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Abstract: The spectral representation of the linear multigroup transport
problem is applied to the additional example. We obtain the dispersion rela-
tions, normalization coefficients and eigenfunctions for any order N of scatter-
ing by using the eigenfunctions for isotropic scattering as the basis.
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In the paper [1] was developed the mathematical reformulation of singular
approach to the solution of the one-dimensional equation of multigroup trans-
port theory. A number of simple examples were presented in which the spectral
formulation leads to the standard results of singular approach. In this paper
we demonstrate that the eigefunctions for isotropic scattering can be used as
a basis set for obtaining the dispersion relation, normalization coefficients and
eigenfunctions for Nth order scattering.

The phase function for a previously solved transport problem is

f0(μ → μ′) =
N∑

s=0

(2s + 1)Ps(μ)fsPs(μ
′),

with corresponding characteristic matrix equation

(νI − μ�)φν(μ) =
cν

2

∫ +1

−1

f0(μ
′ → μ)φν(μ

′)dμ′,

and known eigenfunctions φν(μ), eigenvalue spectrum S0[ν] and spectral den-
sity dρ(ν). The phase function for the problem to be solved (N -th order scat-
tering) is

f(μ → μ′) =
N+1∑
s=0

(2s + 1)Ps(μ)fsPs(μ
′),
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with corresponding characteristic matrix equation

(ωI − μ�)ψω(μ) =
cω

2

∫ +1

−1

f(μ′ → μ)ψω(μ′)dμ′, (1)

and assumed unknown eigenfunctions ψω(μ), eigenvalue spectrum SN [ω], nor-
malization coefficients NN(ω) where � = diag {l1, ..., li0} , li > 0, moreover
without loss of generality we can take max

i
li = 1, Ps(μ) = diag {ps(μ), ..., ps(μ)} ,

ps(μ) is the Legendre polynomial of order s, and fs is i0 × i0 matrix, s =

1, 2, ..., s0. For the sake of simplicity, we have chosen f0 = I and fs are sym-
metric matrics.

Our basic integral equation (see [1]) is

(ω − ν)K(ν, ω) =
ωνc

2

∫
S0[ν′]

(A(ν, ν ′) − A0(ν, ν
′))dρ(ν ′)K(ν ′, ω). (2)

where
A(ν, ν ′) − A0(ν, ν

′)

=

∫ +1

−1

dμ

∫ +1

−1

dμ′φν(μ)(f(μ′ → μ) − f0(μ
′ → μ))φν′(μ′).

Its solution is equivalent to the solution of Eq.(1). However, where Eq.(1) is
an integral equation involving an integration over the μ, Eq.(2) involves the
spectral integral over the known eigenvalues of a complete set of solutions to
an equation of transport.

The continuum of S0[ν] is known to be given by −1 ≤ ν ≤ 1. After some
algebra from Eq.(2) we obtain the dispersion relation giving the discrete values
of ω, which lie outside of the continuum of S0[ν],

det
(
I − cω

2

N∑
s=1

(2s + 1)
(
L(ω, S0)hs(ω) +

rs(ω)

ω

)
fsg

0
s(ω)

)
= 0.

In this equation L(ω, S0) is the matrix spectral integral defined by

L(ω, S0) =

∫
S0[ν]

ν

ω − ν
h0(ν)dρ(ν)h0(ν)

where hs(ν) is the matrix defined by

hs(ν) =

∫ +1

−1

Ps(μ)φν(μ)dμ,

the s-th degree matrix polynomials rs(ω) are defined by

r0(ω) = 0, r1(ω) = −2ωI,
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and the recursion relation

(s + 1)rs+1(ω) + rs(ω) = (2s + 1)(1 − c)ωrs(ω), s ≥ 1,

the s-th degree matrix polynomials g0
s(ω) are defined by

g0
0(ω) = I,

and the recursion relation

(s + 1)g0
s+1(ω) + g0

s(ω) = (2s + 1)(I − cfs)ωg0
s(ω), s ≥ 0.

The matrix function gs(ω) which defined by

gs(ω) =

∫ +1

−1

Ps(μ)ψω(μ)dμ

is given by the equation

gs(ω) = g(ω)g0
s(ω), s ≥ 0.

For all ω in the continuum of S0[ν], that is −1 ≤ ν ≤ 1, basic Eq.(2) has
the singular solution of the form

K(ν, ω) = −ω
N∑

s=1

(2s + 1)φν(ω)hs(ν)fsgs(ω)

+δ(ν − ω)N0(ω)
N∑

s=1

(2s + 1)Ps(ω)fsgs(ω). (3)

For the case of continuum ω, the normalization coefficient NN(ω) for the
unknown eigenfunctions ψω(μ) are given by∫

S0[ν]

K(ν, ω)dρ(ν)K(ν, ω′) = δ(ω − ω′)NN(ω).

After the calculation of NN(ω) we find that

N(ω) = N0(ω)
(
[M(ω, ω) − ωN−1

0 (ω)
N∑

s=1

(2s + 1)gs(ω)fshs(ω)λ0(ω)]

X[M(ω, ω) − ωN−1
0 (ω)

N∑
s=1

(2s + 1)λ0(ω)hs(ω)fsgs(ω)]
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+[
cπω2

2
N−1

0

N∑
s=1

(2s + 1)gs(ω)fshs(ω)]

X[
cπω2

2
N−1

0

N∑
s=1

(2s + 1)hs(ω)fsgs(ω)]
)

where

M(μ, ω) =
N∑

s=0

(2s + 1)Ps(μ)fsgs(ω).

The normalization coefficient for ψωj(μ) with ωj discrete follows from

N(ωj) =

∫
S0[ν]

K(ν, ωj)dρ(ν)K(ν, ωj).

Then employing last formula, we can express N(ωj) in the form

N(ωj)

= (
cωj

2
)2

N∑
n=1

(2n + 1)
N∑

s=1

(2s + 1)fsgs
d

dω
[ωhs(ω)L(ω, S0)hn(ω) |ω=ωj

fngn(ωj)

+(
cωj

2
)2

N∑
n=1

(2n + 1)
N∑

s=1

(2s + 1)fsgs(ωj)
d

dωj

[hs(ωj)rn(ωj)]fngn(ωj)

+(
cωj

2
)2

N∑
n=1

(2n + 1)
N∑

s=1

(2s + 1)fsgn(ωj)
d

dωj

[hn(ωj)rs(ω)]fngs(ωj)

The eigenfunctions ψω(μ) for the unsolved problem are given by Eq.(15)
from [1]

ψω(μ) =

∫
S0[ν]

φν(μ)dρ(ν)K(ν, ω). (4)

To obtain ψω(μ) for continuum ω, substitute the expression for K(ν, ω) given
by Eq.(3) into Eq.(4), we obtain

ψω(μ) = −ω
N∑

s=1

(2s + 1)

∫
S0[ν]

φν(μ)dρ(ν)φν(ω)hs(ν)fsgs(ω)

+
N∑

s=1

(2s + 1)φω(μ)Ps(ω)fsgs(ω).

The eigenfunction ψωj
(μ) for discrete ωj is obtained by substituting K(ν, ωj),

as given by Eq. (2), into Eq.(4). We obtain

ψωj
(μ) =

∫
S0[ν]

φν(μ)dρ(ν)
ωjνc

2
(ωj − ν)−1

N∑
s=1

(2s + 1)hs(ν)fsgs(ωj).
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