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1. Introduction
The linear theory of thermoelasticity for materials with inner structure

whose particles, in addition to the classical displacement and temperature
fields, possess microtemperatures was constructed by Iesan and Quintanilla [1].
The fundamental solutions of the equations of the three-dimensional (3D) the-
ory of thermoelasticity with microtemperatures were constructed by Svanadze
[2]. The representations of the Galerkin type and general solutions of the sys-
tem in this theory were obtained by Scalia, Svanadze and Tracinà [3]. The
3D linear theory of thermoelasticity for microstretch elastic materials with
microtemperatures was constructed by Iesan [4], where the uniqueness and
existence theorems in the dynamical case for isotropic materials are proved.

In the present paper we consider the two-dimensional (2D) linear equilib-
rium theory of thermoelasticity with microtemperatures and generalize some
results of the classical 2D theory of thermoelasticity. The fundamental and
singular solutions are constructed. The representation of the Galerkin type
solution is also obtained.

2. Basic Equations
We consider an isotropic elastic material with microtemperatures. Let

D+(D−) be a bounded (respectively, an unbounded) domain of the real
Euclidean 2D space E2 bounded by the contour S. D+ := D+

∪
S, D− :=

E2\D+.



6 Bulletin of TICMI

Let x := (x1.x2) ∈ E2, ∂x :=

(
∂

∂x1

,
∂

∂x2

)
.

The basic homogeneous (i.e., body forces are neglected) system of the the-
ory of thermoelasticity with microtemperatures has the form [1]

µ∆u+ (λ+ µ)graddivu− βgradθ = 0, (1)

k6∆w+ (k4 + k5)graddivw− k3gradθ − k2w = 0, (2)

k∆θ + k1divw = 0, (3)

where u := (u1, u2)
T is the displacement vector, w := (w1, w2)

T is the mi-
crotemperature vector, θ is the temperature measured from the constant
absolute temperature T0 (T0 > 0) by the natural state (i.e. by the state
of the absence of loads), λ, µ, β, k, kj, j = 1, ..., 6, are constitu-
tive coefficients, ∆ is the 2D Laplace operator. The superscript ”T” denotes
transposition.

We introduce the matrix differential operator

A(∂x) :=∥ Alj(∂x) ∥5x5,

where

Aαγ := µδαγ∆+ (λ+ µ)
∂2

∂xα∂xγ

,

Aα+2;γ+2 := δαγ(k6∆− k2) + (k4 + k5)
∂2

∂xα∂xγ

,

Aα,γ+2 := Aα+2,γ = 0, Aα5 := −β
∂

∂xα

, Aα+2;5 := −k3
∂

∂xα

,

A5γ := 0, A5;γ+2 := k1
∂

∂xγ

, A55 := k∆, α, γ = 1, 2,

δαγ is the Kronecker delta. Then the system (1)-(3) can be rewritten as

A(∂x)U = 0, (4)

where
U := (u1, u2, w1, w2, θ)

T .

The matrix Ã(∂x) :=∥ Ãlj(∂x) ∥5x5:= AT (−∂x), where Ãlj(∂x) :=
Ajl(−∂x), will be called the associated operator to the differential operator
A(∂x). Thus, the homogeneous associated system to the system (4) will be
the following system

µ∆u+ (λ+ µ)graddivu = 0,
k6∆w+ (k4 + k5)graddivw− k1gradθ − k2w = 0,
k∆θ + k3divw+ βdivu = 0.
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We assume that µ(λ + 2µ)kk6k7 ̸= 0, where k7 := k4 + k5 + k6.
Obviously, if the last condition is satisfied, then A(∂x) is the elliptic dif-
ferential operator [2].

3. Matrix of Fundamental Solutions
In order to investigate boundary value problems (BVPs) of the theory of

thermoelasticity with microtemperatures by potential method it is necessary
to construct a matrix of fundamental solutions to the governing system (4).
Several methods are known for constructing the matrix of fundamental solu-
tions of the systems of differential equations of the theory of elasticity and
thermoelasticity ( see e.g., [2,5]).

We introduce the matrix differential operator B(∂x) consisting of cofactors
of elements of the transposed matrix AT divided on µ(λ+ µ)kk6k7 ̸= 0 :

B(∂x) :=∥ Blj(∂x) ∥5x5,

where

Bαγ := B∗
11δαγ −B∗

12ξαξγ , Bα+2,γ+2 := B∗
33δαγ −B∗

34ξαξγ,

B1γ+2 := B∗
13ξ1ξγ, B2γ+2 := B∗

13ξ1ξγ, Bα5 := B∗
15ξα,

B3γ ≡ B4γ ≡ B5γ ≡ 0, B5γ+2 := B∗
33ξα, ξα :=

∂

∂xα

, α, γ = 1, 2,

B∗
11 :=

1

µ
∆∆(∆− s21)(∆− s22), B∗

12 :=
λ+ µ

aµ
∆(∆− s21)(∆− s22),

B∗
13 := −βk1∆(∆− s22)

akk7
, B∗

15 :=
β∆(∆− s22)(k7∆− k2)

akk7
, B55 ≡ B∗

55,

B∗
33 :=

1

k6
∆(∆− s21)∆∆, B∗

34 :=
1

k6k7
[(k4 + k5)∆− k7s

2
1 + k2]∆∆,

B∗
35 :=

k3
kk7

∆∆(∆− s22), B∗
53 := − k1

kk7
∆∆(∆− s22), s22 :=

k2
k6

,

B∗
55 :=

1

kk7
∆∆(∆− s22)(k7∆− k2), s21 :=

kk2 − k1k3
kk7

, a := λ+ 2µ.

Substituting the vector U(x) = B(∂x)Ψ into (4), where Ψ is a five-component
vector function, we get

∆∆∆(∆− s21)(∆− s22)Ψ = 0.

Whence, applying the method developed in [5], after some calculations, the
vector ∆Ψ can be represented as

∆Ψ = −r2(ln r − 1)

4s21s
2
2

+
K0(s1r) + ln r

s41(s
2
1 − s22)

− K0(s2r) + ln r

s42(s
2
1 − s22)

. (5)
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where K0(sαr) is the modified Hankel function of the first kind and zero order,

K0(sαr) := −I0(sαr)
(
ln

sαr

2
+ C

)
+2

∞∑
k=1

1

(k!)2

(sαr
2

)2k
(
1

k
+

1

k − 1
+ ...+ 1

)
,

I0(sαr) :=
∞∑
k=0

1

(k!)2

(sαr
2

)2k

, r2 := (x1 − y1)
2 + (x2 − y2)

2, α = 1, 2.

As all the components of B contain the operator ∆, Substituting (5) into
U = BΨ, we obtain the matrix of fundamental solutions for the equation (4)
which we denote by Γ(x-y)

Γ(x-y) :=∥ Γkj(x-y) ∥5x5,

where

Γαγ(x-y) := −δαγ
ln r

µ
+

λ+ µ

aµ

∂2Ψ11

∂xα, ∂xγ

, Ψ11 :=
r2(ln r − 1)

4
,

Γα+2,γ+2(x-y) := δαγ
K0(s2r)

k6
− ∂2Ψ33

∂xα, ∂xγ

,

Ψ33(x-y) :=
K0(s2r) + ln r

k6s22
− Ψ35

k7
, Ψ35(x-y) :=

K0(s1r) + ln r

s21
,

Γ1,γ+2(x-y) := − βk1
akk7

∂2Ψ13

∂x1∂xγ

, Ψ13(x-y) :=
Ψ35 +Ψ11

s21
,

Γ2,γ+2(x-y) := − βk1
akk7

∂2Ψ13

∂x2∂xγ

, Γα5(x-y) :=
β

akk7

∂Ψ15

∂xα

, α, γ = 1, 2,

Ψ15(x-y) := −k2
s21
Ψ11 +

(
k7 −

k2
s21

)
Ψ35, Γα+2,5(x-y) :=

k3
kk7

∂Ψ35

∂xα

,

Γ5,γ+2(x-y) := − k1
kk7

∂Ψ35

∂xγ

, Γ55(x-y) :=
K0(s1r)

k
− k2

kk7
Ψ35, s22 :=

k2
k6

> 0,

Γ31 ≡ Γ32 ≡ Γ41 ≡ Γ42 ≡ Γ51 ≡ Γ52 ≡ 0, s21 :=
kk2 − k1k3

kk7
> 0.

We can easily prove the following
Theorem 1 The elements of the matrix Γ(x-y) has a logarithmic sin-

gularity as x → y and each column of the matrix Γ(x-y), considered
as a vector, is a solution of the system (4) at every point x if x ̸= y.

According to the method developed in [5], we construct the matrix Γ̃(x) :=

ΓT (−x) and the following basic properties of Γ̃(x) may be easily verified:
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Theorem 2 Each column of the matrix Γ̃(x-y), considered as a vec-

tor, satisfies the associated system Ã(∂x)Γ̃(x-y) = 0, at every point x if

x ̸= y and the elements of the matrix Γ̃(x-y) have a logarithmic singu-
larity as x → y.

4. Matrix of Singular Solutions
In solving BVPs of the theory of thermoelasticity with microtemperatures

by the method of potential theory, besides the matrix of fundamental solutions,
some other matrices of singular solutions to equation (4) are of a great impor-
tance. Using the matrix of fundamental solutions, we construct the so-called
singular matrices of solutions by means of elementary functions.

We introduce the special generalized stress vector
τ

R(∂x,n)U, which
acts on the element of the arc with the unit normal n = (n1, n2), where

τ

R(∂x,n) :=∥
τ

Rlj ∥5x5,

τ

Rαγ := δαγµ
∂

∂n
+ (λ+ µ)nα

∂

∂xγ

+ τ1Mαγ,

τ

Rα,γ+2 ≡
τ

Rα+2,γ ≡
τ

Rα+2,5

≡
τ

R5γ ≡ 0,
τ

Rα5 := −βnα,
τ

Rα+2;γ+2 := δαγk6
∂

∂n
+ (k4 + k5)nα

∂

∂xγ

+ τ2Mαγ,

τ

R5,γ+2 := k1nγ,
τ

R55 := k
∂

∂n
, Mαγ := nγ

∂

∂xα

− nα
∂

∂xγ

, α, γ = 1, 2,

(6)

here τ := (τ1, τ2), τα, α = 1, 2, are the arbitrary numbers. If τ1 =
µ, τ2 = k5, we denote the obtained operator by P (∂x,n). The operator,

which we get from
τ

R(∂x,n) for τ1 =
µ(λ+ µ)

λ+ 3µ
, τ2 =

k6(k4 + k5)

k4 + k5 + 2k6
,

we denote by N(∂x,n) and the vector N(∂x,n)U will be called the
pseudostress vector.

Applying the operator
τ

R(∂x,n) to the matrix Γ(x-y), we construct
the so-called singular matrix of solutions

τ

R(∂x,n)Γ(x-y) := ∥
τ

Mlj(∂x) ∥5×5,

where

τ

Mγγ(∂x) := −∂ ln r

∂n
+ (−1)γ+1 (λ+ µ)(τ1 + µ)

aµ

∂

∂s

∂2Ψ11

∂x1∂x2

,

τ

M12(∂x) :=
∂

∂s

[
−τ1
µ
ln r +

(λ+ µ)(τ1 + µ)

aµ

∂2Ψ11

∂x2
2

]
,
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τ

M21(∂x) :=
∂

∂s

[
τ1
µ
ln r − (λ+ µ)(τ1 + µ)

aµ

∂2Ψ11

∂x2
1

]
,

τ

M1,γ+2(∂x) := −βk1(µ+ τ1)

kak7

∂

∂s

∂2Ψ13

∂xγ∂x2

,

τ

M2,γ+2(∂x) :=
βk1(µ+ τ1)

kak7

∂

∂s

∂2Ψ13

∂x1∂xγ

,

τ

M15(∂x) :=
β(µ+ τ1)

kak7

∂

∂s

∂Ψ15

∂x2

,
τ

M25(∂x) := −β(µ+ τ1)

kak7

∂

∂s

∂Ψ15

∂x1

,

τ

M35(∂x) :=
k3
kk7

[
k7n1K0(s1r) + (k6 + τ2)

∂

∂s

∂Ψ35

∂x2

]
,

∂

∂s
:= n2

∂

∂x1

− n1
∂

∂x2

,

τ

M45(∂x) :=
k3
kk7

[
k7n2K0(s1r)− (k6 + τ2)

∂

∂s

∂Ψ35

∂x1

]
,

τ

M53(∂x) := −k1
k2

∂

∂s

∂

∂x2

(K0(s2r) + ln r),

τ

M54(∂x) :=
k1
k2

∂

∂s

∂

∂x1

(K0(s2r) + ln r),

τ

M3γ(∂x) ≡
τ

M4γ(∂x) ≡
τ

M5γ(∂x) ≡ 0,
τ

M55(∂x) :=
∂ ln r

∂n
, γ = 1, 2,

τ

M33(∂x) :=
∂K0(s2r)

∂n
− (τ2 + k6)

∂

∂s

∂2Ψ33

∂x1∂x2

+ n1
∂

∂x1

[K0(s1r)−K0(s2r)],

τ

M44(∂x) :=
∂K0(s2r)

∂n
+ (τ2 + k6)

∂

∂s

∂2Ψ33

∂x1∂x2

+ n2
∂

∂x2

[K0(s1r)−K0(s2r)],

τ

M43(∂x) := − τ2
k6

∂K0(s2r)

∂s
+ (τ2 + k6)

∂

∂s

∂2Ψ33

∂x2
1

+ n2
∂

∂x1

[K0(s1r)−K0(s2r)],

τ

M34(∂x) :=
τ2
k6

∂K0(s2r)

∂s
− (τ2 + k6)

∂

∂s

∂2Ψ33

∂x2
2

+ n1
∂

∂x2

[K0(s1r)−K0(s2r)].

We prove the following theorem.

Theorem 3 Every column of the matrix
[ τ

R(∂y,n)Γ(y-x)
]T

, considered

as a vector, is a solution of the system Ã(∂x) = 0 at any point x if x ̸= y and

the elements of the matrix
[ τ

R(∂y,n)Γ(y-x)
]T

contain a singular part, which

is integrable in the sense of the Cauchy principal value.
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Let

R̃τ (∂x,n) :=



τ

R11

τ

R12 0 0 0
τ

R21 R22 0 0 0

0 0
τ

R33

τ

R34 0

0 0
τ

R43

τ

R44 0

0 0 k3n1 k3n2

τ

R55


,

where
τ

Rαγ,
τ

Rα+2,γ+2,
τ

R55, α, γ = 1, 2, are given by (6), then

R̃τ (∂x,n)Γ̃(x-y) = ∥M̃
τ

lj(∂x)∥5×5,

here

M̃
τ

αγ(∂x) :=
τ

Mαγ(∂x), M̃
τ

α+2,γ+2(∂x) :=
τ

Mα+2,γ+2(∂x),

M̃
τ

55(∂x) :=
τ

M55(∂x), M̃
τ

α3(∂x) ≡ M̃
τ

α4(∂x) ≡ M̃
τ

α5(∂x) ≡ 0,

M̃
τ

3γ(∂x) := − k1β

akk7

[
k7n1

∂Ψ35

∂xγ

+ (k6 + τ2)
∂

∂s

∂2Ψ13

∂xγ∂x2

]
,

M̃
τ

4γ(∂x) := − k1β

akk7

[
k7n2

∂Ψ35

∂xγ

− (k6 + τ2)
∂

∂s

∂2Ψ13

∂xγ∂x1

]
,

M̃
τ

35(∂x) :=
k1
kk7

[
k7n1K0(s1r) + (k6 + τ2)

∂

∂s

∂Ψ35

∂x2

]
,

M̃
τ

45(∂x) :=
k1
kk7

[
k7n2K0(s1r)− (k6 + τ2)

∂

∂s

∂Ψ35

∂x1

]
,

M̃
τ

5γ(∂x) :=
β

a

∂

∂n

∂Ψ11

∂xγ

, α, γ = 1, 2, a := λ+ 2µ,

M̃
τ

53(∂x) := −k3
k2

∂

∂s

∂

∂x2

[K0(s2r) + ln r] ,

M̃
τ

54(∂x) :=
k3
k2

∂

∂s

∂

∂x1

[K0(s2r) + ln r] .

We prove the following theorem.

Theorem 4 Every column of the matrix
[
R̃τ (∂y,n)Γ̃(y-x)

]T
, considered

as a vector, is a solution of the system A(∂x)U = 0 at any point x if x ̸= y

and the elements of the matrix
[
R̃τ (∂y,n)Γ̃(y-x)

]T
, contain a singular part,

which is integrable in the sense of the Cauchy principal value.
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5. Galerkin Type Solution

The Galerkin type general solution (of the class C2(D+)) of the system (4)
can be represented as

u(x) = a∆ϕ(1) − (λ+ µ)graddivϕ(1) − βµk1k6graddivϕ
(2)

+βµ(k7∆− k2)gradΨ,

w(x) = aµkk7∆∆(∆− s21)ϕ
(2) − aµ∆[k(k4 + k5)∆ + kk3]graddivϕ

(2)

+aµk3gradΨ,

θ = aµ∆(k7∆− k2)Ψ− aµk1k6∆(∆− s22)divϕ
(2),

where

∆∆ϕ(1) = 0, ∆∆(∆− s21)(∆− s22)ϕ
(2) = 0, ∆∆(∆− s21)Ψ = 0,

ϕ(1) = (ϕ
(1)
1 , ϕ

(1)
2 ), ϕ(2) = (ϕ

(2)
1 , ϕ

(2)
2 ).
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