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The famous incompleteness theorem of Gödel proved by him in 1931 is a
first fundamental result which directly indicates that even elementary arith-
metic (treated as a rigorous formal system) contains many undecidable state-
ments. Later on, more concrete combinatorial assertions of Ramsey type were
pointed out, which also turn out to be undecidable within formal arithmetic,
but can be completely solved by using various non-constructive methods, for in-
stance, by applying König’s lemma on countably infinite trees with finite levels
(see, e.g., [1]). Moreover, it was vividly demonstrated that certain uncount-
able forms of the Axiom of Choice and the existence of nontrivial ultrafilters in
the set ω of all natural numbers allow to establish deep combinatorial results
motivated by various problems or questions from classical number theory (cf.,
for example, [2]).

Analogous situations can be observed in classical Euclidean geometry. As
is well known, the earliest more or less serious investigations in the foundations
of geometry were carried out without appealing to set-theoretical techniques.
Furthermore, in his deep investigations of this subject, D. Hilbert tried to avoid
any set-theoretical concepts, so he absolutely rejected an approach based on
set theory (cf. the text of his Foundations of Geometry, 1899). But very soon
it was recognized that it is much more convenient to inscribe all geometric
ideas and notions in the general framework of the Zermelo-Fraenkel system of
axioms of set theory (i.e., ZFC theory). In fact, almost all mathematicians
consider now the Euclidean plane or a multi-dimensional Euclidean space as
a certain set of points equipped with the vector structure over the field R of
all real numbers and endowed with the corresponding inner product < ·, · >.
So, it is assumed that the set R is already given with some fragment of set
theory and it is adopted that specific methods of this powerful theory may
be applied in various geometric topics. Actually, in such a situation we are
forced to appeal to second-order logic with respect to our geometric universe
(= the Euclidean space). This kind of logic may be regarded, in a sense, as
the ”hidden” theory of sets. The examples given below serve to illustrate this
important circumstance.

The fact just mentioned does not seem so surprising, because even some
classical problems concerning geometrical constructions with the aid of a com-
pass and a straight-edge implicitly lead to second-order logic. For instance, let
us recall several famous geometric problems of this sort.

Example 1. The first legendary geometric problem that comes from an-
cient mathematics is formulated as follows: a cube with volume 1 is given;
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it is required to construct a cube whose volume is equal to 2. As is widely
known, the above-mentioned problem of elementary geometry is undecidable
by using only a compass and a straight-edge. Analyzing the standard proof
of this undecidability, one readily sees that the argument leaves the frame-
work of elementary geometry and first-order logic. Indeed, to show that the
needed construction cannot be carried out by a compass and a straight-edge,
we suppose to the contrary that there exists a finite family of fields

Q = P0 ⊂ P1 ⊂ P2 ⊂ ... ⊂ Pk

such that every Pi+1 is a simple extension of Pi obtained by adding some
square root from an element of Pi and the last field Pk contains the unique
real solution of the equation x3 = 2. Assuming that k is the smallest natural
number corresponding to a sequence of fields with this property, we finally
come to a contradiction. Let us underline once more that the above-mentioned
argument appeals to second-order logic, because:

(a) we deal here with a certain sequence of subfields (hence subsets) of R;
(b) such a sequence can be of an arbitrarily long length.
More generally, if we have an equation

a0x
3 + a1x

2 + a2x + a3 = 0,

where a0 6= 0, a3 6= 0 and all coefficients a0, a1, a2, a3 are rational numbers,
and if we a priori know that this equation is irreducible over Q (equivalently,
has no solution belonging to Q), then no solution of the same equation can be
obtained by iterating finitely many times the process of constructing quadratic
extensions of fields (starting with Q). Indeed, it suffices to consider a particular
case when the previous equation is of the following special form:

x3 + px + q = 0,

where, as before, the coefficients p and q are rational numbers and q 6= 0.
Suppose to the contrary that there exists a finite sequence

Q = P0 ⊂ P1 ⊂ P2 ⊂ ... ⊂ Pk

of subfields of R satisfying the following conditions:
(1) some solution of this equation belongs to Pk;
(2) for every natural number i < k, there exists an element ti ∈ Pi such

that
√

ti does not belong to Pi and

Pi+1 = {c + d
√

ti : c ∈ Pi, d ∈ Pi}.

We may assume, without loss of generality, that k is the minimal natural
number for which both conditions (1) and (2) are fulfilled. Then, denoting by
x0 a solution of our equation belonging to Pk, we must have x0 = c + d

√
tk−1
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for some elements c, d and tk−1 from Pk−1. Our assumption on k implies that
c 6= 0 and d 6= 0. Further, we may write

(c + d
√

tk−1)
3 + p(c + d

√
tk−1) + q = 0,

from which it follows that

c3 + 3cd2tk−1 + cp + q = 0, 3c2 + d2tk−1 + p = 0.

But these two relations yield at once that

(−2c)3 + p(−2c) + q = 0,

which contradicts the minimality of k, because −2c is an element of Pk−1 and
is also a solution of our equation.

In this manner, we easily obtain the non-decidability of another classical
geometric problem - trisection of a given angle. As is well known, even π/9
(which equals the one third of an interior angle of any regular triangle) cannot
be constructed with the aid of a compass and a straight-edge, because its
construction is equivalent to solving the equation

x3 + 3x2 − 1 = 0,

which has no rational solutions.
The same conclusion should be made for the third classical problem in

which it is required to construct (by using a compass and a straight-edge) a
regular 7-gon inscribed in a given circle. Recall that the algebraic equivalent
of this problem is expressed by the equation

x3 + x2 − 2x− 1 = 0,

which also has no rational roots. So we again easily come to the desired
undecidability result.

Of course, the simple geometric problems discussed in Example 1 look as
rather primitive ones and are very far from numerous much more complicated
situations concerning deep facts and statements of Euclidean geometry, which
have purely set-theoretical flavor. We considered the above-mentioned clas-
sical problems only as a trivial illustration of the necessity of second-order
logic (or set theory) in various elementary constructions. Below, we will envis-
age several examples of assertions from Euclidean geometry, whose proofs are
closely connected with essentially non-elementary reasoning. These assertions
will be examined from the combinatorial and set-theoretical points of view. At
present, it is already recognized that rather delicate set-theoretical techniques
(e.g., uncountable forms of the Axiom of Choice, the Continuum Hypothe-
sis or Martin’s Axiom, the existence of large cardinals, etc.) are needed for
establishing the validity of such assertions. Questions of this type are also
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important for the foundations of geometry. In particular, it is well known that
there are topics in elementary geometry, which are connected with the most
fundamental concepts of contemporary mathematics and, simultaneously, are
of interest for a wide audience of mathematicians.

Among topics of this kind we may especially indicate the following:
1) the notions of volume and measure in elementary geometry (cf. the

remarkable monograph by Hadwiger [12]);
2) equidecomposability theory of polyhedra and of more general geometric

figures (cf. [3], [12], [23]);
3) elements of the theory of convex sets (see again [12] and many other

text-books of convex geometry or convex analysis);
4) incidence and combinatorial properties of subsets of Euclidean space

(including various combinatorial schemes motivated by problems and questions
from convex, discrete, and projective geometry);

5) approaches to the foundations of geometry by starting with various prim-
itive notions.

All of the above-mentioned topics have deep connections with purely log-
ical and set-theoretical techniques. In our opinion, graduate students should
be provided with information that highlights those important aspects of ge-
ometry, which are closely related to finite and infinite combinatorics, discrete
mathematics, and general point set theory.

For instance, various combinatorial properties of convex polyhedra lying
in Euclidean space are of interest for a broad audience of mathematicians, in-
cluding under-graduate and graduate students. So, let us consider one typical
question from the theory of convex polyhedra, which deserves to be discussed
at the popular level. Extensive information on convex polyhedra is presented in
the well-known monographs [6], [11] and [12], and in many other text-books of
geometry. There are several interesting and important topics in equidecompos-
ability theory of polyhedra, where essentially non-constructive methods found
unexpected applications (cf. [3], [23]). We would like to touch upon some
non-effective set-theoretical approaches which successfully work in elementary
geometry.

Example 2. To be more concrete, recall Hilbert’s third problem in which it
is required to establish the non-equidecomposability of the three-dimensional
unit cube and a regular tetrahedron of volume 1. This problem and many
other similar questions, concerning equidecomposability of convex (and not
necessarily convex) polyhedra, are closely connected with certain non-trivial
solutions of the Cauchy functional equation

f(x + y) = f(x) + f(y) (x ∈ R, y ∈ R).

It turned out that those solutions are very helpful and provide important
invariants of the corresponding transformation groups (the group of all trans-
lations, the group of all motions, etc.). However, a nontrivial solution of the
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Cauchy functional equation can be constructed only with the aid of the Axiom
of Choice and any such solution is non-measurable in the Lebesgue sense (see
[3] and [12] where a number of questions related to Hilbert’s third problem
are discussed in detail). Notice by the way that nontrivial solutions f of the
Cauchy functional equation, which are exploited in equidecomposability theory
of polyhedra, as a rule, satisfy the condition f(π) = 0. In order to construct
such an f , we must first show that π is an irrational number. An elementary
proof of this fact is not quite easy (as widely known, there are elementary
proofs of the much stronger fact stating that π is a transcendental number).

Example 3. Considering more general classes of geometric figures, we
come to various equidecomposability paradoxes. Recall that the most famous
result in this direction is the Banach-Tarski paradox (see [23]), the validity
of which is essentially implied by the Axiom of Choice and by some specific
algebraic properties of the group of all rotations of the Euclidean space R3

about its origin. Here we can see a remarkable result of pure mathematics,
which is valid because of deep relationships between geometry, set-theory and
group theory (a detailed account is presented in [23], where many references
to other works and sources are also given).

Example 4. In the theory of convex sets, sometimes it is useful to apply
the Axiom of Choice, the method of transfinite induction or the Zorn lemma
in order to obtain the desired result. For instance, let E be a vector space
over the field R of all real numbers and let A and B be any two nonempty
disjoint convex subsets of E. By using a simple geometric argument and the
Zorn lemma, one shows that there always exist two convex subsets A′ and B′

of E such that:
(1) A′ and B′ are also disjoint and their union coincides with E;
(2) A is contained in A′ and B is contained in B′.
Further, suppose that E is a Hausdorff topological vector space. Then,

denoting by cl(A′) and cl(B′) the closures of the sets A′ and B′ respectively,
it is not hard to see that the set

F = cl(A′) ∩ cl(B′)

is an affine linear manifold in E. Moreover, if F differs from E, then F is an
affine hyperplane in E separating the sets A′ and B′ and, hence, separating
the initial convex sets A and B as well. We thus obtain the fundamental sepa-
ration theorem for a pair of disjoint convex sets. This approach to separation
theorems for disjoint convex sets is preferable in various respects. In partic-
ular, it vividly shows that, in the case of an infinite-dimensional real Hilbert
space E, there exist two disjoint convex subsets A and B of E, both of which
are everywhere dense in E (notice also that if E is separable, then the exis-
tence of A and B does not need the Axiom of Choice). In fact, if a Hausdorff
topological vector space E is such that there exists at least one discontinuous
linear functional on E, then the required decomposition of E into two convex
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everywhere dense subsets of E is guaranteed (the converse assertion is also
true).

In this connection, it is interesting to mention that if any two disjoint
convex polygons are given in the Euclidean plane R2, then there always exists
a straight line separating these polygons and containing a side of one of them.
In other words, for any two disjoint convex polygons a strengthened form
of the separation principle is valid, which easily follows from the well-known
Helly theorem [5]. However, the analogous result does not longer hold for two
disjoint convex polyhedra in the three-dimensional Euclidean space R3.

Example 5. Set-theoretical methods also work when we are dealing with
an uncountable version of the famous Erdös-Szekeres problem on the existence
of a sufficiently large convexly independent subset of a given point-set (see
[8]). Recall that, according to the Erdös-Szekeres theorem, if Z is an infinite
subset of the Euclidean plane R2 and all points of Z are in general position,
then there exists an infinite subset Z ′ of Z all points of which are in convex
position. The natural question arises whether any uncountable set U ⊂ R2

of points in general position contains an uncountable subset U ′ of points in
convex position. By applying a transfinite construction of Luzin type, it can
be proved that the answer to this question is negative (for more details, see
[14]).

Example 6. As for various incidence properties of families of sets in Eu-
clidean spaces, the best known example of this kind is the Sylvester theorem on
a finite family of collinear points in the Euclidean plane. This theorem admits
a beautiful (in fact, set-theoretical) proof and is often presented in geometric
text-books oriented to school pupils (another beautiful purely combinatorial
proof of the Sylvester theorem is based on the Euler formula for planar graphs).
However, it should be noticed here that, as a rule, even a three-dimensional
version of this theorem, which is also true, is not discussed in those text-books
or manuals.

Example 7. Certain subsets of the plane R2 with paradoxical incidence
properties were constructed by using the Axiom of Choice. Among these sets a
Mazurkiewicz set M should be mentioned especially, which is characterized by
the property that every straight line of R2 meets M in exactly two points (see
[19]). Similar sets can be constructed by replacing the family of all straight
lines by the family of all circles lying in R2. In this way we come to a subset
C of R2 which meets every circle of R2 in precisely three points. Let us
observe that the descriptive structure of M (or of C) can be relatively good
and relatively bad. For example, M can be of Lebesgue measure zero but
also can be nonmeasurable in the Lebesgue sense. Further, some families of
geometric figures having prescribed combinatorial properties were constructed
by applying essentially non-elementary set-theoretical methods (see [4], [13],
[15], and [18]). For instance, it was shown that there exists a family of pairwise
congruent circles in R2 such that each point of R2 belongs to exactly three
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circles of this family. The construction of such a family may be regarded
as dual to the construction of the set C mentioned above. Notice that, for
any even k > 0, there exists an elementary example of a family of pairwise
congruent circles in R2 such that each point of R2 belongs to exactly k circles
of the family.

Example 8. It is well known that the most natural visual interpretation
of various relationships between members of a given family of sets is provided
by Euler-Venn diagrams. However, even in the simplest situation where an
independent family of four sets is considered there exists no corresponding
Euler-Venn diagram whose elements are disks lying in the Euclidean plane. If
convex polygons are allowed to be elements of Euler-Venn diagrams, then the
situation becomes much better and one may assert that there exists an infinite
independent family of convex polygons in the plane. At the same time, it can
be proved that there exists no uncountable independent family of polygons in
R2. A class of geometric figures slightly more general than polygons enables
us to prove the existence of uncountable independent families of such figures.
For this purpose, let us call a quasi-polygon any compact subset of R2 whose
interior is nonempty and whose boundary can be represented as the union
of countably many non-degenerate line segments. By using the method of
transfinite induction, it was shown in [17] that there exists an uncountable
independent family of convex quasi-polygons in R2.

Example 9. As was demonstrated by Sierpiński (see, e.g., his remarkable
monograph [21]), there are propositions of elementary geometry which are
equivalent to the Continuum Hypothesis. For example, one of his old results
states that the following two assertions are equivalent:

(i) the Continuum Hypothesis;
(ii) there exists a partition {X,Y, Z} of the Euclidean space R3 such that X

has finite intersection with any line parallel to x-axis, Y has finite intersection
with any line parallel to y-axis, and Z has finite intersection with any line
parallel to z-axis.

Sierpiński’s above-mentioned result stimulated further investigations in this
direction (Bagemihl, Davies, Erdös, Jackson, Mauldin and others).

Example 10. Let a and b be any two positive real numbers. It is easy
to indicate a subset Z of the Euclidean plane R2, such that all horizontal
sections of Z are line segments of length a and all vertical sections of Z are
line segments of length b. In fact, Z can be taken as a strip in R2 whose
boundary lines are expressible in the form of the equations

y = (b/a)x + c1, y = (b/a)x + c2,

where |c1−c2| = b. This construction is absolutely elementary and visual. But
the natural question arises whether it is possible to construct a bounded set
with analogous properties of its linear (horizontal and vertical) sections. More
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precisely, suppose that 0 ≤ a ≤ 1 and 0 ≤ b ≤ 1. Then one may ask whether
there exists a set W ⊂ [0, 1]2 such that:

(1) all horizontal sections ([0, 1]× {y}) ∩W , where y ∈ [0, 1], are of linear
Lebesgue measure a;

(2) all vertical sections ({x} × [0, 1]) ∩ W , where x ∈ [0, 1], are of linear
Lebesgue measure b.

In the sequel, we shall say that W ⊂ [0, 1]2 is an (a, b)-homogeneous set in
the unit square [0, 1]2 if both relations (1) and (2) are satisfied for W .

Notice that if a = b, then a set W with the above-mentioned property can
be constructed effectively, i.e., without the aid of the Axiom of Choice. The
main idea of such a construction is as follows. We first represent the given
number a ∈ [0, 1] in the form

a = 1/2n1 + 1/2n2 + ... + 1/2nk + ...,

where (n1, n2, ..., nk, ...) is a strictly increasing sequence of positive integers,
and then we define by recursion a sequence (W1,W2, ..., Wk, ...) of subsets of
[0, 1]2, which increases by the inclusion relation and, for each natural number
k > 0, the horizontal and vertical sections of Wk by the line segments

[0, 1]× {y}, [0, 1]× {x} (x ∈ [0, 1], y ∈ [0, 1])

are of linear Lebesgue measure 1/2n1 + 1/2n2 + ... + 1/2nk . Finally, we put

W = ∪{Wk : 0 < k < ω}.
If a 6= b, then no effective construction of the required set W is possible,

because according to the classical Fubini theorem, such a W must be non-
measurable with respect to the two-dimensional Lebesgue measure λ2 on the
plane R2. Moreover, as follows from one result of Friedman [10], a set W
with the desired properties cannot be constructed even within the Zermelo-
Fraenkel set theory (cf. also [9]). However, by assuming the Continuum Hy-
pothesis and applying Sierpiński’s classical decomposition of the unit square
[0, 1]2 (see [20], [21], [22]), it becomes possible to establish the existence of an
(a, b)-homogeneous subset of the square [0, 1]2. For more details, we refer the
reader to [16] where some three-dimensional analogues of such sets are also
considered.

Finishing this brief survey, it is reasonable to recall that several emi-
nent mathematicians (Tarski, Scott, Choquet and others) suggested their ap-
proaches to the foundations of geometry and investigated certain logical and
set-theoretical aspects of the problem. An approach to various geometric con-
structions by means of the methods of non-standard models is also of special
interest (cf. [7]).

The main part of this paper was reported on the 9th International Confer-
ence on Geometry and Applications, September 5-10, 2009 (Varna, Bulgaria).
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