ or U ∈ [C 1, κ′

(Ω−)]6∩
[C 2(Ω−)]6 ∩ Z(Ω−) in Ω− of the equation A(∂)U = 0 is representable in the
form

U(x) = V (H−1 {U}±)(x), x ∈ Ω±. (47)

6. Investigation of the exterior Dirichlet BVP: an alternative
approach. We assume that S ∈ C2,κ and f ∈ [C1,κ′

(S)]6 with 0 < κ′ < κ ≤ 1
and look for a solution to the exterior Dirichlet BVP (44)-(45) in the form of
linear combination of the single and double layer potentials

U(x) = W (h)(x) + αV (h)(x), (48)

where h = (h1, ..., h6)
⊤ ∈ [C1,κ′

(S)]6 is an unknown density vector and α is a
positive constant. By Theorem 3 and in view of the boundary condition (45),
we get the following equation for the density vector function h

−1

2
h+N h+ αH h = f, (49)

where the operators H and N are defined by (17) and (19) respectively. The
operator −1

2
I6 +N is a singular integral operator of normal type with index

zero and H is a compact operator. Denote

M := −1

2
I6 +N + αH . (50)

This operator possesses the following mapping properties

M : [L2(S)]
6 → [L2(S)]

6, (51)

: [C1,κ′
(S)]6 → [C1,κ′

(S)]6. (52)

Moreover, M is a singular integral operator of normal type with zero index.
Now we show that the null space of the operator M is trivial. Let h(0) ∈
[L2(S)]

6 be a solution of the homogeneous integral equation

Mh(0) ≡ −1

2
h(0) +N h(0) + αH h(0) = 0 on S. (53)
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From the embedding theorems it follows that h(0) ∈ [C1,κ′
(S)]6. Further we

construct the vector function

U0(x) = W (h(0))(x) + αV (h(0))(x), x ∈ Ω±. (54)

Clearly, U0 ∈ [C1(Ω±)]6 ∩ [C∞(Ω±)]6 and it has the property Z(Ω−) (see
Theorem 2). In view of (53)-(54) we have

Mh(0) = {U0}− = 0 on S. (55)

Therefor, U0 is a solution to the exterior homogeneous Dirichlet BVP and by
the uniqueness theorem U0 = 0 in Ω−. Applying the jump relations we can
write the following equalities

{U0}+ − {U0}− = h(0), (56)

{T U0}+ − {T U0}− = −αh(0), (57)

on S, i.e., {U0}+ = h(0) and {T U0}+ = −αh(0) on S. Whence it follows that
the function U0 solves the interior Robin type BVP:

A(∂)U0 = 0 in Ω+, (58)

{T U0}+ + α {U0}+ = 0 on S. (59)

Now we prove that the BVP (58)-(59) admits only the zero solution.

Lemma 12 In the space of regular vector-functions the homogeneous Robin
type BVP (58)-(59) with α > 0 has only the trivial solution.

Proof. Let U = (u, φ, ψ, ϑ)⊤ be a solution to the problem (58)-(59). Then ϑ is
a solution to the following BVP:

ηjl ∂j ∂lϑ = 0 in Ω+, (60)

{ηjl nj ∂lϑ}+ + α {ϑ}+ = 0 on S. (61)

Using Green’s formula∫
Ω+

ηjl ∂j ∂lϑ · ϑ dx = −
∫
Ω+

ηjl ∂lϑ ∂jϑ dx+

∫
S

{ηjl nj ∂lϑ}+ · {ϑ}+ dS (62)

and with the help of (60)-(61), we derive∫
Ω+

ηjl ∂lϑ · ∂jϑ dx = −α
∫
S

|{ϑ}+|2 dS. (63)

Note that the matrix [ηjl]3×3 is positive definite ([21], [19], [18]). Taking into
account that α > 0, from (63) we easily conclude ϑ = const in Ω+ and {ϑ}+ = 0
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on S, whence ϑ = 0 in Ω+ follows. Now, from (58)-(59) it follows that the

vector function Ũ = (u, φ, ψ)⊤ is a solution of the homogeneous BVP

Ã(∂) Ũ(x) = 0, x ∈ Ω+, (64)

{T (∂, n) Ũ(x)}+ + α {Ũ(x)}+ = 0, x ∈ S, (65)

where Ã(0) is the 5× 5 matrix differential operator generated by the equations
of statics of thermo-electro-magneto elasticity theory (without taking into ac-
count thermal effects, see [4], [5])

Ã(0)(∂) :=

 [crjkl ∂j ∂l]3×3 [elrj ∂j∂l]3×1 [qlrj ∂j∂l]3×1

[−ejkl ∂j∂l]1×3 κjl ∂j ∂l ajl ∂j ∂l
[−qjkl ∂j∂l]1×3 ajl ∂j ∂l µjl ∂j ∂l


5×5

, (66)

and T (∂, n) is the corresponding 5× 5 generalized stress operator

T (∂, n) =

 [crjkl nj ∂l]3×3 [elrj nj ∂l]3×1 [qlrj nj ∂l]3×1

[−ejkl nj ∂l]1×3 κjl nj ∂l ajl nj ∂l
[−qjkl nj ∂l]1×3 ajl nj ∂l µjl nj ∂l


5×5

. (67)

For arbitrary regular solution Ũ of equation (64) there holds Green’s identity
[4], ∫

Ω+

E(Ũ , Ũ) dx =

∫
S

{T Ũ}+ · {Ũ}+ dS, (68)

where

E(Ũ , Ũ) = crjkl ∂luk ∂jur + κjl ∂lφ∂jφ+ 2ajl ∂lφ∂jψ + µjl ∂lψ ∂jψ in Ω+.
(69)

Recall that (see [4], [5], [18], [21])

E(Ũ , Ũ) ≥ δ0 [ ekj(u)ekj(u) + |∇φ|2 + |∇ψ|2 ] (70)

with some positive constant δ0, where ekj(u) = 2−1(∂kuj + ∂juk) denotes the
mechanical strain tensor. By virtue of the condition (65) we easily derive that∫

Ω+

E(Ũ , Ũ) dx = −α
∫
S

|{Ũ}+|2 dS. (71)

Due to the condition α > 0, from (70) and (71) we conclude

E(Ũ , Ũ) = 0 in Ω+, {Ũ}+ = 0 on S. (72)

The first equation in (72) implies that

u(x) = [a× x] + b, φ(x) = b4, ψ(x) = b5, in Ω+, (73)
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where a = (a1, a2, a3) and b = (b1, b2, b3) are arbitrary constant vectors, and b4
and b5 are arbitrary constants. By the second equation in (72) it then follows

that a = b = 0, b4 = b5 = 0 and, consequently, Ũ = 0 on Ω+ which completes
the proof. 2

Applying Lemma 12 we conclude that the vector U0 defined by (54), which
is a solution of the homogeneous Robin type BVP (58)-(59), vanishes in Ω+ as
well. Thus U0 = 0 in Ω+ ∪ Ω−. Then from relations (56)-(57) it follows that
h(0) = 0 on S. Therefore the null spaces of the operators (51)-(52) are trivial
and they are invertible. Consequently the integral equation (49) is uniquely
solvable for an arbitrary right hand side vector f . Thus, we have the following
existence result.

Theorem 13 Let S ∈ C 2, κ and f ∈ [C 1, κ′
(S)]6 with 0 < κ′ < κ ≤ 1. Then

the exterior Dirichlet boundary value problem (44)-(45) is uniquely solvable in
the space of regular vector-functions [C 1,κ′

(Ω−)]6∩ [C 2(Ω−)]6∩Z(Ω−), and the
solution is representable in the form of linear combination of the single and
double layer potentials

U(x) =W (h)(x) + αV (h)(x), (74)

where α is an arbitrary positive constant and the density vector function h =
(h1, ..., h6)

⊤ ∈ [C 1, κ′
(S)]6 is defined by the uniquely solvable singular integral

equation (49).

The counter parts of the above formulated existence theorems hold also in
the Sobolev-Slobodetski and Bessel potential spaces. We formulate here the
existence theorem for the interior Dirichlet problem.

Theorem 14 Let S ∈ C∞ and f ∈ [B
1− 1

p
p,p (S)]6 with p > 1. Then the pseu-

dodifferential operator

2−1I6 +N : [B
1− 1

p
p,p (S)]6 → [B

1− 1
p

p,p (S)]6 (75)

is invertible and the interior Dirichlet BVP (30)-(31) is uniquely solvable in
the space [H1

p (Ω
+)]6 = [W 1

p (Ω
+)]6, and the solution is representable in the

form of double layer potential U = W (h) with the density vector function

h ∈ [B
1− 1

p
p,p (S)]6 being a unique solution of the equation

[ 2−1I6 +N ]h = f on S. (76)

If f ∈ [B
k− 1

p
p,p (S)]6 with p > 1 and integer k ≥ 1, then h ∈ [B

k− 1
p

p,p (S)]6 and the
corresponding solution U =W (h) ∈ [Hk

p (Ω
+)]6.

There holds also the following generalization of Corollary 11 (cf. [18]).
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Corollary 15 Let k ≥ 1 be integer and U ∈ [Hk
p (Ω

+)]6 be a solution to the
homogeneous equation A(∂)U = 0 in Ω+. Then U is uniquely representable in
the form

U(x) = V (H−1{U}+)(x), x ∈ Ω+, (77)

where [U ]+ ∈ [B
k− 1

p
p,p (S)]6 is the traces of U on S from Ω+ and H−1 stands for

the operator inverse to the operator

H : [B
k−1− 1

p
p,p (S)]6 → [B

k− 1
p

p,p (S)]6.
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