MAIN ARTICLES

THE NEUMANN PROBLEM FOR A DEGENERATE DIFFERENTIAL-OPERATOR EQUATION
 Liparit Tepoyan

Yerevan State University, Faculty of mathematics and mechanics

Abstract

We consider the Neumann problem for a degenerate differentialoperator equation of higher order. We establish some embedding theorems in weighted Sobolev space W_{α}^{m} and show existence and uniqueness of the generalized solution of the Neumann problem. We also give a description of the domain of definition and of the spectrum for the corresponding operator.

Key words and phrases: Differential equations in abstract spaces, boundary value problems, weighted Sobolev spaces, spectral theory of linear operators

AMS subject classification 2010: 34B05, 34L05, 46E35

1. Introduction

In present paper we consider the Neumann problem for the operator equation

$$
\begin{equation*}
P u \equiv(-1)^{m} D_{t}^{m}\left(t^{\alpha} D_{t}^{m}\right) u+t^{\alpha} A u=f \tag{1}
\end{equation*}
$$

where $t \in(0, b), \alpha \geq 0, D_{t} \equiv d / d t, f \in L_{2,-\alpha}((0, b), H)$ and A is a linear operator in Hilbert space H and has a complete system $\left\{\varphi_{k}\right\}_{k=1}^{\infty}$ of the eigenfunctions, which form a Riesz's basis in H. Note that the operator A in general is an unbounded operator in H.

Our approach, similar to that used in [3], for the case $m=1$ and in [11] for $m=2$, is based on the consideration of the one-dimensional equation (1), i.e. when A is the operator of multiplication by a number $a, a \in \mathbb{C}, A u=a u$ (see [4]).

In Section 2 we define the weighted Sobolev space W_{α}^{m}, describe the behavior of the functions from this space close to $t=0$ (see [7], [8], [13]). We give the desciption of the domain of the definition $D(B)$ of the operator B and prove that for $1-a \notin \sigma \mathbb{B}(\sigma \mathbb{B}$ is the spectrum of the operator $\mathbb{B})$ the generalized solution of the Neumann problem for the one-dimensional equation (1) exists and is unique for every $f \in L_{2,-\alpha}$.

In Section 3 under some conditions on the spectrum of the operator A we prove unique solvability of the operator equation (1) for every $f \in L_{2,-\alpha}((0, b), H)$ and give the description of the spectrum for the corresponding operator $\mathbb{P}=t^{-\alpha} P$.

2. The One-dimensional Case

2.1. The space W_{α}^{m}

Denote by W_{α}^{m} the completion of $C^{m}[0, b]$ in the norm

$$
\begin{equation*}
\|u\|_{W_{\alpha}^{m}}^{2}=\int_{0}^{b}\left(t^{\alpha}\left|u^{(m)}(t)\right|^{2}+t^{\alpha}|u(t)|^{2}\right) d t . \tag{2}
\end{equation*}
$$

For the proofs of the Propositions 1, 2 and Remark 3 see [2] and [13].
Proposition 1 For every $u \in W_{\alpha}^{m}$ close to $t=0$ we have

$$
\begin{equation*}
\left|u^{(j)}(t)\right|^{2} \leq\left(B_{j}+C_{j} t^{2 m-2 j-1-\alpha}\right)\|u\|_{W_{\alpha}^{m}}^{2}, \tag{3}
\end{equation*}
$$

where $\alpha \neq 1,3, \ldots, 2 m-1, \quad j=0,1, \ldots, m-1$. For $\alpha=2 n+1, \quad n=$ $0,1, \ldots, m-1$ in (3) the factor $t^{2 m-2 j-1-\alpha}$ is to be replaced by $t^{2 m-2 j-2 n-2}|\ln t|$, $j=0,1, \ldots, m-n-1$.

From Proposition 1 it follows that in the case $\alpha<1$ (weak degeneracy) $u^{(j)}(0)$ exist for all $j=0,1, \ldots, m-1$, while for $\alpha \geq 1$ (strong degeneracy) not all $u^{(j)}(0)$ exist. More precisely, for $1 \leq \alpha<2 m-1$ the derivatives at zero $u^{(j)}(0)$ exist only for $j=0,1, \ldots, s_{\alpha}$, where $s_{\alpha}=m-1-\left[\frac{\alpha+1}{2}\right]$ (here $[a]$ is the integer part of a number a) and for $\alpha \geq 2 m-1$ all $u^{(j)}(0), j=0,1, \ldots, m-1$, in general may be infinite.

Proposition 2 The embedding

$$
\begin{equation*}
W_{\alpha}^{m} \subset L_{2, \alpha} \tag{4}
\end{equation*}
$$

is compact for every $\alpha \geq 0$.
Remark 3 The embedding

$$
\begin{equation*}
W_{\alpha}^{m} \subset L_{2, \beta} \tag{5}
\end{equation*}
$$

is compact for every $\alpha>2 m-1$ and $\beta>\alpha-2 m$.
Observe that in the case $\beta=\alpha-2 m$ and $\alpha \leq 2 m-1$ the embedding (5) fails (see [8]). For $\alpha \leq 2 m-1$ we only have the embedding $W_{\alpha}^{m} \subset L_{2, \gamma}, \gamma>-1$. However, for $\alpha>2 m-1$ we have the embedding $W_{\alpha}^{m} \subset L_{2, \alpha-2 m}$, which can be proved by using of the Hardy inequality (see [6] and [8]) and this embedding is not compact. Indeed, it is easy to verify, that for the bounded in W_{α}^{m} sequence $u_{n}(t)=n^{-\frac{1}{2}} t^{\frac{2 m-\alpha-1}{2}}(\ln t)^{-\frac{1}{2}-\frac{1}{2 n}} \varphi(t)$, where $\varphi \in C^{m}[0, b], \varphi(t)=1$ for $t \in\left[0, \frac{\varepsilon}{2}\right], 0<\varepsilon<\min \{1, b\}$ and $\varphi(t)=0$ for $t \in[\varepsilon, b]$ doesn't exist the convergent in $L_{2, \alpha-2 m}$ subsequence (see [5], [12]).

2.2 One-dimensional Equation

Now we consider the Neumann problem for the special case $a=1$ of the one-dimensional equation (1)

$$
\begin{equation*}
B u \equiv(-1)^{m}\left(t^{\alpha} u^{(m)}\right)^{(m)}+t^{\alpha} u=f, \quad f \in L_{2,-\alpha} . \tag{6}
\end{equation*}
$$

Definition $4 A$ function $u \in W_{\alpha}^{m}$ is called a generalized solution of the Neumann problem for the equation (6) if for every $v \in W_{\alpha}^{m}$ we have

$$
\begin{equation*}
\left(t^{\alpha} u^{(m)}, v^{(m)}\right)+\left(t^{\alpha} u, v\right)=(f, v), \tag{7}
\end{equation*}
$$

where (\cdot, \cdot) is the scalar product in $L_{2}(0, b)$.
Proposition 5 The generalized solution of the Neumann problem for the equation (6) exists and is unique for every $f \in L_{2,-\alpha}$.

The uniqueness of the generalized solution immediately follows from Definition 4. To prove the existence we note that the linear functional $l_{f}(v)=(f, v)$ is continuous in W_{α}^{m} because

$$
\left|l_{f}(v)\right| \leq\|f\|_{L_{2,-\alpha}}\|v\|_{L_{2, \alpha}} \leq\|f\|_{L_{2,-\alpha}}\|v\|_{W_{\alpha}^{m}}
$$

and use Riesz's lemma on the representation of continuous functionals.
If the generalized solution is classical then from (7) after integration by parts we get
$(-1)^{m}\left(\left(t^{\alpha} u^{(m)}\right)^{(m)}, v\right)+\left.\sum_{j=0}^{m-1}(-1)^{j}\left(\left(t^{\alpha} u^{(m)}(t)\right)^{(j)} \bar{v}^{(m-j-1)}(t)\right)\right|_{0} ^{b}+\left(t^{\alpha} u, v\right)=(f, v)$.
Since the function $v \in W_{\alpha}^{m}$ is arbitrarily we conclude that the function $u(t)$ fulfills the following conditions (see [10])

$$
\begin{equation*}
\left.\left(t^{\alpha} u^{(m)}(t)\right)^{(j)}\right|_{t=0}=\left.u^{(m+j)}(t)\right|_{t=b}=0, \quad j=0,1, \ldots, m-1 . \tag{8}
\end{equation*}
$$

For $\alpha=0$ the conditions (8) are usual Neumann conditions, which are of Sturm type and, therefore, regular (see [9]).

Definition 6 We say that $u \in W_{\alpha}^{m}$ belongs to $D(B)$, if the equality (7) is satisfied for some $f \in L_{2,-\alpha}$. In this case we will write $B u=f$.

According to Definition 6 we have an operator

$$
B: D(B) \subset W_{\alpha}^{m} \subset L_{2, \alpha} \rightarrow L_{2,-\alpha} .
$$

If $u \in W_{\alpha}^{m}$ we know that $u^{(j)}(0), j=0,1, \ldots, m-1$ exist only for $\alpha<2 m-$ $2 j-1$ (see Proposition 1). But for the generalized solution of the equation (7) we can improve it and give the following description of $u \in D(B)$.

Proposition 7 The domain of definition of the operator B consists of the functions $u \in W_{\alpha}^{m}$ for which $u^{(j)}(0)$ are finite for $0 \leq \alpha<2 m-2 j$ and $2 m-1 \leq \alpha<4 m-2 j-1$. The value $u(0)$ is finite for $0 \leq \alpha<2 m+1$. The values $u^{(j)}(0)$ cannot be specified arbitrarily, but are determined by the right-hand side of (7).

Proof. To describe the domain of definitions $D(B)$ of the operator B first note, that $t^{\alpha} u \in L_{2,-\alpha}$ since $u \in L_{2, \alpha}$. Hence it is enough to study the behaviour of the solutions for the equation $(-1)^{m}\left(t^{\alpha} u^{(m)}\right)^{(m)}=f, f \in L_{2,-\alpha}$ near to the point $t=0$. Let $\alpha \geq 2 m-1$. For the solution $u(t)$ of this equation we have

$$
\begin{equation*}
u^{(m)}(t)=t^{-\alpha} P_{m-1}(t)+\frac{(-1)^{m} t^{-\alpha}}{(m-1)!} \int_{0}^{t}(t-\tau)^{m-1} f(\tau) d \tau \tag{9}
\end{equation*}
$$

where $P_{m-1}(t)=a_{0}+a_{1} t+\cdots+a_{m-1} t^{m-1}$ is the polynomial of the degree $m-1$. Since $u \in W_{\alpha}^{m}$ we have that $P_{m-1}(t)=0$. Hence we can write

$$
\left|u^{(m)}(t)\right|=\left|\frac{(-1)^{m} t^{-\alpha}}{(m-1)!} \int_{0}^{t}(t-\tau)^{m-1} \tau^{\frac{\alpha}{2}} \tau^{-\frac{\alpha}{2}} f(\tau) d \tau\right| \leq c| | f \|_{L_{2,-\alpha}} t^{\frac{2 m-1-\alpha}{2}},
$$

therefore, integrating $u^{(m)}(t) \quad(m-j)$-times, $j=0,1, \ldots, m-1$, we get for some polynomial Q_{m-j-1} of the degree $m-j-1$

$$
\begin{gathered}
\left|u^{(j)}(t)\right|=\left|Q_{m-j-1}(t)+\frac{1}{(m-j-1)!} \int_{0}^{t}(t-\tau)^{m-j-1} u^{(m)}(t) d \tau\right| \leq \\
\quad \leq c_{j}+d_{j}\|f\|_{L_{2,-\alpha}} t^{\frac{2 m-1-\alpha}{2}+m-j}=c_{j}+d_{j}\|f\|_{L_{2,-\alpha}} t^{\frac{4 m-2 j-1-\alpha}{2}} .
\end{gathered}
$$

Let now $2 m-2 j-1 \leq \alpha<2 m-2 j+1, j=1,2, \ldots, m-1$. Then in the equality (9) $a_{0}=a_{1}=\ldots=a_{m-j-1}=0$ since $u \in W_{\alpha}^{m}$. The second term in (9) we have already estimated and it exists for $\alpha<2 m-1$. Now it is enough to estimate only first term after integrating $u^{(m)}(t) \quad(m-j)$-times. The main term after integration remains $c_{m-j} t^{2 m-2 j-\alpha}$, therefore for the existence of $u^{(j)}(0)$ we get the condition $2 m-2 j-\alpha>0$, i.e., $\alpha<2 m-2 j$. Note that for other values of α the existence of the values $u^{(j)}(0)$ is proved in Proposition 1 (see [13]). Note also that the conditions in Proposition 7 are exact, i.e., if we take for example $\alpha=2 m-2 j$, then the statement is false, the value $u^{(j)}(0)$ in general doesn't exist.

To get an operator in the same space we set $g(t)=t^{-\alpha} f(t)$. It is evident that $g(t)$ belongs to $L_{2, \alpha}$ and $\|f\|_{L_{2,-\alpha}}=\|g\|_{L_{2, \alpha}}$. Therefore, we get an operator $\mathbb{B} \equiv t^{-\alpha} B: D(\mathbb{B})=D(B) \subset W_{\alpha}^{m} \subset L_{2, \alpha} \rightarrow L_{2, \alpha}$ with $\mathbb{B} u=g$.

Proposition 8 The operator $\mathbb{B}: L_{2, \alpha} \rightarrow L_{2, \alpha}$ is positive and selfadjoint. Moreover, the inverse operator $\mathbb{B}^{-1}: L_{2, \alpha} \rightarrow L_{2, \alpha}$ is compact.

Proof. The self-adjointness of the symmetric operator \mathbb{B} (symmetry and positivity of the operator \mathbb{B} follow from the Definition 6) is a consequence of
the existence of the generalized solution for every $f \in L_{2,-\alpha}$ (see [4]). Now using (2) and the equality (7) with $v=u$ we get

$$
\|u\|_{W_{\alpha}^{m}}^{2}=(f, u) \leq\|f\|_{L_{2,-\alpha}}\|u\|_{L_{2, \alpha}} \leq\|g\|_{L_{2, \alpha}}\|u\|_{W_{\alpha}^{m}}
$$

and, therefore, we have

$$
\begin{equation*}
\|u\|_{L_{2, \alpha}} \leq\|\mathbb{B} u\|_{L_{2, \alpha}} . \tag{10}
\end{equation*}
$$

The compactness of the operator $\mathbb{B}^{-1}: L_{2, \alpha} \rightarrow L_{2, \alpha}$ now follows from the inequality (10) and Proposition 2.

Corollary 9 The operator \mathbb{B} has a discrete spectrum, and the system of the corresponding eigenfunctions is dense in $L_{2, \alpha}$.

This follows from the connection of the spectra of the operators \mathbb{B} and \mathbb{B}^{-1} and from the properties of compact selfadjoint operators (see [4]).

Note that if λ is an eigenvalue and $u(t)$ a corresponding eigenfunction of the operator \mathbb{B} then we have

$$
\begin{equation*}
(-1)^{m}\left(t^{\alpha} u^{(m)}\right)^{(m)}+t^{\alpha} u=\lambda t^{\alpha} u . \tag{11}
\end{equation*}
$$

It follows then from the inequality (10) and Definition 6 that $\lambda \geq 1$. Note that the number $\lambda=1$ is an eigenvalue for the operator \mathbb{B} with the multiplicity m since every polynomial of order $m-1$ is an eigenfunction. Therefore, for the solvability of the equation

$$
\begin{equation*}
(-1)^{m}\left(t^{\alpha} u^{(m)}\right)^{(m)}=f, \quad f \in L_{2,-\alpha}, \tag{12}
\end{equation*}
$$

we get the following result:
Proposition 10 The generalized solution of the Neumann problem for the equation (12) exists if and only if $\left(f, P_{m-1}(t)\right)=0$ for any polynomial $P_{m-1}(t)$ of order $m-1$.

Here we have used both $\left(g, P_{m-1}(t)\right)_{\alpha}=\left(f, P_{m-1}(t)\right)$ since $t^{\alpha} g(t)=f(t)$
$\left((\cdot, \cdot)_{\alpha}\right.$ is the scalar product in $\left.L_{2, \alpha}\right)$ and the definition of the operator \mathbb{B}. Note that the generalized solution of the Neumann problem for the equation (12) is unique up to an arbitrary additive polynomial of order $m-1$.

Now we can consider the general case of the one-dimensional equation (1)

$$
\begin{equation*}
P u \equiv(-1)^{m}\left(t^{\alpha} u^{(m)}\right)^{(m)}+a t^{\alpha} u=f, \quad f \in L_{2,-\alpha}, \tag{13}
\end{equation*}
$$

because the number $1-a$ can be regarded as a spectral parameter for the operator \mathbb{B}. Therefore, we can state that if $1-a \notin \sigma \mathbb{B}$ then the equation (13) is uniquely solvable for every $f \in L_{2,-\alpha}$.

3. The Operator Equation

In this section we consider the operator version of the equation (1)

$$
\begin{equation*}
P u \equiv(-1)^{m} D_{t}^{m}\left(t^{\alpha} D_{t}^{m}\right) u+t^{\alpha} A u=f, \quad f \in L_{2,-\alpha}((0, b), H), \quad \alpha \geq 0 \tag{14}
\end{equation*}
$$

Suppose that the operator $A: H \rightarrow H$ has a complete system of eigenfunctions $\left\{\varphi_{k}\right\}_{k=1}^{\infty}, A \varphi_{k}=a_{k} \varphi_{k}, k \in \mathbb{N}$, forming a Riesz's basis in H (see [4]), i.e., for every $x \in H$ we have $x=\sum_{k=1}^{\infty} x_{k} \varphi_{k}$, and there are some positive constants c_{1} and c_{2} such that

$$
\begin{equation*}
c_{1} \sum_{k=1}^{\infty}\left|x_{k}\right|^{2} \leq\|x\|^{2} \leq c_{2} \sum_{k=1}^{\infty}\left|x_{k}\right|^{2} . \tag{15}
\end{equation*}
$$

Hence for every $u \in L_{2, \alpha}((0, b), H), f \in L_{2,-\alpha}((0, b), H)$ we have

$$
\begin{equation*}
u=\sum_{k=1}^{\infty} u_{k}(t) \varphi_{k}, \quad f=\sum_{k=1}^{\infty} f_{k}(t) \varphi_{k}, \quad k \in \mathbb{N} . \tag{16}
\end{equation*}
$$

Therefore, the operator equation (14) can be decomposed into an infinite chain of ordinary differential equations

$$
\begin{equation*}
P_{k} u_{k} \equiv(-1)^{m}\left(t^{\alpha} u_{k}^{(m)}\right)^{(m)}+a_{k} t^{\alpha} u_{k}=f_{k}, \quad f_{k} \in L_{2,-\alpha}, \quad k \in \mathbb{N} . \tag{17}
\end{equation*}
$$

For the equations (17) we can define the generalized solutions $u_{k}(t), k \in \mathbb{N}$, of the Neumann problem (see Section 2).

Definition $11 A$ function $u \in L_{2, \alpha}((0, b), H)$ is called a generalized solution of the Neumann problem for the equation (14) if the functions $u_{k}(t), k \in \mathbb{N}$, in the representation (16) are generalized solutions of the Neumann problem for the equations (17).

Proposition 12 The operator equation (14) is uniquely solvable for every $f \in L_{2,-\alpha}((0, b), H)$ if and only if the equations (17) are uniquely solvable for every $f_{k} \in L_{2,-\alpha}, k \in \mathbb{N}$, and the inequalities

$$
\begin{equation*}
\left\|u_{k}\right\|_{L_{2, \alpha}} \leq c\| \| f_{k} \|_{L_{2,-\alpha}} \tag{18}
\end{equation*}
$$

are satisfied uniformly with respect to $k \in \mathbb{N}$.
For the proof of Proposition 12 see [4].
Let the numbers $\lambda_{1}=1<\lambda_{2}<\cdots<\lambda_{k}<\cdots, \lambda_{k} \rightarrow+\infty$ when $k \rightarrow \infty$, are the eigenvalues of the operator \mathbb{B} (see Section 2). Suppose that

$$
\begin{equation*}
\rho\left(1-a_{k}, \lambda_{m}\right)>\varepsilon, \quad k, m \in \mathbb{N}, \tag{19}
\end{equation*}
$$

where $\varepsilon>0$ and ρ is the distance in the complex plane.

Theorem 13 Under the condition (19) the generalized solution of the Neumann problem for the operator equation (14) exists and is unique for every $f \in L_{2,-\alpha}((0, b), H)$.

First note that under the condition (19) the equations (17) are uniquely solvable for every $f_{k} \in L_{2,-\alpha}, k \in \mathbb{N}$ and the inequalities (18) are satisfied. Now the proof of Theorem 13 follows from Proposition 12.

Let $g=t^{-\alpha} f, f \in L_{2,-\alpha}((0, b), H)$. Then $g \in L_{2, \alpha}((0, b), H)$ and we define an operator

$$
\mathbb{P} \equiv t^{-\alpha} P: D(\mathbb{P})=D(P) \subset L_{2, \alpha}((0, b), H) \rightarrow L_{2, \alpha}((0, b), H),
$$

with $\mathbb{P} u=g$ in $L_{2, \alpha}((0, b), H)$. It follows from the condition (19) that for the generalized solution of the Neumann problem we have

$$
\begin{equation*}
\|u\|_{L_{2, \alpha}((0, b), H)} \leq c| | g \|_{L_{2, \alpha}((0, b), H)} . \tag{20}
\end{equation*}
$$

The operator $\mathbb{P}^{-1}: L_{2, \alpha}((0, b), H) \rightarrow L_{2, \alpha}((0, b), H)$ in general is not compact in contrast to Proposition 8 (it will be compact only in the case when the space H is finite-dimensional). If the operator $A: H \rightarrow H$ is selfadjoint we can describe the spectrum of the operator \mathbb{P}.

Proposition 14 The spectrum of the operator \mathbb{P} is equal to the closure of the direct sum of the spectra $\sigma \mathbb{B}$ and $\sigma(A-I)$, i.e.,

$$
\sigma \mathbb{P}=\overline{\sigma \mathbb{B}+\sigma(A-I)} \equiv \overline{\left\{\lambda_{1}+\lambda_{2}-1: \lambda_{1} \in \sigma \mathbb{B}, \lambda_{2} \in \sigma A\right\}} .
$$

The proof of Proposition 14 immediately follows from the equality

$$
\mathbb{P}=\mathbb{B} \otimes I_{H}+I_{L_{2, \alpha}} \otimes(A-I)
$$

(here \otimes means the tensor product of the operators). Note that here we use the assertion, that if $\lambda \in \sigma T$ for the selfadjoint operator T in some separable Hilbert space $T: X \rightarrow X$, then there is some sequence $x_{n} \in D(T), n \in$ $\mathbb{N},\left\|x_{n}\right\|=1$ such that $(T-\lambda) x_{n} \rightarrow 0, n \rightarrow \infty$ (see [1], [14]).

References

[1] J. M. Berezanski, Expansion in Eigenfunctions of Selfadjoint Operators, Transl. Math. Monographs 17, American Mathematical Soc., Providence, 1968.
[2] V. I. Burenkov, Sobolev Spaces on Domains, Teubner, 1999.
[3] A. A. Dezin, Degenerate operator equations, Math. USSR Sbornik, 43, no. 3 (1982), 287-298.
[4] A. A. Dezin, Partial Differential Equations (An Introduction to a General Theory of Linear Boundary Value Problems), Springer, 1987.
[5] P. A. Djarov, Compactness of embeddings in some spaces with power weight, Izvestya VUZ-ov, Matematika, 8 (1988), 82-85 (Russian).
[6] G. H. Hardy, J. E. Littlewood, G.Polya, Inequalities, Cambridge Univ. Press, Cambridge, 1964.
[7] L. D. Kudryavtzev, On a variational method of determination of generalized solution of differential equations in the function spaces with power weight, Differentsial'nye Uravneniya, 19, no. 10 (1983), 1723-1740 (Russian).
[8] L. D. Kudryavtzev, On equivalent norms in the weight spaces, Trudy Mat. Inst. Steklov., 170 (1984), 161-190 (Russian).
[9] M. A. Neumark, Lineare Differentialoperatoren, Akademie Verlag, Berlin, 1965.
[10] R. E. Showalter, Hilbert Space Methods for Partial Differential Equations, Electronic Journal of Differential Equations, Monograph 01, 1994.
[11] L. Tepoyan, Degenerate fourth-order diffeential-operator equations, Differentsial'nye Uravneniya, 23, no. 8 (1987), 1366-1376 (Russian); English Transl. in Amer. Math. Soc., no. 8 (1988).
[12] L. Tepoyan, On a degenerate differential-operator equation of higher order, J. Contemp. Math. Anal. 34 (1999), no. 5, 48-56 (2000); translated from Izv. Nats. Akad. Nauk Armenii Mat. 34 (1999), no. 5, 26-33 (Russian. English, Russian summary).
[13] L. Tepoyan, The mixed problem for a degenerate operator equation, Bulletin of TICMI (Tbilisi International Centre of Mathematics and Informatics), 12 (2008), 15-29.
[14] J. Weidmann, Lineare Operatoren in Hilberträumen, Teil 1, Grundlagen, Teubner Verlag, Stuttgart, 2000.

Received 15.01.2010; revised 16.05.2010; accepted 22.09.2010

