AN EXTENSION OF THE VEKUA-BITSADZE METHOD FOR SOLVING EQUATIONS OF THE SHELLS

Meunargia T.

I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University

Key words: Shell, Vekua-Bitsadze method parameter, nonlinear theory. MSC 2000: 74K25.
I. Vekua has constructed several versions of the refined linear theory of thin and shallow shells, containing the regular process by means of the method of reduction of three-dimensional problems of elasticity to two-dimensional ones.

In the present paper by means of the I. Vekua method the system of differential equations for the nonlinear theory of non-shallow shells is obtained. Using the method I. Vekua and the method of a small parameter 2-D system of equations for the nonlinear and non-shallow shells is obtained. For any approximations of order N the complex representations of Vekua-Bitsadze type [2] of the general solutions are obtained.

Under thin and shallow shells I. Vekua meant three-dimensional shell-type elastic bodies satisfying the conditions

$$
\begin{equation*}
a_{\alpha}^{\beta}-x_{3} b_{\alpha}^{\beta} \cong a_{\alpha}^{\beta},-h\left(x^{1}, x^{2}\right) \leq x_{3} \leq h\left(x^{1}, x^{2}\right)(\alpha, \beta=1,2), \tag{*}
\end{equation*}
$$

where a_{α}^{β} and b_{α}^{β} are mixed components of the metric tensor and the curvature tensor of the shell's midsurface, x_{3} is the thickness coordinate and h is the semi-thickness, depending on curvilinear coordinates x^{1}, x^{2}.

In the sequel, under by non-shallow shells we mean elastic bodies not subject to assumption $\left(^{*}\right)$, i. e., such that

$$
a_{\alpha}^{\beta}-x_{3} b_{\alpha}^{\beta} \not \neq a_{\alpha}^{\beta} \Rightarrow\left|x_{3} b_{\alpha}^{\beta}\right| \leq q<1 .
$$

1. To construct the theory of shells we use the coordinate system which is normally connected with the midsurface S. This means that the radius-vector of any point of the domain Ω can be represented in the form [1]

$$
\boldsymbol{R}\left(x^{1}, x^{2}, x^{3}\right)=\boldsymbol{r}\left(x^{1}, x^{2}\right)+x^{3} \boldsymbol{n}\left(x^{1}, x^{2}\right)\left(x^{3}=x_{3}\right),
$$

where \boldsymbol{r} and \boldsymbol{n} are radius-vector and the unit vector of the normal of the midsurface $S\left(x_{3}=0\right) ; x^{1}, x^{2}$ are the Gaussian parameters of S.

Covariant and contravariant basis vectors \boldsymbol{R}_{i} and \boldsymbol{R}^{i} of the surface $\hat{S}\left(x_{3}=\right.$ const $)$ and the corresponding basis vectors \boldsymbol{r}_{i} and \boldsymbol{r}^{i} of the midsurface $S\left(x_{3}=0\right)$ are connected by the following relations [1]:

$$
\boldsymbol{R}_{i}=A_{i .}^{j} \boldsymbol{r}_{j}=A_{i j} \boldsymbol{r}^{j}, \quad \boldsymbol{R}^{i}=A_{. j}^{i} \boldsymbol{r}^{j}=A^{i j} \boldsymbol{r}_{j} \quad(i, j=1,2,3),
$$

where

$$
\begin{align*}
& A_{\alpha .}^{\beta}=a_{\alpha}^{\beta}-x_{3} b_{\alpha}^{\beta}, \quad A_{. \beta}^{\alpha}=\vartheta^{-1}\left[\left(1-2 H x_{3}\right) a_{\beta}^{\alpha}+x_{3} b_{\beta}^{\alpha}\right], \quad A_{3}^{i}=A_{i}^{3}=\delta_{i}^{3} \tag{1}\\
& \vartheta=1-2 H x_{3}+K x_{3}^{2}, \quad \boldsymbol{R}_{3}=\boldsymbol{R}^{3}=\boldsymbol{r}_{3}=\boldsymbol{r}^{3}=\boldsymbol{n}(\alpha, \beta=1,2)
\end{align*}
$$

Here $\left(a_{\alpha \beta}, a^{\alpha \beta}, a_{\beta}^{\alpha}\right)$ and $\left(b_{\alpha \beta}, b^{\alpha \beta}, b_{\beta}^{\alpha}\right)$ are the components (co, contra, mixed) of the metric tensor and curvature tensor of the midsurface S. By H and K we denote a middle and Gaussian curvature of the surface S, where

$$
2 H=b_{\alpha}^{\alpha}=b_{1}^{1}+b_{2}^{2}, \quad K=b_{1}^{1} b_{2}^{2}-b_{2}^{1} b_{1}^{2} .
$$

The main quadratic forms of the midsurface S have the form

$$
\begin{equation*}
\mathrm{I}=d s^{2}=a_{\alpha \beta} d x^{\alpha} d x^{\beta}, \quad \mathrm{II}=k_{s} d s^{2}=b_{\alpha \beta} d x^{\alpha} d x^{\beta} \tag{2}
\end{equation*}
$$

where k_{s} is the normal curvature of the surface S, and

$$
a_{\alpha \beta}=\boldsymbol{r}_{\alpha} \boldsymbol{r}_{\beta}, \quad b_{\alpha \beta}=-\boldsymbol{r}_{\alpha} \boldsymbol{n}_{\beta}, \quad k_{s}=b_{\alpha \beta} s^{\alpha} s^{\beta}, s^{\alpha}=\frac{d x^{\alpha}}{d s} .
$$

Here and in the sequel, under a repeated indices we mean summation; note that the Greek indices range over 1,2 , while Latin indices range over $1,2,3$.

To construct the theory of non- shallow shells, it is necessary to obtain formulas for a family of surfaces $\hat{S}\left(x_{3}=\right.$ const $)$, analogous to (2) of the midsurface $S\left(x_{3}=0\right)$ which have the form [1]

$$
\begin{equation*}
\mathrm{I}=d \hat{s}^{2}=g_{\alpha \beta} d x^{\alpha} d x^{\beta}, \quad \mathrm{II}=k_{\hat{s}} d \hat{s}^{2}=\hat{b}_{\alpha \beta} d x^{\alpha} d x^{\beta} \tag{3}
\end{equation*}
$$

where

$$
g_{\alpha \beta}=a_{\alpha \beta}-2 x_{3} b_{\alpha \beta}+x_{3}^{2}\left(2 H b_{\alpha \beta}-K a_{\alpha \beta}\right), \hat{b}_{\alpha \beta}=\left(1-2 H x_{3}\right) b_{\alpha \beta}+x_{3} K a_{\alpha \beta},
$$

and $k_{\hat{s}}$ the normal curvature of the surface \hat{S}.
It is not now difficult to get the expression for the tangential normal \hat{l} of the surface \hat{S} directed to $\hat{\boldsymbol{s}}[3]$:

$$
\hat{\boldsymbol{l}}=\hat{\boldsymbol{s}} \times \boldsymbol{n}=\left[\left(1-x_{3} k_{s}\right) \boldsymbol{l}-x_{3} \tau_{s} \boldsymbol{s}\right] \frac{d s}{d \hat{s}}, \quad d \hat{s}=\sqrt{1-2 x_{3} k_{s}+x_{3}^{2}\left(k_{s}^{2}+\tau_{s}^{2}\right)} d s
$$

where \boldsymbol{s} and \boldsymbol{l} are the unit vectors of the tangent and tangential normal on $S, d \hat{s}$ and $d s$ are the linear elements of the surfaces \hat{S} and S, and τ_{s} is the geodesic torsion of the surface S.
2. We write the equation of equilibrium of elastic shell-type bodies in a vector form

$$
\begin{equation*}
\frac{1}{\sqrt{g}} \frac{\partial \sqrt{g} \boldsymbol{\sigma}^{i}}{\partial x^{i}}+\Phi=0, \Rightarrow \nabla_{i} \boldsymbol{\sigma}^{i}+\Phi=0 \tag{4}
\end{equation*}
$$

where g is the discriminant of the metric quadratic form of the three-dimensional domain Ω, ∇_{i} are covariant derivatives with respect to the space coordinates x^{i}, Φ is on external force, $\boldsymbol{\sigma}^{i}$ are the contravariant constituents of the stress vector $\boldsymbol{\sigma}_{(l)}$ acting on the area with the normal $\stackrel{*}{l}$ and representable as the Cauchy formula as follows:

$$
\boldsymbol{\sigma}_{(l)}^{*}=\boldsymbol{\sigma}^{i} \stackrel{*}{l}_{i}, \quad\left({ }_{l}^{*}=\stackrel{*}{l} \boldsymbol{R}_{i},\right)
$$

For the stress vector acting on the area with normal $\hat{\boldsymbol{l}}$, we obtain

$$
\begin{equation*}
\boldsymbol{\sigma}_{(\hat{\boldsymbol{l}})}=\boldsymbol{\sigma}^{\alpha}\left(\hat{\boldsymbol{l}} \boldsymbol{R}_{\alpha}\right)=\vartheta \boldsymbol{\sigma}^{\alpha}\left(\boldsymbol{l}_{\alpha}\right) \frac{d s}{d \hat{s}} \tag{5}
\end{equation*}
$$

The stress-strain relation for the geometrically nonlinear theory of elasticity has the form

$$
\begin{equation*}
\boldsymbol{\sigma}^{i}=\sigma^{i j}\left(\boldsymbol{R}_{j}+\partial_{j} \boldsymbol{U}\right)=E^{i j p q} e_{p q}\left(\boldsymbol{R}_{j}+\partial_{j} \boldsymbol{U}\right) \tag{6}
\end{equation*}
$$

where $\sigma^{i j}$ are contravariant components of the stress tensor, $e_{i j}$ are covariant components of the strain tensor, \mathbf{U} is the displacement vector, $E^{i j p q}$ and $e_{i j}$ are defined by the formulas:

$$
\begin{equation*}
E^{i j p q}=\lambda g^{i j} g^{p q}+\mu\left(g^{i p} g^{j q}+g^{i q} g^{i p}\right), e_{i j}=\frac{1}{2}\left(\boldsymbol{R}_{i} \partial_{j} \boldsymbol{U}+\boldsymbol{R}_{j} \partial_{i} \boldsymbol{U}+\partial_{i} \boldsymbol{U} \partial_{j} \boldsymbol{U}\right) \tag{7}
\end{equation*}
$$

To reduce the three-dimensional problems of the theory of elasticity to the two-dimensional problems, it is necessary to rewrite the relation (4-7) in forms of the bases of the midsurface S of the shell Ω.

The relation (4) can be written as

$$
\begin{equation*}
\frac{1}{\sqrt{a}} \frac{\partial \sqrt{a} \vartheta \boldsymbol{\sigma}^{\alpha}}{\partial x^{\alpha}}+\frac{\partial \vartheta \boldsymbol{\sigma}^{3}}{\partial x^{3}}+\vartheta \Phi=0, \quad\left(a=a_{11} a_{22}-a_{12}^{2}\right) \tag{8}
\end{equation*}
$$

From (1), (6), (7) we obtain

$$
\begin{gather*}
\boldsymbol{\sigma}^{i}=A_{i_{1}}^{i} A_{p_{1},}^{p} M^{i_{1} j_{1} p_{1} q_{1}}\left[\left(\boldsymbol{r}_{q_{1}} \partial_{p} \boldsymbol{U}\right)+\frac{1}{2} A_{q_{1}}^{q}\left(\partial_{p} \boldsymbol{U} \partial_{q} \boldsymbol{U}\right)\right]\left(\boldsymbol{r}_{j_{1}}+A_{j_{1}}^{j} \partial_{j} \boldsymbol{U}\right), \tag{9}\\
M^{i_{1} j_{1} p_{1} q_{1}}=\lambda a^{i_{1} j_{1}} a^{p_{1} q_{1}}+\mu\left(a^{i_{1} p_{1}} a^{j_{1} q_{1}}+a^{i_{1} q_{1}} a^{j_{1} p_{1}}\right)\left(a^{i j}=\boldsymbol{r}^{i} \boldsymbol{r}^{j}\right)
\end{gather*}
$$

3. The isometric system of coordinates on the surface S is of special interest, for in this system we can obtain basic equations of the theory of shells in a complex form which in turn allows one to construct for a rather wide class of problems complex representations of general solutions by means of analytic functions of one variable $z=x^{1}+i x^{2}$.

The main quadratic forms in the system of coordinates are of the type

$$
\mathrm{I}=d s^{2}=\Lambda(z, \bar{z}) d z d \bar{z}, \quad \mathrm{II}=k_{s} d s^{2}=\frac{1}{2} \Lambda\left[\bar{Q} d z^{2}+2 H d z d \bar{z}+Q d \bar{z}^{2}\right]
$$

$$
Q=0.5\left(b_{1}^{1}-b_{2}^{2}+2 i b_{2}^{1}\right), \quad \Lambda(z, \bar{z})>0 .
$$

Introducing the well-known differential operators $2 \partial z=\partial_{1}-i \partial_{2}, \quad 2 \partial_{\bar{z}}=$ $\partial_{1}+i \partial_{2}$ and the notations $\tau_{. j}^{i .}=\vartheta \boldsymbol{\sigma}^{i} \boldsymbol{r}_{j}, \quad X_{i}=\vartheta \boldsymbol{\Phi} \boldsymbol{r}_{i}$, for the geometrically nonlinear theory of non-shallow shells from (8) and (9) we obtain the following complex form both for the system of equations of equilibrium and Hooke's law:

$$
\begin{align*}
\frac{1}{\Lambda} \frac{\partial \Lambda \boldsymbol{\tau}^{+} \boldsymbol{r}_{+}}{\partial z} & +\frac{\partial \overline{\boldsymbol{\tau}}^{+} \boldsymbol{r}_{+}}{\partial \bar{z}}-\Lambda\left(H \tau_{3}^{+}+Q \bar{z}_{3}^{+}\right)+\frac{\partial \tau_{+}^{3}}{\partial x_{3}}+X_{+}=0 \\
\frac{1}{\Lambda}\left(\frac{\partial \Lambda \tau_{3}^{+}}{\partial z}+\right. & \left.\frac{\partial \Lambda \bar{\tau}_{3}^{+}}{\partial \bar{z}}\right)+H\left(\tau_{1}^{1}+\tau_{2}^{2}\right)+R e\left(\bar{Q} \boldsymbol{\tau}^{+} \boldsymbol{r}_{+}\right)+\frac{\partial \tau_{3}^{3}}{\partial x_{3}}+X_{3}=0, \tag{10}\\
\boldsymbol{\tau}^{+}= & \vartheta\left\{\lambda \Theta+\mu\left[\boldsymbol{R}^{+} \partial_{z} \boldsymbol{U}+\left(\overline{\boldsymbol{R}}_{+}+2 \partial_{z} \boldsymbol{U}\right) \partial^{\bar{z}} \boldsymbol{U}\right]\right\}\left(\boldsymbol{R}^{+}+2 \partial^{\bar{z}} \boldsymbol{U}\right) \\
& +\mu \vartheta\left\{\left[\boldsymbol{R}^{+} \partial_{\bar{z}} \boldsymbol{U}+\left(\boldsymbol{R}_{+}+2 \partial_{\bar{z}} \boldsymbol{U}\right) \partial^{\bar{z}} \boldsymbol{U}\right]\left(\overline{\boldsymbol{R}}^{+}+2 \partial^{z} \boldsymbol{U}\right)\right. \\
& \left.+\left[\boldsymbol{R}^{+} \partial_{3} \boldsymbol{U}+\left(\boldsymbol{n}+\partial_{3} \boldsymbol{U}\right) \partial_{\bar{z}} \boldsymbol{U}\right]\left(\boldsymbol{n}+\partial_{3} \boldsymbol{U}\right)\right\} \\
\boldsymbol{\tau}^{3}= & \vartheta\left\{\left[\lambda \boldsymbol{\Theta}+2 \mu\left(\boldsymbol{n} \partial^{3} \boldsymbol{U}+\frac{1}{2} \partial_{3} \boldsymbol{U} \partial^{3} \boldsymbol{U}\right)\right]\left(\boldsymbol{n}+\partial_{3} \boldsymbol{U}\right)\right. \tag{11}\\
& +\mu\left[\left(\frac{1}{2} \overline{\boldsymbol{R}}_{+} \partial_{3} \boldsymbol{U}+\boldsymbol{n} \partial_{z} \boldsymbol{U}+\partial_{z} \boldsymbol{U} \partial_{3} \boldsymbol{U}\right)\left(\boldsymbol{R}^{+}+2 \partial^{\bar{z}} \boldsymbol{U}\right)\right. \\
& \left.\left.+\left(\frac{1}{2} \boldsymbol{R}_{+} \partial_{3} \boldsymbol{U}+\boldsymbol{n} \partial_{\bar{z}} \boldsymbol{U}+\partial_{\bar{z}} \boldsymbol{U} \partial_{3} \boldsymbol{U}\right)\left(\overline{\boldsymbol{R}}^{+}+2 \partial^{z} \boldsymbol{U}\right)\right]\right\} \\
& \left(\partial^{3} \boldsymbol{U}=\partial_{3} \boldsymbol{U}\right)
\end{align*}
$$

Here

$$
\begin{aligned}
& \boldsymbol{\tau}^{+} \boldsymbol{r}_{+}=\left(\boldsymbol{\tau}^{1}+i \boldsymbol{\tau}^{2}\right)\left(\boldsymbol{r}_{1}+i \boldsymbol{r}_{2}\right), \overline{\boldsymbol{\tau}}^{+} \boldsymbol{r}_{+}=\left(\boldsymbol{\tau}^{1}-i \boldsymbol{\tau}^{2}\right)\left(\boldsymbol{r}_{1}+i \boldsymbol{r}_{2}\right), \tau_{3}^{+\cdot}=\boldsymbol{\tau}^{+} \boldsymbol{n}, \\
& \tau_{\cdot+}^{3 .}=\boldsymbol{\tau}^{3} \boldsymbol{r}_{+}, \tau_{3}^{3}=\boldsymbol{\tau}^{3} \boldsymbol{n}, 2 \partial^{\bar{z}} \boldsymbol{U}=\left(\boldsymbol{R}^{+} \boldsymbol{R}^{+}\right) \partial_{z} \boldsymbol{U}+\left(\boldsymbol{R}^{+} \overline{\boldsymbol{R}}^{+}\right) \partial_{\bar{z}} \boldsymbol{U}, \tau_{\cdot \beta}^{\alpha .}=\boldsymbol{\tau}^{\alpha} \boldsymbol{r}_{\beta}, \\
& \\
& \Theta=2 R e\left[\left(\boldsymbol{R}^{+}+\partial^{\bar{z}} \boldsymbol{U}\right]\right) \partial_{z} \boldsymbol{U}+\partial_{3} \boldsymbol{U}_{3}+0.5\left(\partial_{3} \boldsymbol{U}\right)^{2}, \boldsymbol{R}^{+}=\vartheta^{-1}\left[\left(1-H x_{3}\right) \boldsymbol{r}^{+}+\right. \\
& \left.+x_{3} Q \overline{\boldsymbol{r}}^{+}\right], \boldsymbol{R}_{+}=\left(1-H x_{3}\right) \boldsymbol{r}_{+}-x_{3} Q \overline{\boldsymbol{r}}_{+}, \boldsymbol{R}_{+}=\boldsymbol{R}_{1}+i \boldsymbol{R}_{2}, \boldsymbol{R}^{+}=\boldsymbol{R}^{1}+i \boldsymbol{R}^{2},
\end{aligned}
$$

$\boldsymbol{R}^{+} \boldsymbol{R}^{+}=4 x_{3}\left(\Lambda \vartheta^{2}\right)^{-1}\left(1-H x_{3}\right) Q, \boldsymbol{R}^{+} \overline{\boldsymbol{R}}^{+}=2\left(\Lambda \vartheta^{2}\right)^{-1}\left(\vartheta+2 x_{3}^{2} Q \bar{Q}\right)$, $\boldsymbol{R}^{+} \boldsymbol{r}_{+}=2 \vartheta^{-1} Q x_{3}, \overline{\boldsymbol{R}}^{+} \boldsymbol{r}_{+}=2 \vartheta^{-1}\left(1-H x_{3}\right), \boldsymbol{r}^{+} \overline{\boldsymbol{r}}^{+}=2 \Lambda^{-1}, \boldsymbol{r}^{+}=\boldsymbol{r}^{1}+i \boldsymbol{r}^{2}$ 。

We have the formulas

$$
\begin{aligned}
& \boldsymbol{r}^{+} \partial_{z} \boldsymbol{U}=\Lambda^{-1} \partial_{z} U_{+}-H U_{3}, \boldsymbol{r}^{+} \partial_{\bar{z}} \boldsymbol{U}=\partial_{\bar{z}} U^{+}-Q U_{3}, X_{+}=X_{1}+i X_{2}, \\
& \boldsymbol{n} \partial_{z} \boldsymbol{U}=\partial_{z} U_{3}+0.5\left(\bar{Q} U_{+}+H \bar{U}_{+}\right)\left(U^{+}=\boldsymbol{U} \boldsymbol{r}^{+}, U_{+}=\boldsymbol{U} \boldsymbol{r}_{+}, U_{3}=\boldsymbol{U} \boldsymbol{n}\right) .
\end{aligned}
$$

4. In the present paper the three-dimensional problems of the theory of elasticity are reduced to the two-dimensional ones by the method suggested by I. Vekua. Since the system of Legendre polynomials $\left\{P_{m}\left(\frac{x_{3}}{h}\right)\right\}$ is complete
in the interval [-h,h], for equation (8) we obtain the infinite system of twodimensional equations

$$
\int_{-h}^{h}\left[\frac{1}{\sqrt{a}} \frac{\partial \sqrt{a} \vartheta \boldsymbol{\sigma}^{\alpha}}{\partial x^{\alpha}}+\frac{\partial \vartheta \boldsymbol{\sigma}^{3}}{\partial x^{3}}+\vartheta \boldsymbol{\Phi}\right] P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}=0 \quad(m=0,1, \ldots)
$$

or in a form

$$
\begin{equation*}
\nabla_{\alpha} \stackrel{(m)}{\boldsymbol{\sigma}}^{\alpha}-\frac{2 m+1}{h}\left(\stackrel{(m-1)}{\boldsymbol{\sigma}}^{3}+\stackrel{(m-3)}{\boldsymbol{\sigma}}^{3}+\ldots\right)+\stackrel{(m)}{\boldsymbol{F}}=0, \tag{12}
\end{equation*}
$$

where

$$
\begin{gathered}
(\stackrel{(m)}{\boldsymbol{\sigma}} i, \stackrel{(m)}{\boldsymbol{\Phi}})=\frac{2 m+1}{2 h} \int_{-h}^{h}\left(\vartheta \boldsymbol{\sigma}^{i}, \vartheta \boldsymbol{\Phi}\right) P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}=\frac{2 m+1}{2 h} \int_{-h}^{h}\left(\boldsymbol{\tau}^{i}, \boldsymbol{X}\right) P_{m} d x_{3}, \\
\stackrel{(m)}{\boldsymbol{F}}=\stackrel{(m)}{\boldsymbol{\Phi}}+\frac{2 m+1}{2 h}\left(\stackrel{(+)}{\vartheta} \stackrel{(+)_{3}}{\boldsymbol{\sigma}}-(-1)^{m} \stackrel{(-)}{\vartheta} \stackrel{(-)_{3}}{\boldsymbol{\sigma}}\right) \quad(\stackrel{(\pm)}{\vartheta}=\vartheta(\pm h)),
\end{gathered}
$$

∇_{α} are covariant derivatives on the midsurface S.
The equation of state (9) may be written as
where

$$
\begin{align*}
& D_{i} \stackrel{(m)}{U}=\delta_{i}^{\beta} \partial_{\beta} \stackrel{(m)}{U}+\delta_{i}^{3} \stackrel{(m)}{U}^{\prime} ; \stackrel{(m)}{U}^{\prime}=\frac{2 m+1}{h}(\stackrel{(m+1)}{\boldsymbol{U}}+\stackrel{(m+3)}{\boldsymbol{U}}+\ldots), \tag{14}\\
& \underset{\left(m_{1}\right)}{\stackrel{(m)}{A}} i_{i_{1} j_{1}}=\frac{2 m+1}{2 h} \int_{-h}^{h} \vartheta A_{i_{1}}^{i}, A_{j_{1}}^{j}, P_{m_{1}}\left(\frac{x_{3}}{h}\right) P_{m}\left(\frac{x_{3}}{h}\right) d x_{3} \\
& \underset{\left(m_{1}, m_{2}\right)}{\stackrel{(m)}{A}{\underset{\sim}{2}}_{i j p}^{j_{1} j_{1} p_{1}}}=\frac{2 m+1}{2 h} \int_{-h}^{h} \vartheta A_{i_{1}}^{i}, A_{j_{1}}^{j}, A_{p_{1}}^{p} P_{m_{1}} P_{m_{2}} P_{m} d x_{3}, \tag{15}
\end{align*}
$$

The boundary conditions on the lateral contour ∂S take the form:
a) for the stresses

$$
\begin{equation*}
\stackrel{(m)}{\boldsymbol{\sigma}}_{(l)}=\stackrel{(m)}{\sigma}_{(l l)} \boldsymbol{l}+\stackrel{(m)}{\sigma}_{(l s) s}+\stackrel{(m)}{\sigma}_{(l n)} \boldsymbol{n}=\frac{2 m+1}{2 h} \int_{h}^{h} \boldsymbol{\sigma}_{(l)} \frac{d \hat{s}}{d s} P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}, \tag{16}
\end{equation*}
$$

b) for the displacements

$$
\begin{equation*}
\stackrel{m}{\boldsymbol{U}}=\frac{2 m+1}{2 h} \int_{h}^{h} \boldsymbol{U} P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}=\stackrel{(m)}{U}_{(l)} \boldsymbol{l}+\stackrel{(m)}{U}_{(s)}(\boldsymbol{s})+\stackrel{(m)}{U}_{3} \boldsymbol{n} . \tag{17}
\end{equation*}
$$

Thus we have constructed an infinite system of two-dimensional equations of geometrically non-linear and non-shallow shells (12-17), which is consistent with the boundary conditions on the face surfaces, i.e. $\stackrel{(\pm)_{3}}{\boldsymbol{\sigma}}=\boldsymbol{\sigma}^{3}\left(x^{1}, x^{2}, \pm h\right)$.

The passage to finite systems can be realized by various methods one of which consists in considering of a finite series, i.e.

$$
\left(\vartheta \boldsymbol{\sigma}^{i}, \boldsymbol{U}, \vartheta \boldsymbol{\Phi}\right)=\sum_{m=0}^{N}\left(\stackrel{(m)}{\boldsymbol{\sigma}}^{i}, \stackrel{(m)}{\boldsymbol{U}}, \stackrel{(m)}{\Phi}\right) P_{m}\left(\frac{x_{3}}{h}\right)=\left(\boldsymbol{\tau}^{i}, \boldsymbol{U}, \boldsymbol{X}\right)
$$

where N is a fixed nonnegative number. In other words, it is assumed that

$$
\stackrel{(m)}{\boldsymbol{U}}=0, \stackrel{(m)}{\boldsymbol{\sigma}} i=0, \quad \text { if } \quad m>N
$$

Approximation of this type will be called approximation of order N. The integrals of type (15) can be calculated [5], for example,

$$
\begin{align*}
& \stackrel{(m)}{A}{ }_{\left(m_{1}\right)}^{\alpha \beta} \alpha_{1} \beta_{1} \\
& =\frac{2 m+1}{2 h} \int_{-h}^{h} \vartheta^{-1} B_{\alpha_{1}}^{\alpha}\left(x_{3}\right) B_{\beta_{1}}^{\beta}\left(x_{3}\right) P_{m_{1}}\left(\frac{x_{3}}{h}\right) P_{m}\left(\frac{x_{3}}{h}\right) d x_{3}= \tag{18}\\
& \frac{2 m+1}{2 \sqrt{E} h}\left[B_{\alpha_{1}}^{\alpha}(h y) B_{\beta_{1}}^{\beta}(h y)\binom{P_{m_{1}}(y) Q_{m}(y), m_{1} \leq m}{Q_{m_{1}}(y) P_{m}(y), m_{1} \leq m}\right]_{y_{1}}^{y_{2}}+\frac{L_{\alpha_{1}}^{\alpha} L_{\beta_{1}}^{\beta}}{K} \sigma_{m_{1}}^{m},
\end{align*}
$$

if $E \neq 0 K \neq 0$ and $a_{\alpha_{1}}^{\alpha} a_{\beta_{1}}^{\beta} \delta_{m_{1}}^{m}$, if $E=H^{2}-K=0$; where $Q_{m}(y)$ is the Legendre function of the second kind, E is the Euler difference, $B_{\beta}^{\alpha}(x)=$ $a_{\beta}^{\alpha}+x L_{\beta}^{\alpha}, L_{\beta}^{\alpha}=b_{\beta}^{\alpha}-2 H a_{\beta}^{\alpha}$. Under the square brackets we mean the following:

$$
[f(y)]_{y_{1}}^{y_{2}}=f\left(y_{2}\right)-f\left(y_{1}\right), \quad y_{1,2}=[(H \mp \sqrt{E}) h]^{-1} .
$$

For the integrals containing the product of three (four) Legendre polynomials we have

$$
\underset{\left(m_{1}, m_{2}\right)}{\stackrel{(m)}{A})} \underset{\substack{\alpha_{1} \alpha_{2} \alpha_{2} \alpha_{3} \\ \beta_{1} \beta_{3}}}{ }=\frac{2 m+1}{2 n} \int_{-h}^{h} \frac{B_{\beta_{1}}^{\alpha_{1}} B_{\beta_{2}}^{\alpha} B_{\beta_{3}}^{\alpha}}{1-2 H x_{3}+K x_{3}} P_{m_{1}} P_{m_{2}} P_{m} d x_{3}=\frac{2 m+1}{K^{2} h^{4}} \times
$$

$$
\times \sum_{r=0}^{\min \left(m_{1}, m_{2}\right)} \alpha_{m_{1} m_{2} r} \sum_{n=0}^{3}{\stackrel{C}{\mathbb{C}_{\beta_{1} \beta_{2} \beta_{3}}^{\alpha_{1}} \alpha_{2} \alpha_{3}} h^{n}}_{\frac{\partial^{2}}{\partial y_{1} \partial y_{2}}}\left[\frac{y^{n}}{y_{1}-y_{2}}\binom{P_{s}(y) Q_{m}(y), s \leq m}{Q_{s}(y) P_{m}(y), s \geq m}\right]_{y_{1}}^{y_{2}},
$$

where $s=m_{1}+m_{2}-2 r$,

$$
\begin{gathered}
a_{p q r}=\frac{A_{p-r} A_{r} A_{q-r}}{A_{p+q-r}} \frac{2(p+q)-4 r+1}{2(p+q)-2 r+1}, \quad A_{p}=\frac{1.3 \cdots 2 p-1}{p!}, \\
B_{\beta_{1}}^{\alpha_{1}}(x) B_{\beta_{2}}^{\alpha_{2}}(x) B_{\beta_{3}}^{\alpha_{3}}(x)=\sum_{n=0}^{3} \stackrel{n}{\mathbb{C}_{\beta_{1} \beta_{2} \beta_{3}}^{\alpha_{1} \alpha_{2} \alpha_{3}} x^{n}},
\end{gathered}
$$

5. Three-dimensional shell-type bodies are characterized by inequalities

$$
\left|h b_{\beta}^{\alpha}\right| \leq q<1 \quad(\alpha, \beta=1,2)
$$

Therefore they can be represented as follows

$$
\left|\varepsilon b_{\beta}^{\alpha} R\right| \leq q<1,
$$

where $\varepsilon=h R^{-1}$ is a small parameter.
Here h is semi-thickness of the shell, R is a certain characteristic radius of curvature of the midsurface S [4].

Now, following Signorini [3] we assume the validity of the expansions

Substituting the above expansions into the $(12,13)$ and $(10,11)$ than equalizing the coefficients of expansions for ε^{n} we obtain the following 2-D finite system of equilibrium equations with respect to components of displacement vector in the isometric coordinates $a_{11}=a_{22}=\Lambda\left(x^{1}, x^{2}\right)$, which has the form:

$$
\begin{aligned}
& 4 \mu \partial_{\bar{z}}\left(\Lambda^{-1} \partial_{z}^{(m, n)} u_{+}^{(m)}+2(\lambda+\mu) \partial_{\bar{z}}^{(m, n)} \theta+2 \lambda \partial_{\bar{z}}^{(m, n)} u_{3}^{\prime}-(2 m+1) \mu\right. \\
& {\left[2 \partial_{\bar{z}}\left(\left(\begin{array}{c}
(m-1, n) \\
u_{3}
\end{array}+\stackrel{(m-3, n)}{u_{3}}+\cdots\right)+\stackrel{(m-1, n)}{u_{+}^{\prime}}+\stackrel{(m-3, n)}{u_{+}^{\prime}}+\cdots\right]+\stackrel{(m, n)}{F_{+}}=0,\right.} \\
& \mu\left(\nabla^{2}{ }^{(m, n)} u_{3}^{(m, n)} \theta^{\prime}\right)-(2 m+1)[\lambda(\stackrel{(m-1, n)}{\theta}+\stackrel{(m-3, n)}{\theta}+\cdots)+ \\
& (\lambda+2 \mu)\left(\begin{array}{c}
(m-1, n) \\
\left.u_{3}^{\prime}\right) \\
(m-3, n) \\
u_{3}^{\prime} \\
+\cdots)]+\stackrel{(m, n)}{F_{3}}=0,
\end{array}\right.
\end{aligned}
$$

where $u_{+}=u_{1}+i u_{2}, \theta=\Lambda^{-1}\left(\partial_{z} u_{+} \partial_{\bar{z}} \bar{u}_{+}\right), z=x^{1}+i x^{2}, 2 \partial_{z}=\partial_{1}-i \partial_{2}$, $\nabla^{2}=\frac{4}{\Lambda} \frac{\partial^{2}}{\partial z \partial \bar{z}}$.

Obviously, in passing from the n-th step of approximation to the $(n+1)$-th step only the right-hand side of equations are changed. Below we will omit upper index n.

Consider now the cases: $N=0,1,2,3[6]$.
Case $N=0$. From (3) we get

$$
\begin{align*}
& 4 \mu \partial_{\bar{z}}\left(\Lambda^{-1} \partial_{z} \stackrel{(0)}{u_{+}}\right)+2(\lambda+\mu) \partial_{\bar{z}} \stackrel{(0)}{\theta}=0 \tag{20}\\
& \mu \nabla^{2} \stackrel{(0)}{u}_{3}=0 \quad\left(\stackrel{(m)}{F_{+}}=\stackrel{(m)}{F_{3}}=0, m=0,1,2,3\right)
\end{align*}
$$

The complex representation of general solutions has the form

$$
\begin{align*}
& \stackrel{(0)}{u_{+}}=-\frac{\lambda+3 \mu}{\lambda+\mu} \frac{1}{\pi} \iint_{S} \frac{\varphi^{\prime}(\zeta) d S}{\bar{\zeta}-\bar{z}}+\frac{1}{\pi} \iint_{S} \frac{\overline{\varphi^{\prime}(\zeta)} d S}{\bar{\zeta}-\bar{z}}-\overline{\psi(z)}, \tag{21}\\
& \stackrel{(0)}{u_{3}}=f(z)+\overline{f(z)}, \quad(d S=\Lambda(\zeta, \bar{\zeta}) d \zeta d \bar{\zeta}, \quad \zeta=\xi+i \eta)
\end{align*}
$$

where $f(z), \varphi(z)$ and $\psi(z)$ are holomorphic functions of z. We note that for plane (i.e. $\Lambda=1$) the expression of $\stackrel{(0)}{u_{+}}$coincides with the well-known representation of Kolosov-Muskhelishvili.

Case $N=1$. With respect to the components $\left(\stackrel{(0)}{u_{+}}, \stackrel{(1)}{u_{3}}\right)$ and $\left(\stackrel{(1)}{u_{1}}, \stackrel{(0)}{u_{3}}\right)$ we have two systems of equations:

$$
\begin{align*}
& 4 \mu \partial_{\bar{z}}\left(\Lambda^{-1} \partial_{z} \stackrel{(0)}{u}_{+}\right)+2(\lambda+\mu) \partial_{\bar{z}}^{(0)} \stackrel{(0)}{\theta}+2 \lambda \partial_{\bar{z}}^{(1)} u_{3}=0 \tag{22}\\
& \mu \nabla^{2}{ }^{(1)}+3[\stackrel{(0)}{\theta}+(\lambda+2 \mu \stackrel{(1)}{\theta}]=0
\end{align*}
$$

and

$$
\begin{align*}
& 4 \mu \partial_{\bar{z}}\left(\Lambda^{-1} \partial_{z} \stackrel{(1)}{u}_{u^{\prime}}\right)+2(\lambda+\mu) \partial_{\bar{z}}^{(1)}-3 \mu\left(2 \partial_{\bar{z}}^{(0)} \stackrel{(0}{3}^{\theta}+\stackrel{(1)}{u_{+}}\right)=0, \tag{23}\\
& \nabla^{2} \stackrel{(0)}{u_{3}}+\stackrel{(1)}{\theta}=0 .
\end{align*}
$$

The complex representation of general solutions has the form:

$$
\begin{align*}
& \stackrel{(0)}{u_{+}}=-\frac{5 \lambda+6 \mu}{3 \lambda+2 \mu} \frac{1}{\pi} \iint_{S} \frac{\varphi^{\prime}(\zeta) d S}{\bar{\zeta}-\bar{z}}+\frac{1}{\pi} \iint_{S} \frac{\overline{\varphi^{\prime}(\zeta)} d S}{\bar{\zeta}-\bar{z}}-\overline{\psi(z)}-\frac{\lambda}{6(\lambda+\mu)} \frac{\partial w}{\partial \bar{z}} \\
& \stackrel{(0)}{u}_{3}^{(0)}=w-\frac{2 \lambda}{\lambda+2 \mu}\left(\varphi^{\prime}+\overline{\varphi^{\prime}}\right), \quad\left(\nabla^{2} w=\frac{12(\lambda+\mu)}{\lambda+2 \mu} w\right), \tag{24}
\end{align*}
$$

and

$$
\begin{aligned}
& \stackrel{(1)}{u_{+}}=-\frac{1}{\pi} \iint_{S} \frac{\Phi^{\prime}(\zeta)+\overline{\Phi^{\prime}(\zeta)}}{\bar{\zeta}-\bar{z}} d S+\frac{4(\lambda+\mu)}{3 \mu} \overline{\Phi^{\prime \prime}(z)}-2 \overline{\Psi^{\prime}(z)}+i \frac{\partial \chi}{\partial \bar{z}} \\
& \stackrel{(0)}{u_{3}}=\Psi(z)+\overline{\Psi(z)}-\iint_{S}\left(\Phi^{\prime}(\zeta)+\overline{\Phi^{\prime}(\zeta)}\right) \ln |\zeta-z| d S\left(\nabla^{2} \chi=3 \chi\right),
\end{aligned}
$$

where $\Phi(z)$ and $\Psi(z)$ are holomorphic functions of z.
Note that the systems (10) and (11) coincide with I. Vekua's refined systems of equations for the stretch-strain and bending of plate, respectively.

Case $N=2$. In this case with respect to the components $\left(\stackrel{(0)}{u_{1}}, \stackrel{(2)}{u_{+}}, \stackrel{(1)}{u_{3}}\right)$ and $\left(\stackrel{(1)}{u_{+}}, \stackrel{(0)}{u_{3}}, \stackrel{(2)}{u_{3}}\right)$ we have two systems of equations:

$$
\begin{align*}
& 4 \mu \partial_{\bar{z}}\left(\Lambda^{-1} \partial_{z}{ }^{(0)}\right)+2(\lambda+\mu) \partial_{\bar{z}} \stackrel{(0)}{\theta}+2 \lambda \partial_{\bar{z}}^{(1)} \stackrel{(1)}{3}^{(2)}, \\
& 4 \mu \partial_{\bar{z}}\left(\Lambda^{-1} \partial_{z} \stackrel{(2)}{u_{+}}\right)+2(\lambda+\mu) \partial_{\bar{z}} \stackrel{(1)}{\theta}-5 \mu\left(2 \partial_{\bar{z}}^{(1)} \stackrel{u}{u}^{(1)}+3 \stackrel{(2)}{u_{+}}\right)=0, \tag{25}\\
& \mu\left(\nabla^{2}{ }^{(1)}+3 \stackrel{(2)}{\theta}\right)-3\left[\lambda \stackrel{(0)}{\theta}+(\lambda+2 \mu) \stackrel{(1)}{u_{3}}\right]=0
\end{align*}
$$

and

$$
\begin{align*}
& 4 \mu \partial_{\bar{z}}\left(\Lambda^{-1} \partial_{z} \stackrel{(1)}{u}\right)+2(\lambda+\mu) \partial_{\bar{z}}^{(1)}-3 \mu\left(2 \partial_{\bar{z}}^{(0)} u_{3}+\stackrel{(1)}{u_{+}}\right)=0, \\
& \nabla^{2}{ }^{(0)} u_{3}+\stackrel{(1)}{\theta}=0 \tag{26}\\
& \mu \nabla^{2} \stackrel{(2)}{u_{3}}-5\left[\lambda \stackrel{(1)}{\theta}+3(\lambda+2 \mu) \stackrel{(2)}{u_{3}}\right]=0 .
\end{align*}
$$

In this case the complex representations of the general solutions of the equations (12) and (13) take the forms

$$
\begin{align*}
\stackrel{(0)}{u}_{+} & =-\frac{5 \lambda+6 \mu}{3 \lambda+2 \mu} \frac{1}{\pi} \iint_{S} \frac{\varphi^{\prime}(\zeta) d S}{\bar{\zeta}-z}+\frac{1}{\pi} \iint_{S} \frac{\overline{\varphi^{\prime}(\zeta)} d S}{\bar{\zeta}-\bar{z}}-\overline{\psi(z)} \\
& -\frac{2 \lambda}{\lambda+2 \mu} \sum_{k=1}^{2} \frac{1}{\alpha_{k}} \frac{\partial v_{k}}{\partial \bar{z}} \\
\stackrel{(2)}{u_{+}} & =\frac{2}{3}\left(i \frac{\partial \omega}{\partial \bar{z}}+\frac{2 \lambda}{3 \lambda+2 \mu} \overline{\varphi^{\prime \prime}(z)}+\sum_{k=1}^{2} \frac{\alpha_{3-k}}{\alpha_{k}} \frac{\partial v_{k}}{\partial \bar{z}}\right), \tag{27}\\
\stackrel{(1)}{u}= & v_{1}+v_{2}-\frac{2 \lambda}{\lambda+2 \mu}\left(\varphi^{\prime}(z)+\overline{\varphi^{\prime}(z)}\right),
\end{align*}
$$

where
$\nabla^{2} v_{k}=\alpha_{k} v_{k}, \quad \alpha_{k}^{2}-\frac{12(\lambda+\mu)}{\lambda+2 \mu} \alpha_{k}+\frac{180 \mu(\lambda+\mu)}{(\lambda+2 \mu)^{2}}=0 \quad(k=1,2) ; \quad \nabla^{2} \omega=15 \omega$,
and

$$
\begin{gather*}
\stackrel{(1)}{u_{+}}=-\frac{1}{\pi} \iint_{S} \frac{\Phi^{\prime}(\zeta)+\overline{\Phi^{\prime}(\zeta)}}{\bar{\zeta}-\bar{z}} d S+\frac{16(\lambda+\mu)}{3(\lambda+2 \mu)} \overline{\Phi^{\prime \prime}(z)}- \tag{28}\\
-2 \overline{\Psi^{\prime}(z)}+i \frac{\partial \chi}{\partial \bar{z}}-\frac{\lambda}{10(\lambda+\mu)} \frac{\partial w}{\partial \bar{z}} \\
\stackrel{(0)}{u_{3}}=\Psi(z)+\overline{\Psi(z)}-\frac{1}{\pi} \iint_{S}\left(\Phi^{\prime}(\zeta)+\overline{\Phi^{\prime}(\zeta)}\right) \ln |\zeta-z| d S+\frac{\lambda}{20(\lambda+\mu)} w, \\
\stackrel{(2)}{u_{3}}=w-\frac{2 \lambda}{3 \lambda+2 \mu}\left(\Phi^{\prime}(z)+\overline{\Phi^{\prime}(z)}\right)
\end{gather*}
$$

where $\nabla^{2} w=\frac{60(\lambda+\mu)}{\lambda+2 \mu} w, \nabla^{2} \chi=3 \chi$.
Case $N=3$. For this case we have

$$
\begin{align*}
\stackrel{(0)}{u_{+}}=-\frac{5 \lambda+6 \mu}{3 \lambda+2 \mu} \frac{1}{\pi} & \iint_{S} \frac{\varphi^{\prime} d S}{\bar{\zeta}-\bar{z}}+\frac{1}{\pi} \iint_{S} \frac{\overline{\varphi^{\prime}} d S}{\bar{\zeta}-\bar{z}}-\bar{\psi}-\frac{2 \lambda}{\lambda+2 \mu} \sum_{k=1}^{3} \frac{1+\stackrel{(1)}{A_{k}}}{\alpha_{k}} \frac{\partial v_{k}}{\partial \bar{z}} \\
\stackrel{(2)}{u_{+}} & =\frac{2}{3}\left(i \frac{\partial \omega}{\partial \bar{z}}+\frac{2 \lambda}{3 \lambda+2 \mu} \overline{\varphi^{\prime \prime}}+\sum_{k=1}^{3} \stackrel{(2)}{A_{k}} \frac{\partial v_{k}}{\partial \bar{z}}\right), \tag{29}\\
\stackrel{(1)}{u_{3}} & =\sum_{k=1}^{3} \stackrel{(1)}{A_{k}} v_{k}-\frac{2 \lambda}{3 \lambda+2 \mu}\left(\varphi^{\prime}+\overline{\varphi^{\prime}}\right), \\
\stackrel{(3)}{u_{3}} & =\sum_{k=1}^{3} v_{k}, \quad\left(\nabla^{2} v_{k}=\alpha_{k} v_{k}, \quad \nabla^{2} \omega=15 \omega\right),
\end{align*}
$$

where

$$
\alpha_{k}^{3}-\frac{180(\lambda+\mu)}{\lambda+2 \mu} \alpha_{k}^{2}+\frac{120(\lambda+\mu)(7 \lambda+15 \mu)}{(\lambda+2 \mu)^{2}} \alpha_{k}+\frac{7 \cdot 900(\lambda+\mu)}{\lambda+2 \mu}=0,
$$

$$
\begin{aligned}
& \stackrel{(1)}{A_{k}}=\left[\frac{3(9 \lambda+4 \mu)}{\lambda+2 \mu} \alpha_{k}-\frac{180 \mu(\lambda+\mu)}{(\lambda+2 \mu)^{2}}\right]\left[\alpha_{k}^{2}-\frac{12(\lambda+\mu)}{\lambda+2 \mu} \alpha_{k}+\frac{180 \mu(\lambda+\mu)}{(\lambda+2 \mu)^{2}}\right]^{-1}, \\
& \stackrel{(2)}{A} k=-10\left[\frac{\lambda}{\lambda+2 \mu} \alpha_{k}-\frac{12(\lambda+\mu)}{\lambda+2 \mu}\right]\left[\alpha_{k}^{2}-\frac{12(\lambda+\mu)}{\lambda+2 \mu} \alpha_{k}+\frac{180 \mu(\lambda+\mu)}{(\lambda+2 \mu)^{2}}\right]^{-1},
\end{aligned}
$$

and

$$
\begin{aligned}
\stackrel{(1)}{u_{+}}=- & \frac{1}{\pi} \iint_{S} \frac{\Phi^{\prime}+\overline{\Phi^{\prime}}}{\bar{\zeta}-\bar{z}} d S+\frac{4}{15} \frac{23 \lambda+24 \mu}{\lambda+2 \mu} \overline{\Phi^{\prime \prime}}-2 \bar{\Psi}+ \\
& +\sum_{k=1}^{2}\left(i \frac{\varkappa_{k}-3}{3} \frac{\partial \chi_{k}}{\partial \bar{z}}-\frac{6 \lambda}{\lambda+2 \mu} \frac{\partial w_{k}}{\partial \bar{z}}\right),
\end{aligned}
$$

$$
\begin{equation*}
\stackrel{(3)}{u_{+}}=\sum_{k=1}^{2}\left(i \frac{\partial \chi_{k}}{\partial \bar{z}}+\frac{2}{5} \frac{\gamma_{3-k}}{\gamma_{k}} \frac{\partial w_{k}}{\partial \bar{z}}\right)-\frac{4}{15} \frac{3 \lambda+2 \mu}{\lambda+2 \mu} \overline{\Phi^{\prime \prime}}(z) \tag{30}
\end{equation*}
$$

$$
\left(\nabla^{2} w_{k}=\gamma_{k} w_{k}, \quad \nabla^{2} \chi_{k}=\varkappa_{k} \chi_{k},\right)
$$

$\stackrel{(0)}{u_{3}}=\sum_{k=1}^{2}\left(\frac{3 \lambda}{\lambda+2 \mu}-\frac{\gamma_{3-k}}{5}\right) \frac{1}{\gamma_{k}} w_{k}-\iint_{S}\left(\Phi^{\prime}+\overline{\Phi^{\prime}}\right) \ln |\zeta-z| d S+\Psi+\bar{\Psi}$,
$\stackrel{(2)}{u_{3}}=\sum_{k=1}^{2} w_{k}-\frac{2 \lambda}{3(\lambda+2 \mu)}\left(\Phi^{\prime}+\overline{\Phi^{\prime}}\right)$

$$
\left(\gamma_{k}^{2}-\frac{60(\lambda+\mu)}{3(\lambda+2 \mu)} \gamma_{k}+60 \frac{35 \mu(\lambda+\mu)}{(\lambda+2 \mu)^{2}}=0, \quad \varkappa_{k}^{2}-45 \varkappa_{k}+105=0\right) .
$$

The general solution of the homogeneous system (19) we can find the form

$$
\begin{aligned}
& \stackrel{(m)}{u_{+}}=\partial_{\bar{z}} \stackrel{(m)}{V_{+}}+\left(\frac{1}{\pi} \iint_{S} \frac{\overline{\varphi_{0}^{\prime}(\zeta)}-æ_{1} \varphi_{0}^{\prime}(\zeta) d S_{\zeta}}{\bar{\zeta}-\bar{z}}-\overline{\psi_{0}^{\prime}(z)}\right) \delta_{0 m}- \\
& \left(\frac{1}{\pi} \iint_{S} \frac{\varphi_{1}^{\prime}(\zeta)+\overline{\varphi_{1}^{\prime}(\zeta)} d S_{\zeta}}{\bar{\zeta}-\bar{z}}+\eta_{1} \overline{\varphi_{1}^{\prime \prime}(z)}-2 \overline{\psi_{1}^{\prime}(z)}\right) \delta_{1 m} \\
& \quad+æ_{2} \overline{\varphi_{0}^{\prime \prime}(z)} \delta_{2 m}+\eta_{2} \overline{\varphi_{1}^{\prime \prime}(z)} \delta_{3 m}, \\
& \stackrel{(m)}{u_{3}}=\stackrel{(m)}{V_{3}}-\left(\frac{1}{\pi} \iint_{S}\left(\varphi_{1}^{\prime}(\zeta)+\overline{\varphi_{1}^{\prime}(\zeta)}\right) l n|\zeta-z| d S_{\zeta}-\psi_{1}(z)-\overline{\psi_{1}(z)}\right) \delta_{0 m} \\
& -\frac{3}{2} æ_{2}\left[\left(\varphi_{0}^{\prime}(z)+\overline{\varphi_{0}^{\prime}(z)}\right) \delta_{1 m}-\left(\varphi_{1}^{\prime}(z)+\overline{\varphi_{1}^{\prime}(z)}\right) \delta_{2 m}\right] \quad(m=0,1, \ldots, N) \\
& \stackrel{(0)}{V_{1}}=\stackrel{(0)}{V_{2}}=0, \quad \stackrel{(0)}{u_{3}}=\psi_{1}(z)+\overline{\psi_{1}(z)}, \quad \text { if } N=0 \\
& \quad\left(d S_{\zeta}=\Lambda(\zeta, \bar{\zeta}) d \zeta d \bar{\zeta}, \zeta=\xi+i \eta\right) .
\end{aligned}
$$

where $\varphi_{0}^{\prime}(z), \varphi_{1}^{\prime}(z), \psi_{0}^{\prime}(z), \psi_{1}^{\prime}(z)$ are holomorphic functions of z and express the biharmonic solution of the system (19). Then $æ_{1}, æ_{2}, \eta_{1}, \eta_{2}$ are known constants.

Substituting expressions (31) into (19) the matrix equations for $\stackrel{(m)}{V_{i}}$ are obtained

$$
\begin{equation*}
\nabla^{2} V-A V=X, \quad \nabla^{2} \Omega-B \Omega=Y \tag{32}
\end{equation*}
$$

where V and Ω are column-matrices of the form

$$
V=\left(\stackrel{(0)}{V_{1}}, \stackrel{(1)}{V_{1}}, \ldots \stackrel{(N)}{V_{1}}, \stackrel{(0)}{V_{3}}, \stackrel{(1)}{V_{3}}, \ldots, \stackrel{(N)}{V_{3}}\right)^{T}, \quad \Omega=\left(\stackrel{(0)}{\left(V_{2}\right.}, \stackrel{(1)}{V_{2}}, \ldots, \stackrel{(N)}{V_{2}}\right)^{T},
$$

and A and B are block-matrices $2 N+2 \times 2 N+2$ and $N+1 \times N+1$ respectively.
Using now the formulae Vekua-Bitsadze for the homogenous matrix equations (32) we obtain the following complex representation of the general solutions

$$
\begin{aligned}
& V=2 \operatorname{Re}\left\{\varphi(z)+\frac{A}{4} \int_{z_{0}}^{z} \int_{\bar{z}_{0}}^{\bar{z}} \Lambda(t, \bar{t}) R(z, \bar{z}, t, \bar{t}) \varphi(t) d t d \bar{t}\right\} \\
& \Omega=2 \operatorname{Re}\left\{f(z)+\frac{B}{4} \int_{z_{0}}^{z} \int_{\bar{z}_{0}}^{\bar{z}} \Lambda(t, \bar{t}) r(z, \bar{z}, t, \bar{t}) f(t) d t d \bar{t}\right\}
\end{aligned}
$$

or

$$
V(z, \bar{z})=2 \operatorname{Re}\left[\alpha R\left(z, \bar{z}, z_{0}, \bar{z}_{0}\right) \varphi(z)+\int_{z_{0}}^{z} \Phi(t) R\left(z, \bar{z}, t, \bar{z}_{0}\right) d t\right],
$$

$$
\begin{aligned}
& \Omega(z, \bar{z})=2 \operatorname{Re}\left[\beta r\left(z, \bar{z}, z_{0}, \bar{z}_{0}\right)+\int_{z_{0}}^{z} \Psi(t) r\left(z, \bar{z}, t, \bar{z}_{0}\right) f(t) d t\right] \\
& \left(\varphi(z)=\frac{\alpha}{2} \int_{z_{0}}^{z} \Phi(t) d t, \quad V\left(z_{0}, \bar{z}_{0}\right)=\alpha, \quad \Phi(t)=\frac{\partial V\left(z_{0}, \bar{z}_{0}\right)}{\partial z}\right), \\
& \left(f(z)=\frac{\beta}{2} \int_{z_{0}}^{z} \Psi(t) d t, \quad \Omega\left(z_{0}, \bar{z}_{0}\right)=\beta, \quad \Psi(t)=\frac{\partial \Omega\left(z_{0}, \bar{z}_{0}\right)}{\partial z}\right),
\end{aligned}
$$

where R and r are the Riemann's matrix functions of the equations (32), $\varphi(z)$ and $f(z)$ are holomorphic column-matrices:

$$
\varphi(z)=\left(\varphi_{0}(z), \cdots, \varphi_{N}(z), \varphi_{N+1}(z), \cdots \varphi_{2 N}(z)\right)^{T}, \quad f(z)=\left(f_{0}(z), \cdots, f_{N}(z)\right)^{T}
$$

Then particular solutions of the matrix equations (32) have the form

$$
\begin{aligned}
& \hat{V}(z, \bar{z})=\frac{1}{4} \int_{z_{0}}^{z} \int_{\bar{z}_{0}}^{\bar{z}} \Lambda(t, \bar{t}) R(z, \bar{z}, t, \bar{t}) X(t, \bar{t}) d t d \bar{t} \\
& \hat{\Omega}(z, \bar{z})=\frac{1}{4} \int_{z_{0}}^{z} \int_{\bar{z}_{0}}^{\bar{z}} \Lambda(t, \bar{t}) r(z, \bar{z}, t, \bar{t}) Y(t, \bar{t}) d t d \bar{t}
\end{aligned}
$$

where

$$
\begin{aligned}
& R(z, \bar{z}, t, \bar{t})=E+\frac{A}{4} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{1}\right) d t_{1} d \bar{t}_{1}+ \\
& \left(\frac{A}{4}\right)^{2} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{1}\right)\left(\int_{t}^{t_{1}} \int_{\bar{t}}^{\bar{t}_{1}} \Lambda\left(t_{2}, \bar{t}_{2}\right) d t_{2} d \bar{t}_{2}\right) d t_{1} d \bar{t}_{1} \ldots \\
& r(z, \bar{z}, t, \bar{t})=E+\frac{B}{4} \int_{t}^{z} \int_{\bar{z}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{)} d t_{1} d \bar{t}_{1}+\right. \\
& \left(\frac{B}{4}\right)^{2} \int_{t}^{z} \int_{\bar{t}}^{\bar{z}} \Lambda\left(t_{1}, \bar{t}_{1}\right)\left(\int_{t}^{t_{1}} \int_{\bar{t}}^{\bar{t}_{1}} \Lambda\left(t_{2}, \bar{t}_{2}\right) d t_{2} d \bar{t}_{2}\right) d t_{1} d \bar{t}_{1}+\cdots
\end{aligned}
$$

For the first boundary condition (in stress) we have

$$
(\lambda+\mu) \stackrel{(m)}{\theta}-2 \mu \Lambda \frac{\partial u^{(m)}}{\partial \bar{z}}\left(\frac{d \bar{z}}{d s}\right)^{2}=\stackrel{(m)}{a_{1}}+i \stackrel{(m)}{b_{1}}, \quad \operatorname{Im}\left(\frac{\partial \stackrel{(m)}{u_{3}}}{\partial \bar{z}} \frac{d \bar{z}}{d s}\right)=\stackrel{(m)}{c_{1}} \quad(\text { on } \partial S)
$$

The second boundary condition (in displacements) for any m takes the form

$$
\stackrel{(m)}{u_{+}} \frac{d \bar{z}}{d s}=\stackrel{(m)}{a_{2}}+i \stackrel{(m)}{b_{2}}, \quad \stackrel{(m)}{u_{3}}=\stackrel{(m)}{c_{2}} \quad(\text { on } \partial S)
$$

The basic boundary conditions $(N=0)$ for any n have the form:
a) for the first boundary problem (in displacements)
b) for the second boundary problem (in stresses)

Here we present a general scheme of solution of boundary problems when the domain D is a circle of radius r_{0}.

The first boundary problem for any n takes the form (on $|z|=r_{0}$),

$$
\begin{gather*}
\stackrel{(0, n)}{U_{+}}=-\frac{æ}{\pi} \iint_{D} \frac{\Lambda \varphi^{\prime}(\zeta) d \xi d \eta}{\bar{\zeta}-\bar{z}}+\left(\frac{1}{\pi} \iint_{D} \frac{\Lambda d \xi d \eta}{\bar{\zeta}-\bar{z}}\right) \overline{\varphi^{\prime}(z)}-\overline{\psi(z)}=\stackrel{(n)}{G}_{+} \tag{35}\\
\stackrel{(0, n)}{U}_{3}=f(z)+\overline{f(z)}=\stackrel{(n)}{G}_{3}\left(z=r e^{i \varphi}, \zeta=\rho e^{i \psi}\right), \tag{36}
\end{gather*}
$$

where $\stackrel{(n)}{G}_{+}$and $\left.\stackrel{(n)}{G}\right)_{3}$ are the known values containing solutions $\stackrel{(0,1)}{U}, \cdots, \stackrel{(0, n-1)}{U}_{i}$ of the previous approximations.

Let $\Lambda(z, \bar{z})$ depend only on $r=|z|$, next $\varphi^{\prime}(z), \psi(z)$ and $\stackrel{(n)}{G}_{+}$are expanded in power series of the type

$$
\varphi^{\prime}(z)=\sum_{k=0}^{\infty} a_{k} z^{k}, \quad \Psi(z)=\sum_{k=0}^{\infty} b_{k} z^{k}, \quad \stackrel{(n)}{G}+=\sum_{k=-\infty}^{\infty} A_{k} e^{i k \vartheta}
$$

Substituting these expansions into (24), we obtain

$$
\begin{gathered}
a_{0}=\frac{r_{0}}{\alpha_{0}} \frac{æ A_{1}+\bar{A}_{1}}{æ^{2}-1}, a_{k}=\frac{r_{0}^{k+1} A_{k+1}}{æ \alpha_{k}}(k \geq 1), \\
b_{k}=-\frac{\bar{A}_{k}}{r_{0}^{k}}-\frac{\alpha_{0} r_{0}^{k+2}}{æ \alpha_{k+1}} A_{k+2},(k \geq 0), \quad \alpha_{k}=2 \int_{0}^{r_{0}} \rho^{2 k+1} \Lambda(\rho) d \rho
\end{gathered}
$$

$\stackrel{(0, n)}{U}_{3}$ is representable in the form of the Poisson integral,

$$
\begin{equation*}
\stackrel{(0, n)}{U}_{U_{3}}^{(r, \vartheta)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} G_{3}^{(n)}(\psi) \frac{r_{0}^{2}-r^{2}}{r^{2}-2 r_{0} r \cos (\psi-\vartheta)+r_{0}^{2}} d \psi \tag{37}
\end{equation*}
$$

Thus for any n we can construct formal solutions of the problem (22), when $N=0$.

From the second boundary condition (23), we obtain (on ∂D)

$$
\begin{align*}
& \stackrel{(0, n)}{\sigma}(\ell \ell)+i \stackrel{(0, n)}{\sigma}\left(\ell_{s)}\right) \stackrel{(n)}{\ell}_{+} \Rightarrow(\lambda+\mu) \stackrel{(0, n)}{\Theta}-2 \mu\left(\frac{1}{\Lambda} \stackrel{(0, n)}{U_{+}}\right) \frac{d \bar{z}}{d z}=\stackrel{(n)}{P}_{+} \text {, } \tag{38}\\
& \stackrel{(0, n)}{\sigma}_{(\ell n)}=\stackrel{(n)}{\ell_{3}} \Rightarrow \operatorname{Im}\left(\frac{\partial \stackrel{(0, n)}{U_{3}}}{\partial z} \frac{d \bar{z}}{d s}\right)=\stackrel{(n)}{P}_{3}, \tag{39}\\
& \left(\stackrel{(0, n)}{\Theta}=\frac{1}{\Lambda}\left(\frac{\partial \stackrel{(0, n)}{U_{+}}}{\partial z}+\frac{\partial \stackrel{(0, n)}{\bar{U}_{+}}}{\partial \bar{z}}\right)\right) .
\end{align*}
$$

Consider the case of a spherical shell, whose midsurface is a spherical segment of radius $R_{0} \sin \vartheta$, where R_{0} is the radius of a sphere. Isometric coordinates on the sphere can be represented in the form

$$
z=x^{1}+i x^{2}=r e^{i \varphi}, \quad r=\operatorname{tg} \frac{\vartheta}{2}, \quad \Lambda=4 R^{2}(1+z \bar{z})^{-2} \quad\left(0 \leq \vartheta \leq \vartheta_{0}\right) .
$$

Let the expressions

$$
\left(\varphi^{\prime}(z), \Psi^{\prime}(z), f(z)\right)=\sum_{k=0}^{\infty}\left(a_{k}, b_{k}, c_{k}\right) z^{k}, \quad\left(\stackrel{(n)}{g_{+}} \stackrel{(n)}{g_{3}}\right)=\sum_{k=-\infty}^{\infty}\left(A_{k}, B_{k}\right) e^{i k \varphi},
$$

be valid, where $\stackrel{(n)}{g}{ }_{+}$and $\stackrel{(n)}{g_{3}}$ are known values expressed by $\stackrel{(0,1)}{{ }_{U}^{i}}, \cdots,{ }_{i}^{(0, n-1)} U_{i}$ of the previous approximations. Substituting these expansions into (27), (28) and taking into account that principal vector and moment of stresses are zero, we obtain

$$
\begin{aligned}
a_{k} & =\frac{A_{k}}{2 \mu r_{0}^{k}} \frac{1}{1+2 æ\left(1+r_{0}^{2}\right) \beta_{k}}, \\
b_{k} & =\frac{-1}{2 \mu r_{0}^{k-1}} \frac{\left(1+r_{0}^{2}\right)^{-1}}{k+2 r_{0}^{2}}\left[\frac{\left(\left(1+r_{0}^{2}\right) k+2 r_{0}^{2}\right) A_{k+1}}{1+2 æ\left(1+r_{0}^{2}\right) \beta_{k+1} r_{0}^{2}}+\bar{A}_{k-1}\right] \quad(k \geq 0) . \\
c_{k} & =\frac{2}{\mu} \frac{R_{0}}{1+r_{0}^{2}} \frac{B_{k}}{k r_{0}^{k-1}}(k \geq 1), \quad B_{0}=0, \beta_{k}(z)=\frac{1}{z^{k+2}} \int_{0}^{z} \frac{(z-t) t^{k} d t}{(1+t \bar{z})^{3}} .
\end{aligned}
$$

From here we obtain the well-known Dini's formula

$$
\stackrel{(0, n)}{U}_{3}\left(r_{0}, \varphi\right)=-\frac{r_{0}}{\pi} \int_{0}^{2 \pi} \stackrel{(n)}{P}_{P_{3}}\left(r_{0}, \varphi\right) \ln |\sigma-z| d \vartheta+\text { const } \quad\left(\sigma=r_{0} e^{i \vartheta}\right) .
$$

References

[1] I.N. Vekua. Shell Theory: General Methods of Construction. Pitman Advanced Publishing Program, Boston-London-Melburne, 1985, 287p.
[2] A. Bitsadze. Boundary Value Problems for Second Order Elliptic Equations. Moscow, Nauka, 1966, 203p (in Russian)
[3] P.G. Ciarlet. Mathematical Elasticity. V.I three-dimensional elasticity. NorthHolland Publishing, Amsterdam-New-Oxford-York-Tokyo, 1998, 471p.
[4] A.L. Goldenveizer. Theory of Elastic thin Shells. Moscow, Nauka, 1976, 512p. (in Russian)
[5] T.V. Meunargia. A small parameter method for I. Vekua's nonlinear and non-shallow shells. Proceedings of the IUTAM Symposium on Relation of Shell, Plate, Beam, and 3D Models Dedicated to Centenary of Ilia Vekua, 23-27 April, 2007, Tbilisi, Georgia. IUTAM Bookseries, 9 (2008), 155-166
[6] T.V. Meunargia. On the complex representations for the nonlinear and non-shallow shells. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math., 23 (2009), 7-11

Received 30.11.2009; revised 23.12.2009; accepted 29.12.2009

