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ON SOME REFINED THEORIES OF PLATES AND SHELLS
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Abstract. In this paper we consider Reissner-Mindlin’s type linear theory
and I. Vekua’s refined linear theory for plates, as well as, Koiter-Naghdi’s and
I. Vekua’s refined nonlinear theories for non-shallow shells. We also consider
Kirsch’s well-known problem for plates [1].
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1. A complete system of equilibrium equation and the stress-strain rela-
tions of the three-dimensional (3D) nonlinear theory of elasticity can be written
as:

∇̂iσ
i +Φ=0, (1)

σi=Eijpqepq(Rj + ∂ju) (i, j, p, q = 1, 2, 3),

where ∇̂i are covariant derivatives relative to the space curvilinear coordinates
xi; σi and Φ are, respectively, the contravariant ”constituents” of the stress
vector and an external force, eij are covariant components of the strain tensor,
u is the displacement vector,

2eij =Ri∂ju+Rj∂iu+ ∂iu∂ju,

Eijpq = λgijgpq + µ(gipgjq + giqgjp) (gij = RiRj), (2)

λ and µ are Lame’s constants, Ri and Ri are covariant and contravariant basis
vectors of the surface Ŝ(x3 = const) of the 3D domain Ω, which are connected
with the basis vectors ri and ri of the midsurface S (x3 = 0) by the following
relations:

Ri=A.j
i.rj, Ri=Ai.

.jr
j (i, j = 1, 2, 3), R3 = R3 = r3 = r3 = n,

A.β
α. = aβα − x3b

β
α, A.3

i. = Ai.
.3 = δi3, Aα.

.β = ϑ−1[aαβ + x3(b
α
β − 2Haαβ)], (3)

ϑ = 1− 2Hx3 +Kx2
3,

where aβα(aαβ, a
αβ) and bβα(bαβ, b

αβ) are mixed (covariant, contravariant) com-
ponents of the metric tensor and tensor of curvature of the midsurface S
(x3 = 0), x3 = x3 is the the thickness coordinate and h is the semi-thickness of
the shell Ω, H and K are middle and Gaussian curvatures of the midsurface S
(x3 = 0), g and a are discriminants of metric tensor of the the surfaces Ŝ and
S.
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Shallow and Non-Shallow Shells. The main quadratic forms of the surface
S (x3 = 0) and the surface Ŝ (x3 = const) have the form:

I = ds2 = aαβdx
αdxβ, II = ksds

2 = bαβdx
αdxβ, S (x3 = 0), (4)

I = dŝ2 = gαβdx
αdxβ, II = k̂ŝdŝ

2 = b̂αβdx
αdxβ, Ŝ (x3 = const),

where ks and k̂ŝ are the normal curvatures of the surfaces S and Ŝ:

aαβ = rαrβ, bαβ = −rαnβ, ks = bαβs
αsβ, sα =

dxα

ds
, S (x3 = 0), (5)

gαβ = RαRβ = aαβ − 2x3bαβ + x2
3bαγb

γ
β,

b̂αβ = (1− 2Hx3)bαβ + x3Kaαβ, Ŝ (x3 = const).

The unit vectors of the tangent ŝ and tangential normal l̂ are expressed by
the following formulas:

ŝ = [(1− x3ks)s− x3τsl]
ds

dŝ
, l̂ = [(1− x3ks)l− x3τss]

ds

dŝ
, (6)

dŝ =
√

1− 2x3ks + x2
3(k

2
s + τ 2s )ds,

where s and l are the the tangent and tangential normal on the midsurface
S, ds and dŝ are the linear elements of the surfaces S and Ŝ, and τs is the
geodesic torsion of the surface S.

Under shallow shells we mean 3D shell-type elastic bodies satisfying the
conditions

aβα − x3b
β
α
∼= aβα, ⇒ Rα

∼= rα, Rα ∼= rα, gαβ ∼= aαβ, b̂αβ ∼= bαβ, (7)

i.e., in this case the interior geometry of the shell does not vary in thickness
and therefore such kind of shells are usually called the shells with non-varying
geometry.

For non-shallow shells in the case of Koiter-Mindlin’s theory we have

Rα = (aβα − x3b
β
α)rβ, Rα = (aβα + x3b

β
α)r

β, R3 = n, ⇒ (8)

gαβ ∼= aαβ − 2x3bαβ, gαβ ∼= aαβ + 2x3b
αβ,

i.e., in this case only the linear part with respect to x3 is retained.
In the sequel, by non-shallow shells we mean 3D shell-type elastic bodies

satisfying the relations (3), (4), (5), (6).
To reduce the 3D problems of the theory of elasticity to 2D ones, it is

necessary to rewrite the relations (3)-(6) in forms of the bases of the midsurface
S (x3 = 0).

The relation (1) can be written as [2]:

∇α(ϑσ
α) + ∂3(ϑσ

3) + ϑΦ = 0, (9)
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σi =
1

2
M i1j1p1q1Ai

i1
(Ap

p1
rq1∂pU + Aq

q1
rp1∂qU + Ap

p1
Aq

q1
∂pU∂qU )rj1 , (10)

where ∇α are covariant derivatives on the midsurface S,

M i1j1p1q1 = λai1j1ap1q1 + µ(ai1p1aj1q1 + ai1q1aj1p1) (aij = rirj). (11)

2. In the present paper we use I. Vekua’s reduction method for the nonlin-
ear theory of non-shallow shells (I. Vekua used the method for linear theory of
shallow shells) the essence of which consists, without going into detals, in the
following: since the system of Legendre polynomials Pn(

x3

h
) is complete in the

interval [−h, h], for equation (9) the equivalent infinite system of 2D equations
is obtained as

∇α

(m)
σ α − 2m+ 1

h

(
(m−1)
σ 3 +

(m−3)
σ 3 + ...

)
+

(m)

F = 0, (12)

where (
(m)
σ i,

(m)

Φ

)
=
2m+ 1

2h

h∫
−h

(
ϑσi, ϑΦ

)
Pm

(
x3

h̄

)
dx3,

(m)

F =
(m)

Φ+
2m+ 1

2h

(
(+)

ϑ
(+)
σ 3−(−1)m

(−)

ϑ
(−)
σ 3

) (
(±)

ϑ = 1± 2hH +Kh2

)
.

Thus we have obtained the infinite system of 2D equations (12), for which

the boundary conditions of the face surfaces (x3 = ±h) are satisfied, i.e.
(±)
σ 3 =

σ3(x1, x2,±h) is the preassigned vector field and is contained in the equilibrium
equations.

The equations (10) may be written as:

(m)
σ i=

2m+ 1

2h

h∫
−h

ϑσiPm

(x3

h

)
dx3

= 1
2
M i1j1p1q1

[
∞∑

m1=0

(
(m)

A
(m1)

i p
i1p1

rq1 ·Dp

(m1)

U +
(m)

A
(m1)

i q
i1q1

rp1 ·Dq

(m1)

U

)
rj1.

+
∞∑

m1,m2=0

[(
(m)

A
(m1,m2)

i j p
i1j1p1

rq1 ·Dp

(m1)

U +
(m)

A
(m1,m2)

i j q
i1j1q1

rp1 ·Dq

(m1)

U

)
Dj

(m2)

U

+
(m)

A
(m1,m2)

i p q
i1p1q1

(
Dp

(m1)

U ·Dq

(m1)

U

)
rj1

]
+

∞∑
m1,m2,m3=0

(m)

A
(m1,m2,m3)

i j p q
i1j1p1q1

(
Dp

(m1)

U ·Dq

(m2)

U

)
Dj

(m3)

U

]
,

(13)

where

Di

(m)

U = δβi ∂β
(m)

U +δ3i
(m)

U ′;
(m)

U ′ =
2m+ 1

h

(
(m+1)

U +
(m+3)

U +...

)
, (14)
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(m)

A
(m1)

ij
i1j1

=
2m+ 1

2h

h∫
−h

ϑAi
i1
Aj

j1
Pm1

(x3

h

)
Pm

(x3

h

)
dx3,

(m)

A
(m1,m2)

ijp
i1j1p1

=
2m+ 1

2h

h∫
−h

ϑAi
i1
Aj

j1
Ap

p1
Pm1

(x3

h

)
Pm2

(x3

h

)
Pm

(x3

h

)
dx3, (15)

(m)

A
(m1,m2,m3)

ijpq
i1j1p1q1

=
2m+ 1

2h

×
h∫

−h

ϑAi
i1
Aj

j1
Ap

p1
Aq

q1
Pm1

(x3

h

)
Pm2

(x3

h

)
Pm3

(x3

h

)
Pm

(x3

h

)
dx3.

The boundary conditions on the lateral contour take the form:
a) for the stresses

(m)
σ (l) =

(m)
σ (ll)l +

(m)
σ (ls)s+

(m)
σ (ln)n =

2m+ 1

2h

h∫
h

σ(l)
dŝ

ds
Pm

(x3

h

)
dx3, (16)

b) for the displacements

m

U =
(m)

U (l)l +
(m)

U (s)s+
(m)

U 3n =
2m+ 1

2h

h∫
h

UPm

(x3

h

)
dx3. (17)

The passage to finite systems can be realized by various methods one of
which consists in considering of a finite series, i.e.

(ϑσi,U , ϑΦ) =
N∑

m=0

(
(m)
σ i,

(m)

U ,
(m)

Φ

)
Pm

(x3

h

)
,

where N is a fixed nonnegative number. In other words, it is assumed that

(m)

U = 0,
(m)
σ i = 0 if m > N.

This approximation will be called the Nth order approximation.
The integrals of type (15) can be calculated; for example,

(m)

A
(m1)

αβ
α1β1

=
2m+ 1

2h

h∫
−h

ϑ−1Bα
α1
(x3)B

β
β1
(x3)Pm1

(x3

h

)
Pm

(x3

h

)
dx3
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=


2m+1
2
√
Eh

[
Bα

α1
(hy)Bβ

β1
(hy)

(
Pm1(y)Qm(y), m1 ≤ m
Qm1(y)Pm(y), m1 ≤ m

)]y2
y1

+
Lα
α1

Lβ
β1

K
σm
m1

for E ̸= 0, K ̸= 0,

aα11a
β
β1
δmm1

for E = H2 −K,

(18)

where Qm(y) is the Legendre function of the second kind, E is the Euler
difference, Bα

β (x) = Bα
β = aαβ + xLα

β , Lα
β = bαβ − 2Haαβ . Under the square

brackets we mean the following:

[f(y)]y2y1 = f(y2)− f(y1), y1,2 = [(H ∓
√
E)h]−1.

Note that for Koiter-Naghdi’s non-shallow shells the following expression

(m)

A
(m1)

αβ
α1β1

∼= aαα1
aββ1

δmm1
+h(aαα1

bββ1
+aββ1

bαα1
)
( m

2m− 1
δmm1−1+

m+ 1

2m+ 3
δmm1+1

)
(19)

is obtained.
For the integrals containing the product of three Legendre polynomials

Pm = Pm(
x3

h
) we have

(m)

A
(m1,m2)

α1α2α3
β1β2β3

=
2m+ 1

2n

h∫
−h

ϑ−2Bα1
β1
Bα

β2
Bα

β3
Pm1Pm2Pmdx3 =

2m+ 1

K2h4

×
min(m1,m2)∑

r=0

γm1m2r

3∑
n=0

n

Cα1α2α3
β1β2β3

hn ∂2

∂y1∂y2

[
yn

y1 − y2

(
Ps(y)Qm(y), s ≤ m

Qs(y)Pm(y), s ≥ m

)]y2
y1

,

where s = m1 +m2 − 2r,

γpqr =
Ap−rArAq−r

Ap+q−r

2(p+ q)− 4r + 1

2(p+ q)− 2r + 1
, Ap =

1 · 3 · · · 2p− 1

p!
,

and
n

Cα1α2α3
β1β2β3

is defined from the relation (see [5])

Bα1
β1
(x)Bα2

β2
(x)Bα3

β3
(x) =

3∑
n=0

n

Cα1α2α3
β1β2β3

xn,

For the integrals containing the product of four Legendre polynomials the
corresponding representations can be written similarly.

3. Now we consider various refined theories of plates and the Kirsch’s
problem for the concentration of stresses near the hole.

The system of Reissner-Mindlin’s equations for tension-pressure coincides
with the classical theory of generalized plane stress.
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For bending of plates the system of Reissner-Mindlin’s equations can be
written in the complex form [3]:

∂z(M11 −M22 + 2iM12) + ∂z̄(M11 +M22)−Q+ = M+,
∂zQ+ + ∂z̄Q̄+ = M3, (Q+ = Q1 + iQ2), (2∂z = ∂1 − i∂2),

(20)

where
M11 −M22 + 2iM12 =

8µh3

3
∂z̄V+ (V+ = V1 + iV2),

M11 +M22 =
4(λ∗+µ)

3
h3ρ (ρ = 2Re∂zV+),

Q+ = 5µh
3
(2∂z̄V3 + V+) (Reissner),

Q+ = 4µh
3
(2∂z̄V3 + V+) (Mindlin),

(21)

µ∆V+ + 2(λ∗ + µ)∂z̄ρ− 5µ
h2 (2∂z̄V3 + V+) =

3
2h3M+,

µ(∆V3 + ρ) = 3
5h
M3,

(22)

λ∗ :=
2λµ

λ+ 2µ
.

The boundary conditions for Kirsch’s problem on the hole’s contour Γ have
the form

Mll + iMls = 0, Qln = 0 (23)

and at infinity we have

M∞
11 = M1, (M12 = M22 = Q+)

∞ = 0. (24)

Now we consider this problem by I. Vekua’s methods.
I. Vekua’s first method (so-called “simplified scheme” )

∂z

(
(m)
σ11 −

(m)
σ22 + 2i

(m)
σ12

)
+ ∂z̄

(
(m)
σ11 +

(m)
σ22

)
−
(m)
σ+ +

(m)

F+ = 0,

∂z
(m)
σ+ + ∂z̄

(m)

σ̄+ −
(m)
σ33 +

(m)

F3 = 0

(
(m)
σ+ =

(m)
σ13 + i

(m)
σ23

)
,

(25)

where

(m)
σ11 −

(m)
σ22 + 2i

(m)
σ12 = 4µ∂z̄

(m)
u +

(
(m)
u + =

(m)
u 1 + i

(m)
u 2

)
,

(m)
σ11 +

(m)
σ22 = 2(λ+ µ)

(m)

θ + 2λD3

(m)
u 3

(
(m)

θ = 2Re∂z
(m)
u +

)
,

(m)
σ+ = µ

(
2∂z̄

(m)
u 3 +D3

(m)
u +

)
,

(m)
σ33 = λ

(m)

θ + (λ+ 2µ)D3

(m)
u 3,

(26)

(m)
σ3 =

2m+ 1

h

(
(m−1)
σ3 +

(m−3)
σ3 + · · ·

)
, D3

(m)
u
2m+ 1

h

N∑
s=m

1− (−1)s+m

2

(s)
u ,
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(m)
σ i=

2m+ 1

2h

h∫
−h

σiPm

(
x3

h̄

)
dx3,

(m)

F =
(m)

Φ +
2m+ 1

2h

(
(+)
σ3 − (−1)m

(−)
σ3

)
.

I. Vekua’s second method (so-called “normed moments method”). In this
case the expressions σi3(i = 1, 2, 3) are compatible with boundary condition
on surface x3 = ±h (see [2]):

∂z

(
(m)
σ11 −

(m)
σ22 + 2i

(m)
σ12

)
+ ∂z̄

(
(m)
σ11 +

(m)
σ22

)
−
(m)
σ+ +

(m)

Y+ = 0,

∂z
(m)
σ+ + ∂z̄

(m)

σ̄+ −
(m)
σ33 +

(m)

Y3 = 0,

(27)

where

(m)
σ11 −

(m)
σ22 + 2i

(m)
σ12 = 4µ∂z̄

(m)
u +,

(m)
σ11 +

(m)
σ22 = 2(λ+ µ)

(m)

θ + 2λD3

(m)
u 3−

2εN,m

N∑
s=0

(1 + (−1)s+m)

(
λ2

λ+2µ

(s)

θ + λD3

(s)
u 3

)
,

(m)
σ+ = µ

(
2∂z̄

(m)
u 3 +D3

(m)
u + − εN,m

N∑
s=0

(1 + (−1)s+m)

(
2∂z̄

(s)
u3 +D3

(s)
u+)

)
,

(m)
σ33 = λ

(m)

θ + (λ+ 2µ)D3

(m)
u 3 − εN,m

×
N∑
s=0

(1 + (−1)s+m)

(
λ
(s)

θ + (λ+ 2µ)D3

(s)
u3

)
,

εN,m =
2m+ 1

N(N + 2)

(
1− (−1)N+m

N + 1

)
.

(28)

The Kirsch’s problem for these cases can be written as:
a) boundary conditions at infinity:

(0)
σ11

∞
= P1,

(0)
σ22

∞
= P2,

(
(0)
σ12 =

(0)
σ3i

)∞

= 0 (tension− pressure), (29)

or
(1)
σ11

∞
= M1,

(1)
σ22

∞
= M2,

(
(0)
σ12 =

(0)
σ3i

)∞

= 0 (bending), (30)

b) boundary conditions on the circular hole (|z| = R):

(m)
σrr + i

(m)
σrϑ = 0,

(m)
σr3 = 0 (m = 0, 1, · · ·, N), (31)

P1, P2,M1,M2 are constants.
For the approximation of order N the system of equilibrium equations with

respect to components displacement vector
(m)
u i can be written in the matrix

forms:
∆V + AV = X, (32)
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∆Ω+BΩ = Y, (33)

where V and Ω are column-matrices of the form

V =
((0)
V1,

(1)

V1, ...,
(N)

V1 ,
(0)

V3,
(1)

V3, ...,
(N)

V3

)T
, Ω =

((0)
V2,

(1)

V2, ...,
(N)

V2

)T
,(

(m)
u + =

(m)
u 1 + i

(m)
u 2 = ∂z̄

(m)

V + = ∂z̄

(
(m)

V 1 + i
(m)

V 2

))
,

(m)
u 3 =

(m)

V 3

)
.

Using now Vekua-Bitsadze’s formulas for the homogenous matrix equations
(32) and (33) we obtain the complex representation of the general solutions

V = Re

[
f(z) +

z∫
z0

R(z, z, t, t)f(t)dt

]
, (34)

Ω = Re

[
φ(z) +

z∫
z0

r(z, z, t, t)φ(t)dt

]
, (35)

whereR and r are the Riemann matrix functions of the equations (32) and (33),
f(z) and φ(z) are holomorphic column-matrices. R and r can be represented
by Bessel’s functions of the first kind:

f(z) =
(
fo(z), f1(z), · · ·, f2N+1(z)

)T
, φ(z) =

(
φ0(z), φ1(z), · · ·, φN(z)

)T
.

The particular solutions of the matrix equations (32) and (33) have the
form

∧
V (z, z) =

z∫
z0

z∫
z0

∧
R(z, z, t, t)X(t, t)dtdt,

∧
Ω(z, z) =

z∫
z0

z∫
z0

∧
r(z, z, t, t)Y (t, t)dtdt.

where
∧
R and

∧
r are matrix functions, which can be also expressed by the Bessel’s

functions of the second kind.
Conclusion. 1. a) I. Vekua’s approximation of order N = 0 (first method)

gives the system of plane deformation equations. The coefficient of stress
concentration K, coincides with well-known meaning

K =
max

(0)
σϑϑ

P
= 3 (P1 = P, P2 = 0).

b) I. Vekua’s approximation of orderN = 0 (second method) and Reissner’s
method describe the generalized plane stress, i.e. K = 3.

2. a) I. Vekua’s approximation of order N = 1 (first method) for the
tension-pressure gives for K the following formula

K = 1 + 2
2κK0(κ) + [4 + 5(1− σ2)κ2]K1(κ)

2(1− σ2)κK0(κ) + [4 + 5(1− σ2)κ2]K1(κ)
,
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where κ2 = σ
1−σ

R2

h2 , i.e. K = K(h,R, σ) depends on h,R, σ (Poisson’s coeffi-

cient), and when h
R
→ 0 or R

h
→ ∞ ⇒ K = 3 (since for each n when x → ∞

we have Kn(x) ∼
√

π
2x
e−x).

b) for the plate’s bending I. Vekua’s approximation N = 1 and Reissner’s
method give:
(I. Vekua’s N = 1)

K = 1 +
2K2(κ)

K2(κ) + 2(1− σ)K0(κ)
⇒ K =

5− 2σ

3− 2σ

(
h

R
→ 0,κ =

3R2

h2

)
(E. Reissner)

K = 1 +
2K2(κ)

3K2(κ) + 2σK0(κ)
⇒ Kcl =

5 + 2σ

3 + 2σ

(
h

R
→ 0,κ =

5R2

2h2

)
i.e. Reissner’s coefficient K coincides with the classical result, when h

R
→ 0.

3. a) I. Vekua’s approximation of order N = 2 (first and second methods)
for the tension-pressure solves the 3D problem, when P1 = P2 = const;

b) for bending of plate coincides with the Reissner result.
4. a) I. Vekua’s approximation of order N = 3 solves the problem for the

tension-pressure when P1 = const, P2 = 0 (II-method).
b)I. Vekua’s approximation of order N = 3 (II-method) for bending of plate

solves the problem when M1 = const, M2 = 0.
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