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Abstract. We consider the Neumann problem for a degenerate differential–
operator equation of higher order. We establish some embedding theorems in
weighted Sobolev space Wm

α and show existence and uniqueness of the gen-
eralized solution of the Neumann problem. We also give a description of the
domain of definition and of the spectrum for the corresponding operator.
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1. Introduction

In present paper we consider the Neumann problem for the operator equation

Pu ≡ (−1)mDm
t (t

αDm
t )u+ tαAu = f, (1)

where t ∈ (0, b), α ≥ 0, Dt ≡ d/dt, f ∈ L2,−α((0, b), H) and A is a linear
operator in Hilbert space H and has a complete system {φk}∞k=1 of the eigen-
functions, which form a Riesz’s basis in H. Note that the operator A in general
is an unbounded operator in H.

Our approach, similar to that used in [3], for the case m = 1 and in [11]
for m = 2, is based on the consideration of the one-dimensional equation (1),
i.e. when A is the operator of multiplication by a number a, a ∈ C, Au = au
(see [4]).

In Section 2 we define the weighted Sobolev space Wm
α , describe the behav-

ior of the functions from this space close to t = 0 (see [7], [8], [13]). We give the
desciption of the domain of the definition D(B) of the operator B and prove
that for 1 − a ̸∈ σB (σB is the spectrum of the operator B) the generalized
solution of the Neumann problem for the one–dimensional equation (1) exists
and is unique for every f ∈ L2,−α.

In Section 3 under some conditions on the spectrum of the operator A we
prove unique solvability of the operator equation (1) for every
f ∈ L2,−α((0, b), H) and give the description of the spectrum for the corre-
sponding operator P = t−αP .
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2. The One-dimensional Case

2.1. The space Wm
α

Denote by Wm
α the completion of Cm[0, b] in the norm

||u||2Wm
α

=

∫ b

0

(
tα |u(m)(t)|2 + tα|u(t)|2

)
dt. (2)

For the proofs of the Propositions 1, 2 and Remark 3 see [2] and [13].

Proposition 1 For every u ∈ Wm
α close to t = 0 we have

|u(j)(t)|2 ≤ (Bj + Cjt
2m−2j−1−α)||u||2Wm

α
, (3)

where α ̸= 1, 3, . . . , 2m − 1, j = 0, 1, . . . ,m − 1. For α = 2n + 1, n =
0, 1, . . . ,m−1 in (3) the factor t2m−2j−1−α is to be replaced by t2m−2j−2n−2| ln t|,
j = 0, 1, . . . ,m− n− 1.

From Proposition 1 it follows that in the case α < 1 (weak degeneracy)
u(j)(0) exist for all j = 0, 1, . . . ,m − 1, while for α ≥ 1 (strong degeneracy)
not all u(j)(0) exist. More precisely, for 1 ≤ α < 2m−1 the derivatives at zero
u(j)(0) exist only for j = 0, 1, . . . , sα, where sα = m− 1− [α+1

2
] (here [a] is the

integer part of a number a) and for α ≥ 2m−1 all u(j)(0), j = 0, 1, . . . ,m−1,
in general may be infinite.

Proposition 2 The embedding

Wm
α ⊂ L2,α (4)

is compact for every α ≥ 0.

Remark 3 The embedding

Wm
α ⊂ L2,β (5)

is compact for every α > 2m− 1 and β > α− 2m.

Observe that in the case β = α − 2m and α ≤ 2m − 1 the embedding (5)
fails (see [8]). For α ≤ 2m−1 we only have the embeddingWm

α ⊂ L2,γ, γ > −1.
However, for α > 2m−1 we have the embedding Wm

α ⊂ L2,α−2m, which can be
proved by using of the Hardy inequality (see [6] and [8]) and this embedding
is not compact. Indeed, it is easy to verify, that for the bounded in Wm

α

sequence un(t) = n− 1
2 t

2m−α−1
2 (ln t)−

1
2
− 1

2nφ(t), where φ ∈ Cm[0, b], φ(t) = 1
for t ∈ [0, ε

2
], 0 < ε < min {1, b} and φ(t) = 0 for t ∈ [ε, b] doesn’t exist the

convergent in L2,α−2m subsequence (see [5], [12]).
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2.2 One–dimensional Equation

Now we consider the Neumann problem for the special case a = 1 of the
one-dimensional equation (1)

Bu ≡ (−1)m(tαu(m))(m) + tαu = f, f ∈ L2,−α. (6)

Definition 4 A function u ∈ Wm
α is called a generalized solution of the

Neumann problem for the equation (6) if for every v ∈ Wm
α we have

(tαu(m), v(m)) + (tαu, v) = (f, v), (7)

where (· , ·) is the scalar product in L2(0, b).

Proposition 5 The generalized solution of the Neumann problem for the
equation (6) exists and is unique for every f ∈ L2,−α.

The uniqueness of the generalized solution immediately follows from Definition
4. To prove the existence we note that the linear functional lf (v) = (f, v) is
continuous in Wm

α because

|lf (v)| ≤ ||f ||L2,−α||v||L2,α ≤ ||f ||L2,−α|||v||Wm
α

and use Riesz’s lemma on the representation of continuous functionals.
If the generalized solution is classical then from (7) after integration by

parts we get

(−1)m((tαu(m))(m), v)+
m−1∑
j=0

(−1)j ((tαu(m)(t))(j)v(m−j−1)(t))
∣∣b
0
+(tαu, v) = (f, v).

Since the function v ∈ Wm
α is arbitrarily we conclude that the function u(t)

fulfills the following conditions (see [10])

(tαu(m)(t))(j)
∣∣
t=0

= u(m+j)(t)
∣∣
t=b

= 0, j = 0, 1, . . . ,m− 1. (8)

For α = 0 the conditions (8) are usual Neumann conditions, which are of
Sturm type and, therefore, regular (see [9]).

Definition 6 We say that u ∈ Wm
α belongs to D(B), if the equality (7) is

satisfied for some f ∈ L2,−α. In this case we will write Bu = f .

According to Definition 6 we have an operator

B : D(B) ⊂ Wm
α ⊂ L2,α → L2,−α .

If u ∈ Wm
α we know that u(j)(0), j = 0, 1, . . . ,m − 1 exist only for α < 2m −

2j− 1 (see Proposition 1). But for the generalized solution of the equation (7)
we can improve it and give the following description of u ∈ D(B).
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Proposition 7 The domain of definition of the operator B consists of the
functions u ∈ Wm

α for which u(j)(0) are finite for 0 ≤ α < 2m − 2j and
2m − 1 ≤ α < 4m − 2j − 1. The value u(0) is finite for 0 ≤ α < 2m + 1.
The values u(j)(0) cannot be specified arbitrarily, but are determined by the
right-hand side of (7).

Proof.To describe the domain of definitions D(B) of the operator B first
note, that tαu ∈ L2,−α since u ∈ L2,α. Hence it is enough to study the be-
haviour of the solutions for the equation (−1)m(tαu(m))(m) = f, f ∈ L2,−α near
to the point t = 0. Let α ≥ 2m− 1. For the solution u(t) of this equation we
have

u(m)(t) = t−αPm−1(t) +
(−1)mt−α

(m− 1)!

∫ t

0

(t− τ)m−1f(τ) dτ, (9)

where Pm−1(t) = a0 + a1t + · · · + am−1t
m−1 is the polynomial of the degree

m− 1. Since u ∈ Wm
α we have that Pm−1(t) = 0. Hence we can write

|u(m)(t)| =
∣∣∣∣(−1)mt−α

(m− 1)!

∫ t

0

(t− τ)m−1τ
α
2 τ−

α
2 f(τ) dτ

∣∣∣∣ ≤ c||f ||L2,−αt
2m−1−α

2 ,

therefore, integrating u(m)(t) (m − j)-times, j = 0, 1, . . . ,m − 1, we get for
some polynomial Qm−j−1 of the degree m− j − 1

|u(j)(t)| =
∣∣∣∣Qm−j−1(t) +

1

(m− j − 1)!

∫ t

0

(t− τ)m−j−1u(m)(t) dτ

∣∣∣∣ ≤
≤ cj + dj||f ||L2,−αt

2m−1−α
2

+m−j = cj + dj||f ||L2,−αt
4m−2j−1−α

2 .

Let now 2m−2j−1 ≤ α < 2m−2j+1, j = 1, 2, . . . ,m−1. Then in the equality
(9) a0 = a1 = . . . = am−j−1 = 0 since u ∈ Wm

α . The second term in (9) we have
already estimated and it exists for α < 2m− 1. Now it is enough to estimate
only first term after integrating u(m)(t) (m− j)-times. The main term after
integration remains cm−jt

2m−2j−α, therefore for the existence of u(j)(0) we get
the condition 2m−2j−α > 0, i.e., α < 2m−2j. Note that for other values of
α the existence of the values u(j)(0) is proved in Proposition 1 (see [13]). Note
also that the conditions in Proposition 7 are exact, i.e., if we take for example
α = 2m − 2j, then the statement is false, the value u(j)(0) in general doesn’t
exist. �

To get an operator in the same space we set g(t) = t−αf(t). It is evident
that g(t) belongs to L2,α and ||f ||L2,−α = ||g||L2,α . Therefore, we get an operator
B ≡ t−αB : D(B) = D(B) ⊂ Wm

α ⊂ L2,α → L2,α with Bu = g .

Proposition 8 The operator B : L2,α → L2,α is positive and selfadjoint.
Moreover, the inverse operator B−1 : L2,α → L2,α is compact.

Proof. The self–adjointness of the symmetric operator B (symmetry and
positivity of the operator B follow from the Definition 6) is a consequence of
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the existence of the generalized solution for every f ∈ L2,−α (see [4]). Now
using (2) and the equality (7) with v = u we get

||u||2Wm
α

= (f, u) ≤ ||f ||L2,−α||u||L2,α ≤ ||g||L2,α||u||Wm
α
,

and, therefore, we have
||u||L2,α ≤ ||Bu||L2,α . (10)

The compactness of the operator B−1 : L2,α → L2,α now follows from the
inequality (10) and Proposition 2. �

Corollary 9 The operator B has a discrete spectrum, and the system of
the corresponding eigenfunctions is dense in L2,α.

This follows from the connection of the spectra of the operators B and B−1

and from the properties of compact selfadjoint operators (see [4]).
Note that if λ is an eigenvalue and u(t) a corresponding eigenfunction of

the operator B then we have

(−1)m(tαu(m))(m) + tαu = λtαu. (11)

It follows then from the inequality (10) and Definition 6 that λ ≥ 1. Note that
the number λ = 1 is an eigenvalue for the operator B with the multiplicity m
since every polynomial of order m − 1 is an eigenfunction. Therefore, for the
solvability of the equation

(−1)m(tαu(m))(m) = f, f ∈ L2,−α , (12)

we get the following result:

Proposition 10 The generalized solution of the Neumann problem for the
equation (12) exists if and only if (f, Pm−1(t)) = 0 for any polynomial Pm−1(t)
of order m− 1.

Here we have used both (g, Pm−1(t))α = (f, Pm−1(t)) since tαg(t) = f(t)
( (·, ·)α is the scalar product in L2,α ) and the definition of the operator B.
Note that the generalized solution of the Neumann problem for the equation
(12) is unique up to an arbitrary additive polynomial of order m− 1.

Now we can consider the general case of the one-dimensional equation (1)

Pu ≡ (−1)m(tαu(m))(m) + atαu = f, f ∈ L2,−α, (13)

because the number 1 − a can be regarded as a spectral parameter for the
operator B. Therefore, we can state that if 1− a ̸∈ σB then the equation (13)
is uniquely solvable for every f ∈ L2,−α.
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3. The Operator Equation

In this section we consider the operator version of the equation (1)

Pu ≡ (−1)mDm
t (t

αDm
t )u+ tαAu = f, f ∈ L2,−α((0, b), H), α ≥ 0. (14)

Suppose that the operator A : H → H has a complete system of eigenfunctions
{φk}∞k=1, Aφk = akφk, k ∈ N, forming a Riesz’s basis in H (see [4]), i.e., for
every x ∈ H we have x =

∑∞
k=1 xkφk, and there are some positive constants

c1 and c2 such that

c1

∞∑
k=1

|xk|2 ≤ ||x||2 ≤ c2

∞∑
k=1

|xk|2. (15)

Hence for every u ∈ L2,α((0, b), H), f ∈ L2,−α((0, b), H) we have

u =
∞∑
k=1

uk(t)φk, f =
∞∑
k=1

fk(t)φk, k ∈ N. (16)

Therefore, the operator equation (14) can be decomposed into an infinite chain
of ordinary differential equations

Pkuk ≡ (−1)m(tαu
(m)
k )(m) + akt

αuk = fk, fk ∈ L2,−α, k ∈ N. (17)

For the equations (17) we can define the generalized solutions uk(t), k ∈ N, of
the Neumann problem (see Section 2).

Definition 11 A function u ∈ L2,α((0, b), H) is called a generalized solu-
tion of the Neumann problem for the equation (14) if the functions uk(t), k ∈ N,
in the representation (16) are generalized solutions of the Neumann problem
for the equations (17).

Proposition 12 The operator equation (14) is uniquely solvable for every
f ∈ L2,−α((0, b), H) if and only if the equations (17) are uniquely solvable for
every fk ∈ L2,−α, k ∈ N, and the inequalities

||uk||L2,α ≤ c||fk||L2,−α (18)

are satisfied uniformly with respect to k ∈ N.

For the proof of Proposition 12 see [4].
Let the numbers λ1 = 1 < λ2 < · · · < λk < · · · , λk → +∞ when k → ∞,

are the eigenvalues of the operator B (see Section 2). Suppose that

ρ(1− ak, λm) > ε, k,m ∈ N, (19)

where ε > 0 and ρ is the distance in the complex plane.
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Theorem 13 Under the condition (19) the generalized solution of the Neu-
mann problem for the operator equation (14) exists and is unique for every
f ∈ L2,−α((0, b), H).

First note that under the condition (19) the equations (17) are uniquely
solvable for every fk ∈ L2,−α, k ∈ N and the inequalities (18) are satisfied.
Now the proof of Theorem 13 follows from Proposition 12.

Let g = t−αf, f ∈ L2,−α((0, b), H). Then g ∈ L2,α((0, b), H) and we define
an operator

P ≡ t−αP : D(P) = D(P )⊂L2,α((0, b), H) → L2,α((0, b), H),

with Pu = g in L2,α((0, b), H). It follows from the condition (19) that for the
generalized solution of the Neumann problem we have

||u||L2,α((0,b),H) ≤ c||g||L2,α((0,b),H). (20)

The operator P−1 : L2,α((0, b), H) → L2,α((0, b), H) in general is not compact
in contrast to Proposition 8 (it will be compact only in the case when the
space H is finite-dimensional). If the operator A : H → H is selfadjoint we
can describe the spectrum of the operator P.

Proposition 14 The spectrum of the operator P is equal to the closure of
the direct sum of the spectra σB and σ(A− I), i.e.,

σP = σB+ σ(A− I) ≡ {λ1 + λ2 − 1 : λ1 ∈ σB, λ2 ∈ σA}.

The proof of Proposition 14 immediately follows from the equality

P = B⊗ IH + IL2,α ⊗ (A− I)

(here ⊗ means the tensor product of the operators). Note that here we use
the assertion, that if λ ∈ σT for the selfadjoint operator T in some separable
Hilbert space T : X → X, then there is some sequence xn ∈ D(T ), n ∈
N, ||xn|| = 1 such that (T − λ)xn → 0, n → ∞ (see [1], [14]).
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