MAIN ARTICLES

SPACES WITH A LOCALLY COUNTABLE sn-NETWORK

Ying Ge

Department of Mathematics, Suzhou University, Suzhou, 215006, P.R.China geying@pub.sz.jsinfo.net

Abstract: In this paper, we discuss a class of spaces with a locally countable sn-network. We give some characterizations of this class and establish the relation among spaces with a locally countable weak-base, spaces with a locally countable sn-network and spaces with a locally countable cs-network. Also, we investigate variance and inverse invariance of spaces with a locally countable sn-network under certain mappings. As some applications of these results, we obtain some results relative to spaces with a locally countable weak-base.

Key words: sn-networks, cs-networks, weak-base, perfect-mappings, (strongly) Lindelöf mapping, finite subsequence-covering mapping

MSC 2000: 54C10, 54D20, 54D65, 54D80

1. Introduction

sn-networks is a class of important networks between weak-bases and csnetworks, which was introduced and called universal cs-networks by S. Lin in [20]. It is an interesting work to discuss spaces with certain sn-network. In recent years, sn-metrizable spaces (i.e. spaces with a σ -locally finite snnetwork) and sn-second spaces (i.e. spaces with a countable sn-network) have attracted considerable attention and many interesting results have been obtained ([11, 12, 13, 20, 22, 23, 32]).

In this paper, we discuss a class of spaces with a locally countable sn-network. We give some characterizations of this class and establish the relation among spaces with a locally countable weak-base, spaces with a locally countable sn-network and spaces with a locally countable cs-network. Also, we investigate variance and inverse invariance of spaces with a locally countable sn-network under certain mappings. As some applications of these results, we obtain some results relative to spaces with a locally countable weak-base.

Throughout this paper, all spaces are assumed to be regular, T_1 and all mappings are continuous and onto. \mathbb{N} , ω and ω_1 denote the set of all natural numbers, the first infinite ordinal and the first uncountable ordinal respectively. For a set D, |D| denotes the cardinal of D. $\{x_n\}$ denotes a sequence, where the n-th term is x_n . Let X be a space and $P \subset X$. A sequence $\{x_n\}$ converging to x in X is eventually in P if $\{x_n : n > k\} \bigcup \{x\} \subset P$ for some $k \in \mathbb{N}$; is frequently in P if $\{x_{n_k}\}$ is eventually in P for some subsequence $\{x_{n_k}\}$ of $\{x_n\}$. Let \mathcal{P} be a family of subsets of X, $x \in X$ and f be a mapping defined on X. Then $f(\mathcal{P}) = \{f(P) : P \in \mathcal{P}\}, (\mathcal{P})_x \text{ denotes the subfamily } \{P \in \mathcal{P} : x \in P\}$ of $\mathcal{P}, \bigcup \mathcal{P}$ and $\bigcap \mathcal{P}$ denote the union $\bigcup \{P : P \in \mathcal{P}\}$ and the intersection $\bigcap \{P : P \in \mathcal{P}\}$ respectively.

2. Spaces with a Locally Countable sn-Network

Definition 2.1 ([8, 9]). Let X be a space and let $x \in X$.

(1) $P \subset X$ is called a sequential neighborhood of x if each sequence $\{x_n\}$ converging to x is eventually in P.

(2) A subset U of X is called sequentially open if U is a sequential neighborhood of each of its points; a subset F of X is called sequentially closed if X - F is sequentially open.

(3) X is called a sequential space if each sequentially open subset of X is open in X, equivalently, if each sequentially closed subset of X is closed in X.

(4) X is called a k-space if for each $A \subset X$, A is closed in X iff $A \bigcap K$ is closed in K for each compact subset K of X.

Remark 2.2 (1) P is a sequential neighborhood of x iff each sequence $\{x_n\}$ converging to x is frequently in P.

(2) The intersection of finite sequential neighborhoods of x is a sequential neighborhood of x.

(3) sequential spaces \implies k-spaces.

Definition 2.3 Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a cover of a space X, where $\mathcal{P}_x \subset (\mathcal{P})_x$.

(1) \mathcal{P} is called a network of X, if whenever $x \in U \subset X$ with U open in X, there is $P \in \mathcal{P}_x$ such that $x \in P \subset U$, where \mathcal{P}_x is called a network at x in X.

(2) \mathcal{P} is called a k-network of X([27]), if whenever $K \subset U$ with K compact in X and U open in X, there is a finite $\mathcal{F} \subset \mathcal{P}$ such that $K \subset \bigcup \mathcal{F} \subset U$.

(3) \mathcal{P} is called a cs^{*}-network of X([10]), if each convergent sequence S converging to a point $x \in U$ with U open in X, then S is frequently in $P \subset U$ for some $P \in \mathcal{P}$.

Definition 2.4 Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a network of a space X, where $\mathcal{P}_x \subset (\mathcal{P})_x$.

(1) \mathcal{P} is called a cs-network of X([15]), if each convergent sequence S converging to a point $x \in U$ with U open in X, then S is eventually in $P \subset U$ for some $P \in \mathcal{P}_x$, where \mathcal{P}_x is called a cs-network at x in X.

Assume \mathcal{P}_x also satisfies the following Condition (*) for each $x \in X$ in the following (2) and (3).

Condition (*): If $P_1, P_2 \in \mathcal{P}_x$, then there is $P \in \mathcal{P}_x$ such that $P \subset P_1 \bigcap P_2$.

(2) \mathcal{P} is called a weak-base of X([1]), if for $G \subset X$, G is open in X iff for each $x \in G$ there is $P \in \mathcal{P}_x$ such that $P \subset G$, where \mathcal{P}_x is called a weak neighborhood base at x in X. (3) \mathcal{P} is called an sn-network of X([11]), if each element of \mathcal{P}_x is a sequential neighborhood of x for each $x \in X$, where \mathcal{P}_x is called an sn-network at x in X.

Remark 2.5 ([23]). (1) weak-bases \implies sn-networks \implies cs-networks \implies cs^{*}-networks.

(2) In a sequential space, weak-bases \iff sn-networks.

(3) sn-networks are called universal cs-networks in [20].

The following example belongs to S. Lin.

Example 2.6 In a k-space, sn-networks $\neq \Rightarrow$ weak-bases.

Proof. Let X be the Stone $- \check{C}ech$ compactification $\beta \mathbb{N}$ of \mathbb{N} . Then X is compact, and so it is a k-space. Since each convergent sequence in $\beta \mathbb{N}$ is trivial, $\mathcal{P} = \{\{x\} : x \in X\}$ is an sn-network of X. It is clear that \mathcal{P} is not a weak-base.

Definition 2.7 (1) A space X is called g-metrizable ([8]) (resp. sn-metrizable ([12]), $\aleph([27])$) if X has a σ -locally finite weak-base (resp. sn-network, k-network).

(2) A space X is called g-second countable ([29]) (resp. sn-second countable ([13]), $\aleph_0([26])$) if X has a countable weak-base (resp. sn-network, k-network).

(3) A space X is called g-first countable ([1]) (resp. sn-first countable ([12]), cs-first countable ([20])), if X has a weak-base (resp. sn-network, cs-network) $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ such that \mathcal{P}_x is countable for each $x \in X$.

Remark 2.8 (1) By Remark 2.5, a space X is g-metrizable (resp. g-second countable, g-first countable) iff it is sequential and sn-metrizable (resp. sequential and sn-second countable, sequential and sn-first countable).

(2) If X has a point countable weak-base (resp. sn-network, cs-network), then X is g-first countable (resp. sn-first countable, cs-first countable).

(3) It is well known that a space is a \aleph_0 -space iff it has a countable csnetwork, iff it has a countable cs^{*}-network.

(4) sn-first countable is called universally csf-countable in [20].

The following lemma is obtained by combining [19, Theorem 2.8.6] and [22, Corollary 5.1.13].

Lemma 2.9 The following are equivalent for a space X.

(1) X has a locally countable cs-network.

(1) X has a locally countable cs^* -network.

(1) X has a locally countable k-network.

Theorem 2.10 The following are equivalent for a space X.

(1) X has a locally countable sn-network.

(2) X is an sn-first countable space with a locally countable cs-network (resp. k-network, cs^* -network).

(3) X is a locally sn-second countable space with a σ -locally countable sn-network

(4) X is a locally \aleph_0 -space with a σ -locally countable sn-network.

(5) $(MA + \neg CH + TOP) X$ is a locally hereditarily separable space with a σ -locally countable sn-network.

(6) X is a locally (hereditarily) Lindelöf space with a σ -locally countable sn-network.

Proof. (1) \implies (2). Note that a space with a locally countable *sn*-network is *sn*-first countable. So (1) \implies (2) from Remark 2.5(1) and Lemma 2.9.

 $(2) \Longrightarrow (1)$. By Lemma 2.9, let \mathcal{P} be a locally countable *cs*-network of X. We can assume that \mathcal{P} is closed under finite intersections. For each $x \in X$, let $\{B_n(x) : n \in \mathbb{N}\}$ be an *sn*-network at x in X, and let $\mathcal{P}_x = \{P \in \mathcal{P} : B_n(x) \subset P \text{ for some } n \in \mathbb{N}\}$, then each element of \mathcal{P}_x is a sequential neighborhood of X. Put $\mathcal{P}' = \bigcup \{\mathcal{P}_x : x \in X\}$, then $\mathcal{P}' \subset \mathcal{P}$ is locally countable. It suffices to prove that \mathcal{P}_x is a network at x in X for each $x \in X$. If not, there is an open neighborhood U of x such that $P \not\subset U$ for each $P \in \mathcal{P}_x$. Let $\{P \in \mathcal{P} : x \in P \subset U\} = \{P_m(x) : m \in \mathbb{N}\}$. Then $B_n(x) \subset P_m(x)$ for each $n, m \in \mathbb{N}$. Choose $x_{n,m} \in B_n(x) - P_m(x)$. For $n \geq m$, let $x_{n,m} = y_k$, where k = m + n(n-1)/2. Then the sequence $\{y_k : k \in \mathbb{N}\}$ converges to x. Thus , there is $m, i \in \mathbb{N}$ such that $\{y_k : k \geq i\} \bigcup \{x\} \subset P_m(x) \subset U$. Take $j \geq i$ with $y_j = x_{n,m}$ for some $n \geq m$. Then $x_{n,m} \in P_m(x)$. This is a contradiction.

 $(1) \Longrightarrow (3)$. Let \mathcal{P} be a locally countable *sn*-network of X. For each $x \in X$, there is an open neighborhood U of x such that $\mathcal{P}_U = \{P \cap U : P \in \mathcal{P}\}$ is countable. It is easy to prove that \mathcal{P}_U is a countable *sn*-network of subspace U. So U is an *sn*-second countable space. Hence, X is a locally *sn*-second countable space.

 $(3) \implies (4) \implies (5)$. It is clear that *sn*-second countable $\implies \aleph_0 \implies$ hereditarily separable. So $(3) \implies (4) \implies (5)$.

 $(5) \Longrightarrow (6)$. It suffices to prove that X is locally hereditarily Lindelöf. Let $x \in X$ and U be a hereditarily separable neighborhood of x. Recalled a space is an S-space if it is a hereditarily separable and not hereditarily Lindelöf. Since $(MA + \neg CH + TOP)$ there are no S-spaces([28, Theorem 7.2.3]), U is hereditarily Lindelöf. So X is locally hereditarily Lindelöf.

(6) \Longrightarrow (1). Let $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$ be a σ -locally countable *sn*-network of a Locally *Lindelöf* space X, where each \mathcal{P}_n is locally countable in X. Let $x \in X$ and let U be a *Lindelöf* neighborhood of x. Let $n \in \mathbb{N}$. For each $y \in U$, there is an open neighborhood U_y of y such that U_y intersects at most countable many elements of \mathcal{P}_n . The open cover $\{U_y : y \in U\}$ of Uhas countable subcover \mathcal{V} . Put $V = \bigcup \mathcal{V}$, then $U \subset V$ and V intersects at most countable many elements of \mathcal{P}_n . So U intersects at most countable many elements of \mathcal{P}_n . Moreover, U intersects at most countable many elements of \mathcal{P} . Thus \mathcal{P} is a locally countable *sn*-network of X.

Question 2.11 Can " $(MA + \neg CH + TOP)$ " in Theorem 2.10(5) be omitted?

We give some partial answers of Question 2.11 by assuming X is a k-space.

Lemma 2.12 ([14, 22]). The following hold for a space X.

(1) If X is a compact space with a point countable k-network, then X is metrizable.

(2) If X is a k-space with a point countable k-network, then X is sequential.

(3) If X has a point countable cs^* -network and each compact subset of X is metrizable, then X has a point countable k-network.

Lemma 2.13 If X is a k-space with a σ -locally countable cs^{*}-network, then X is sequential.

Proof. Let \mathcal{P} be a σ -locally countable cs^* -network of X. Whenever K is a compact subset of X, put $\mathcal{P}_K = \{P \cap K : P \in \mathcal{P}\}$, then \mathcal{P}_K is a σ -locally countable cs^* -network of K. It is easy to see that \mathcal{P}_K is a countable cs^* -network of K, and so K has a countable k-network from Remark 2.8(3). By Lemma 2.12(1), K is metrizable. So X has a point-countable k-network from Remark 2.12(3), hence X is sequential from Remark 2.12(2).

Theorem 2.14 The following are equivalent for a k-space X.

(1) X has a locally countable sn-network.

(2) X is a topological sum of sn-second countable spaces.

(3) X is a sn-metrizable, locally (hereditarily) separable space.

(4) X is a locally (hereditarily) separable space with a σ -locally countable sn-network.

Proof. (1) \Longrightarrow (2). X is a k-space with a locally countable cs-network, so X is a topological sum of \aleph_0 -spaces([17, Theorem 1]). It is easy to see that sn-first countability is hereditary to subspace. Note that each sn-first countable, \aleph_0 -space is sn-second countable ([13, Theorem 2.1]). So X is a topological sum of sn-second countable spaces.

(2) \Longrightarrow (3). Let $X = \bigoplus \{X_{\alpha} : \alpha \in \Lambda\}$, where each X_{α} is *sn*-second countable. Note that each X_{α} is a (hereditarily) separable, open subspace of X, So X is locally (hereditarily) separable. For each $\alpha \in \Lambda$, let $\{P_{\alpha,n} : n \in \mathbb{N}\}$ be a countable *sn*-network of X_{α} . Put $\mathcal{P}_n = \{P_{\alpha,n} : \alpha \in \Lambda\}$ for each $n \in \mathbb{N}$, and put $\mathcal{P} = \bigcup \{\mathcal{P}_n : n \in \mathbb{N}\}$, then \mathcal{P} is a locally finite *sn*-network of X. So X is an *sn*-metrizable space.

 $(3) \Longrightarrow (4)$. It is clear.

(4) \implies (1). By Theorem 2.10, it suffices to prove that X is locally Lindelöf. Let \mathcal{P} be a σ -locally countable sn-network of X. X is a sequential

space from Lemma 2.13, so \mathcal{P} is a σ -locally countable k-network of X([30, Corollary 1.5]). Recalled a space is meta-*Lindelöf* if each open cover of it has a point countable open refinement. Thus X is hereditarily meta-*Lindelöf*([17, Proposition 1]). Each hereditarily meta-*Lindelöf*, locally separable space is locally *Lindelöf*([14, Proposition 8.7]), so X is locally *Lindelöf*.

Corollary 2.15 A space X is a k-space with a locally countable sn-network iff X has a locally countable weak-base.

The following examples to shows that "k" in Theorem 2.14 can not be omitted.

Example 2.16 There is a space with a locally countable sn-network, even it is not a topological sum of \aleph_0 -spaces.

Proof. Let D is a discrete space, where $|D| = 2^{\omega}$. By [3, Example 4.2], there is an almost disjoint family $\{\mathcal{P}_{\alpha} : \alpha < 2^{\omega}\}$ consisting of countable infinite subsets of D such that for each uncountable subset P of D, there is $\alpha < 2^{\omega}$ such that $P_{\alpha} \subset P$. Let $\{P_{\alpha,n} : n \in \mathbb{N}\}$ be a mutually disjoint family consisting of infinite subsets of P_{α} . For each $\alpha < 2^{\omega}$ and each $n \in \mathbb{N}$, choose $p_{\alpha,n} \in \overline{P_{\alpha,n}} - P_{\alpha,n}$, where $\overline{P_{\alpha,n}}$ is the closure of $P_{\alpha,n}$ in the *Stone* $- \check{C}ech$ compactification βD of D. Put $X = D \bigcup \{p_{\alpha,n} : \alpha < 2^{\omega}, n \in \mathbb{N}\}$, and X is endowed the subspace topology of βD .

Claim 1. X has a σ -locally countable *sn*-network.

In fact, since each compact subset of X is finite ([22, Example 1.5.5]), and so each convergent sequence of X is finite. Then, it is easy to see that each *cs*-network of X is an *sn*-network. X has a σ -locally countable *cs*-network([22, Example 5.1.18(1)]), so X has a σ -locally countable *sn*-network.

Claim 2. X is not a topological sum of \aleph_0 -spaces([22, Example 5.1.18(1)]).

Example 2.17 There is a space with a locally countable sn-network, even it is not an \aleph -spaces.

Proof. Let $X = \omega_1 \bigcup (\omega_1 \times \{1/n : n \in \mathbb{N}\})$. Define a neighborhood base \mathcal{B}_x for each $x \in X$ for the desired topology on X as follows.

(1) If $x \in X - \omega_1$, then $\mathcal{B}_x = \{\{x\}\}$.

(2) If $x \in \omega_1$, then $\mathcal{B}_x = \{\{x\} \bigcup (\bigcup \{V(n,x) \times \{1/n\} : n \ge m\}) : m \in \mathbb{N} \text{ and } V(n,x) \text{ is a neighborhood of } x \text{ in } \omega_1 \text{ with the order topology}\}.$

By [17, Example 1], X has a locally countable k-network, which is not an \aleph -space. It suffices to prove that X is sn-first countable from Theorem 2.10.

Let $x \in X$. If $x \in X - \omega_1$, then $\{\{x\}\}$ is a countable *sn*-network at x in X. If $x \in \omega_1$, put $\mathcal{P}_x = \{P_{x,m} : m \in \mathbb{N}\}$, where $P_{x,m} = \{x\} \bigcup \{(x, 1/n) : n \ge m\}$. Then \mathcal{P}_x is a countable network at x in X. We only need to prove that each $P_{x,m}$ is a sequential neighborhood of x. Let $\{x_n\}$ be a sequence converging to x. Put $K = \{x\} \bigcup \{x_n : n \in \mathbb{N}\}$, then K is a compact subset of X. By [17, Example 1], we have the following facts. Fact 1. $K \bigcap \omega_1$ is finite.

Fact 2. $K - \bigcup \{ \{y\} \bigcup \{(y, 1/n) : n \in \mathbb{N} \} : y \in K \bigcap \omega_1 \}$ is finite.

Case 1. If there is $y \in K \bigcap \omega_1$ such that $y = x_n$ for infinite many $n \in \mathbb{N}$, i.e., there is a subsequence $\{x_{n_k}\}$ of $\{x_n\}$ such that $y = x_{n_k}$ for each $k \in \mathbb{N}$, then y = x, So $\{x_n\}$ is frequently in $P_{x,m}$.

Case 2. If Case 1 does not hold, without loss of the generalization, we may assume $K \cap \omega_1 = \{x\}$ from Fact 1. By Fact 2, $K - \{x\} \bigcup \{(x, 1/n) : n \in \mathbb{N}\}$ is finite. If there is $y \in K - \{x\} \bigcup \{(x, 1/n) : n \in \mathbb{N}\}$ such that $y = x_n$ for infinite many $n \in \mathbb{N}$, then $\{x_n\}$ is frequently in $P_{x,m}$ by a similar way in the proof of Case 1. Conversely, there is $k_0 \in \mathbb{N}$ such that $\{x\} \bigcup \{x_n : n \ge k_0\} \subset$ $\{x\} \bigcup \{(x, 1/n) : n \in \mathbb{N}\}$. So $\{x_n\}$ is eventually in $P_{x,m}$.

By the above Case 1 and Case 2, $P_{x,m}$ is a sequential neighborhood of x from Remark 2.2(1).

Recalled a space X is sequentially separable ([6]) if X has a countable subset D such that for each $x \in X$, there is a sequence $\{x_n\}$ in D converging to x, where D is a sequentially dense subset of X. It is know that each sequentially separable space is separable.

Proposition 2.18 Let X have a point countable sn-network \mathcal{P} . If X is sequentially separable, then \mathcal{P} is countable. So X is sn-second countable.

Proof. Let D be a sequentially dense subset of X, and let $\mathcal{P} = \{\mathcal{P}_x : x \in X\}$, where \mathcal{P}_x is an *sn*-network at x in X for each $x \in X$. For each $x \in D$, since \mathcal{P} is point countable, $(\mathcal{P})_x$ is countable. Hence $\bigcup \{(\mathcal{P})_x : x \in D\}$ is countable. For each $x \in X$ and $P \in \mathcal{P}_x$, there is a sequence S in D converging to x. Note that P is a sequential neighborhood of x. S is eventually in P. This proves that each element of \mathcal{P} intersects with D. Thus, it is easy to see that $\mathcal{P} = \bigcup \{(\mathcal{P})_x : x \in D\}$. So \mathcal{P} is countable.

Corollary 2.19 Let X have a σ -locally countable (or point countable) snnetwork \mathcal{P} . If X is locally sequentially separable, then \mathcal{P} is locally countable in X. So X has a locally countable sn-network.

Proof. Since σ -locally countable \implies point countable, we only need to prove parenthetic part.

Let X be locally sequentially separable. For each $x \in X$, there is an open neighborhood of x such that U is sequentially separable. It is clear that $\{P \cap U : P \in \mathcal{P}\}$ is a point countable sn-network of U. $\{P \cap U : P \in \mathcal{P}\}$ is countable from Proposition 2.18, So \mathcal{P} is locally countable in X.

The following example shows that "sequentially separable" in Proposition 2.18 can not be relaxed to "separable", which is due to [16, Example 1].

Example 2.20 There is a separable, sn-metrizable space. But it is not an \aleph_0 -spaces, and so it is not an sn-second countable space.

Proof. Let $\mathbb{Q} \subset X \subset \mathbb{R}$ and $|X| > \omega$, where \mathbb{Q} and \mathbb{R} are the set of all rational numbers and the set of all real numbers respectively. Let $Y = X \bigcup (\bigcup \{\mathbb{Q} \times \{1/n\} : n \in \mathbb{N}\})$. Define a neighborhood base \mathcal{B}_y for each $y \in Y$ for the desired topology on Y as follows.

(1) If $y \in Y - X$, then $\mathcal{B}_y = \{\{y\}\}$.

(2) If $y \in X$, then $\mathcal{B}_y = \{\{y\} \bigcup (\bigcup \{([a_{y,n}, y) \cap \mathbb{Q}) \times \{1/m\} : n \ge m\}) : m \in \mathbb{N} \text{ and } y > a_{y,n} \in \mathbb{R}\}.$

Then Y is a separable, \aleph -space and not an \aleph_0 -space ([16, Example 1]). On the other hand, each compact subset of Y is finite ([16, Example 1]). By a similar way as in the proof of Example 2.16(claim 1), we can prove Y has a σ -locally finite *sn*-network. That is, Y is an *sn*-metric space.

3. Mappings on Spaces with a Locally Countable *sn*-Network

In this section, we discuss invariance and inverse invariance of spaces with a locally countable *sn*-network under certain mappings

Definition 3.21 Let $f: X \longrightarrow Y$ be a mapping.

(1) f is called a perfect mapping ([7]) if f is closed and $f^{-1}(y)$ is a compact subset of X for each $y \in Y$;

(2) f is called a Lindelöf mapping ([31]) (resp. strongly Lindelöf mapping ([31]) if for each $y \in Y$, $f^{-1}(y)$ is a Lindelöf subset of X (resp. $f^{-1}(\overline{U})$ is a Lindelöf subset of X for some neighborhood U of y in Y).

(3) f is called a 1-sequence-covering mapping ([23]) if for each $y \in Y$ there is $x \in f^{-1}(y)$, such that whenever $\{y_n\}$ is a sequence converging to y in Y, there is a sequence $\{x_n\}$ converging to x in X with each $x_n \in f^{-1}(y_n)$.

(4) f is called a finite subsequence-covering mapping ([25]) if for each $y \in Y$ there is a finite subset F of $f^{-1}(y)$, such that for any sequence S in Y converging to y, there is a sequence L in X converging to some $x \in F$ and f(L) is a subsequence of S.

(5) f is a sequentially-quotient mapping ([4]) if whenever S is a convergent sequence in Y there is a convergent sequence L in X such that f(L) is a subsequence of S.

(6) f is a quotient mapping ([7]) if whenever $U \subset Y$, $f^{-1}(U)$ is open in X iff U is open Y.

We call a space X to be point- G_{δ} if for each $x \in X$, there is a sequence $\{U_n\}$ of neighborhoods of x in X such that $\{x\} = \bigcap \{U_n : n \in \mathbb{N}\}$. It is clear that if a space X has a locally countable *cs*-network, then X is point- G_{δ} (see [26, (D)], for example).

Remark 3.22 ([19]). (1) 1-sequence-covering mappings or sequentially-quotient, finite-to-one mappings \implies finite subsequence-covering mappings \implies sequentially-quotient mappings.

(2) Closed mappings \implies quotient mappings.

(3) If the domain is point- G_{δ} , then closed mappings \implies sequentially-quotient mappings

(4) If the domain is sequential, then quotient mappings \implies sequentiallyquotient mappings.

(5) Quotient mappings preserve k-spaces and perfect mappings inversely preserve k-spaces.

Definition 3.23 ([20]). Let X be a space. Put $\sigma = \{P \subset X : P \text{ is sequentially open in } X\}$. The (X, σ) , the set X with the topology σ , is called the sequential coreflection of X, which is denoted by σX .

Definition 3.24 ([2]). Let $T_0 = \{a_n : n \in \mathbb{N}\}$ be a sequence converging to $x_0 \notin T_0$, and let T_n be a sequence converging to $a_n \notin T_n$ for every $n \in \mathbb{N}$. Let T be the topological sum of $\{T_n \bigcup \{a_n\} : n \in \mathbb{N}\}$. S_{ω} is defined as a quotient space obtained from T by identifying all point $a_n \in T$ to the point x_0 .

The following lemma is obtained by combining [20, Theorem 3.6] and [20, Theorem 3.13].

Lemma 3.25 ([20]). A point- G_{δ} space X is sn-first countable iff X is csfirst countable and contains no closed subspace having S_{ω} as its sequential coreflection.

Lemma 3.26 ([21]). Let $f : X \longrightarrow Y$ be a perfect mapping and X have a G_{δ} -diagonal. If Y has a locally countable k-network, then X has a locally countable k-network.

Lemma 3.27 ([11]). Let $f : X \longrightarrow Y$ be a closed mapping and X be point- G_{δ} . If F is sequentially closed in X, then f(F) is sequentially closed in Y.

Theorem 3.28 Let $f : X \longrightarrow Y$ be a perfect mapping and X have a G_{δ} -diagonal. If Y has a locally countable sn-network, then X has a locally countable sn-network.

Proof. If Y has a locally countable *sn*-network, then X has a locally countable *cs*-network from Remark 2.5(1), Lemma 2.9 and Lemma 3.6. It is clear that X is *cs*-first countable. Since X has a G_{δ} -diagonal, X is point- G_{δ} . It suffices to prove that X contains no closed subspace having S_{ω} as its sequential coreflection from Theorem 2.10 and Lemma 3.5.

Assume X contains closed subspace S having S_{ω} as its sequential coreflection. Put $g = f|_{\sigma s} : \sigma S \longrightarrow \sigma f(S)$.

Claim 1. g is closed.

Proof. Let A be a closed subset of σS , then A is sequentially closed in S. It is clear $f: S \longrightarrow f(S)$ is closed and S is point- G_{δ} . So f(A) is sequentially closed in f(S) from Lemma 3.7, thus f(A) is closed in $\sigma f(S)$. Claim 2. $g^{-1}(y)$ is compact in σS for each $y \in \sigma f(S)$.

Proof. Let $y \in \sigma f(S)$. Note that X has a G_{δ} -diagonal and $f^{-1}(y)$ is compact in X, so $f^{-1}(y)$ is metrizable ([5]). Therefore, the topology on the sequential coreflection of $f^{-1}(y) \cap S$ is equivalent to the induced topology of subspace S of X. Thus $g^{-1}(y) = f^{-1}(y) \cap S$ is compact in σS .

By the above two claims, g is perfect. Since S_{ω} , which is homeomorphic to σS , is a *Fréchet*, \aleph -space and perfect mappings preserve *Fréchet*, \aleph -spaces, $\sigma f(S)$ is a *Fréchet*, \aleph -space. On the other hand, Y is *sn*-first countable, so f(S), as a subspace of Y, is *sn*-first countable. By [20, Theorem 3.13], $\sigma f(S)$ is *g*-first countable, so $\sigma f(S)$ is *sn*-first countable. Thus $\sigma f(S)$ is a metric space ([11, Theorem 2.4]), and so σS is a metric space ([5]). This contradicts that S_{ω} is not metrizable.

We have the following corollary from Corollary 2.15 and Remark 3.2(5) and Theorem 3.8.

Corollary 3.29 Let $f : X \longrightarrow Y$ be a perfect mapping and X have a G_{δ} -diagonal. If Y has a locally countable weak-base, then X has a locally countable weak-base.

Example 3.30 A perfect image of a g-second countable space has not any locally countable sn-network.

Proof. Let $X = \{0\} \bigcup \mathbb{N} \bigcup (\mathbb{N} \times \mathbb{N}), \mathcal{F} = \{F \subset \mathbb{N} : F \text{ is finite}\}, \mathbb{N}^{\mathbb{N}} = \{f : f \text{ is a correspondence from } \mathbb{N} \text{ to } \mathbb{N}\}.$ For $n, m, k \in \mathbb{N}, F \in \mathcal{F}$ and $f \in \mathbb{N}^{\mathbb{N}}$, put $V(n,m) = \{n\} \bigcup (n,k) : k \ge m\}, H(F,f) = \bigcup \{V(n,f(n)) : n \in \mathbb{N} - F\}.$ Define a neighborhood base \mathcal{B}_x for each $x \in X$ for the desired topology on X as follows.

(1) If $x \in \mathbb{N} \times \mathbb{N}$, then $\mathcal{B}_x = \{\{x\}\}\}$.

(2) If $x \in \mathbb{N}$, then $\mathcal{B}_x = \{V(x, m) : m \in \mathbb{N}\}.$

(3) If x = 0, then $\mathcal{B}_x = \{\{x\} \bigcup H(F, f) : F \in \mathcal{F}, f \in \mathbb{N}^{\mathbb{N}}\}.$

Let Y be the quotient space obtained from X by shrinking the set $\{0\} \bigcup \mathbb{N}$ to a point, $f: X \longrightarrow Y$ be a natural mapping. Then

Claim 1. f is perfect and X is g-second countable ([18, Example 3.1]).

Claim 2. Y is not sn-first countable ([11, Example 3.2]), so Y has not any locally countable sn-network from Theorem 2.10.

Which mappings preserve spaces with a locally countable sn-network? We give some answers for this question.

Lemma 3.31 Let $f : X \longrightarrow Y$ be a finite subsequence-covering mapping. If X is sn-first countable, then Y is sn-first countable.

Proof. Let $y \in Y$. Then there is a finite subset F of $f^{-1}(y)$, such that for any sequence S in Y converging to y, there is a sequence L in X converging to some $x \in F$ and f(L) is a subsequence of S. X is *sn*-first countable, for each

 $x \in F$, let $\mathcal{P}_x = \{P_{x,n} : n \in \mathbb{N}\}$ be a decreasing *sn*-network at x in X. Put $\mathcal{F}_y = \{\bigcup\{f(P_{x,n}) : x \in F\} : n \in \mathbb{N}\}$. Then \mathcal{F}_y is countable decreasing.

(1) \mathcal{F}_y is a network at y in Y. In fact, let U be an open neighborhood of y, then $F \subset f^{-1}(y) \subset f^{-1}(U)$. For each $x \in F$, there is $n_x \in \mathbb{N}$ such that $x \in P_{x,n_x} \subset f^{-1}(U)$, so $y \in f(P_{x,n_x}) \subset U$. Put $n_0 = max\{n_x : x \in F\}$, then $P_{x,n_0} \subset P_{x,n_x}$ for each $x \in F$. So $y \in \bigcup\{f(P_{x,n_0}) : x \in F\} \subset \bigcup\{f(P_{x,n_x}) : x \in F\} \subset U$.

(2) Let $\bigcup \{ f(P_{x,n_1}) : x \in F \}$, $\bigcup \{ f(P_{x,n_2}) : x \in F \} \in \mathcal{F}_y$. Put $n_0 = max\{n_1,n_2\}$, then $\bigcup \{ f(P_{x,n_0}) : x \in F \} \in \mathcal{F}_y$ and $\bigcup \{ f(P_{x,n_0}) : x \in F \} \subset (\bigcup \{ f(P_{x,n_1}) : x \in F \}) \cap (\bigcup \{ f(P_{x,n_2}) : x \in F \}).$

(3) $\bigcup \{f(P_{x,n}) : x \in F\}$ is a sequential neighborhood of y for each $n \in \mathbb{N}$. In fact, let S be a sequence in Y converging to y. Then there is a sequence L in X converging to some $x_0 \in F$ and f(L) is a subsequence of S. For each $n \in \mathbb{N}$. Since $P_{x_0,n}$ is a sequential neighborhood of x, L is eventually in $P_{x_0,n}$. So f(L) is eventually in $f(P_{x_0,n})$, hence S is frequently in $f(P_{x_0,n})$. Moreover, S is frequently in $\bigcup \{f(P_{x,n}) : x \in F\}$. By Remark 2.2(1), $\bigcup \{f(P_{x,n}) : x \in F\}$ is a sequential neighborhood of y.

Lemma 3.32 Let $f : X \longrightarrow Y$ be a closed, Lindelöf mapping. If \mathcal{P} is a locally countable family of subsets of X, then $f(\mathcal{P})$ is a locally countable family of subsets of Y.

Proof. Let $\mathcal{P} = \{P_{\alpha} : \alpha \in \Lambda\}$ be a locally countable family of subsets of X and let $y \in Y$. For each $x \in f^{-1}(y)$, there is an open neighborhood U_x of x such that $\{\alpha \in \Lambda : U_x \bigcap P_\alpha \neq \emptyset\}$ is countable. $f^{-1}(y) \subset \bigcup \{U_x : x \in f^{-1}(y)\}$ and $f^{-1}(y)$ is Lindelöf, so there is a countable subset B of $f^{-1}(y)$ such that $f^{-1}(y) \subset \bigcup \{U_x : x \in B\}$. Put $U = \bigcup \{U_x : x \in B\}$. It is clear that $\{\alpha \in \Lambda : U \bigcap P_\alpha \neq \emptyset\}$ is countable. Note that f is closed. By [7, Theorem 1.4.13], there is an open neighborhood V of y such that $f^{-1}(V) \subset U$. Thus $\Lambda' = \{\alpha \in \Lambda : f^{-1}(V) \bigcap P_\alpha \neq \emptyset\}$ is countable. It is easy to check that $\{\alpha \in \Lambda : V \bigcap f(P_\alpha) \neq \emptyset\} = \Lambda'$. So $\{\alpha \in \Lambda : V \bigcap f(P_\alpha) \neq \emptyset\}$ is countable. This proves that $f(\mathcal{P})$ is a locally countable family of subsets of Y.

Theorem 3.33 Let $f : X \longrightarrow Y$ be a closed, finite-to-one mapping. If X has a locally countable sn-network, then Y has a locally countable sn-network.

Proof. Let \mathcal{P} be a locally countable *sn*-network of X. Then f is sequentially quotient from Remark 3.2(3), and so Y is *sn*-first countable from Remark 3.2(1) and Lemma 3.11. Since sequentially quotient mappings preserve cs^* -networks([19, Proposition 2.7.3]), $f(\mathcal{P})$ is a cs^* -network of Y. $f(\mathcal{P})$ is locally countable from Lemma 3.12, so $f(\mathcal{P})$ is a locally countable cs^* -network of Y. Thus Y has a locally countable *sn*-network from Theorem 2.10.

Question 3.34 Do closed, countable-to-one mappings preserve spaces with a locally countable sn-network?

A clopen mapping means an open and closed mapping.

Theorem 3.35 Let $f : X \longrightarrow Y$ be a clopen, Lindelöf mapping. If X has a locally countable sn-network, then Y has a locally countable sn-network.

Proof. Let $\mathcal{P} = \bigcup \{\mathcal{P}_x : x \in X\}$ be a locally countable *sn*-network of X. Since f is closed, *Lindelöf*, by a similar way as in the proof of Theorem 3.13, $f(\mathcal{P})$ is a locally countable cs^* -network of Y. It suffices to prove that Y is sn-first countable from Theorem 2.10. Let $y \in Y$. Put $\mathcal{F}_y = \{f(P) : P \in \mathcal{F}_y\}$ \mathcal{P}_x and $x \in f^{-1}(y)$, then $\mathcal{F}_y \subset f(\mathcal{P})$, so \mathcal{F}_y is locally countable. Note that $y \in \bigcap \mathcal{F}_y, \mathcal{F}_y$ is countable. It is clear that \mathcal{F}_y is a network at y in Y. We only need to prove that each element of \mathcal{F}_y is a sequential neighborhood of y. Let $f(P) \in \mathcal{F}_y$ and $\{y_k\}$ be a sequence in Y converging to y. Then there is $x \in f^{-1}(y)$ such that $P \in \mathcal{P}_x$. Since X is point- G_{δ} , $\{x\} = \bigcap \{U_n : n \in \mathbb{N}\},\$ where each U_n is open in X and $\overline{U_{n+1}} \subset U_n$. For each $n \in \mathbb{N}, y \in f(U_n)$ and $f(U_n)$ is open as f is open, so there is $m_n \in \mathbb{N}$ such that $y_k \in f(U_n)$ for each $k \geq m_n$. Pick $x_n \in U_n$ such that $f(x_n) = y_{m_n}$. Since f is closed, it is not difficult to prove that the sequence $\{x_n\}$ converges to $x \in P$. P is a sequential neighborhood of x, so $\{x_n\}$ is eventually in P. Consequently, $\{f(x_n)\}$ is eventually in f(P), so $\{y_k\}$ is frequently in f(P). By Remark 2.2(1), f(P) is a sequential neighborhood of y.

Corollary 3.36 Let $f : X \longrightarrow Y$ be an open, perfect mapping. If X has a locally countable sn-network, then Y has a locally countable sn-network.

Clopen mappings preserve spaces with a locally countable weak-base ([24, Theorem 4.7]). But the following question is still open.

Question 3.37 Do clopen mappings preserve spaces with a locally countable sn-network (resp. cs-network)?

Lemma 3.38 Let $f : X \longrightarrow Y$ be a strongly Lindelöf-mapping. If \mathcal{P} is a locally countable family of subsets of X, then $f(\mathcal{P})$ is a locally countable family of subsets of Y.

Proof. Let $\mathcal{P} = \{P_{\alpha} : \alpha \in \Lambda\}$ be a locally countable family of subsets of Xand let $y \in Y$. Then there is a neighborhood W of y in Y such that $f^{-1}(\overline{W})$ is a *Lindelöf* subset of X. It suffices to prove that $\{\alpha \in \Lambda : W \bigcap f(P_{\alpha}) \neq \emptyset\}$ is countable. For each $x \in f^{-1}(\overline{W})$, there is an open neighborhood U_x of x such that $\{\alpha \in \Lambda : U_x \bigcap P_\alpha \neq \emptyset\}$ is countable. $f^{-1}(\overline{W}) \subset \bigcup \{U_x : x \in f^{-1}(\overline{W})\}$ and $f^{-1}(\overline{W})$ is *Lindelöf*, so there is a countable subset B of $f^{-1}(\overline{W})$ such that $f^{-1}(\overline{W}) \subset \bigcup \{U_x : x \in B\}$. It is easy to see that $\{\alpha \in \Lambda : (\bigcup \{U_x : x \in B\}) \bigcap P_\alpha \neq \emptyset\}$ is countable, so $\Lambda' = \{\alpha \in \Lambda : (f^{-1}(W) \bigcap P_\alpha \neq \emptyset\}$ is countable. It is easy to check that $\{\alpha \in \Lambda : W \bigcap f(P_\alpha) \neq \emptyset\} = \Lambda'$. This completes the proof. **Theorem 3.39** Let X have a locally countable sn-network. If one of the following holds, then Y has a locally countable sn-network.

(1) f is finite subsequence-covering, strongly Lindelöf.

(2) f is 1-sequence-covering, strongly Lindelöf.

(3) f is sequentially-quotient, finite-to-one, strongly Lindelöf.

Proof. We only need to prove part (1) from Remark 3.2(1). Let $f: X \longrightarrow Y$ be a finite subsequence-covering, strongly *Lindelöf*-mapping and \mathcal{P} be a locally countable *sn*-network of X. Then Y is *sn*-first countable from lemma 3.11 and $f(\mathcal{P})$ is a locally countable family of subsets of Y from Lemma 3.18. By a similar way as in the proof of Theorem 3.13, we can prove $f(\mathcal{P})$ is a cs^* -network of Y. So Y has a locally countable *sn*-network from Theorem 2.10.

The following corollary is obtained from Remark 3.2(2),(4),(5), Corollary 2.15, Theorem 3.13 and Theorem 3.19.

Corollary 3.40 Let X have a locally countable weak-base. If one of the following holds, then Y has a locally countable weak-base.

(1) f is closed, finite-to-one.

(2) f is finite subsequence-covering, quotient, strongly Lindelöf.

(3) f is 1-sequence-covering, quotient, strongly Lindelöf.

(4) f is quotient, finite-to-one, strongly Lindelöf.

Acknowledgement. This project was supported by NSF of the Education Committee of Jiangsu Province in China(No.02KJB110001)

$\mathbf{R} ~\mathbf{e} ~\mathbf{f} ~\mathbf{e} ~\mathbf{r} ~\mathbf{e} ~\mathbf{n} ~\mathbf{c} ~\mathbf{e} ~\mathbf{s}$

[1] Arhangel'skii, A.V., Mappings and spaces, Russian Math. Surveys, 21(1966), 115-162

[2] Arhangel'skii, A. and Franklin, S., Ordinal invariants for topological spaces, Michigan Math. J., 15(1968), 313-320

[3] Blacar, B., and Simon, P., Disjoint refinement, In: Handbook of Boolean Algebras, V2. Amsterdam: North-Holland, 332-386

[4] Boone, J.R. and Siwiec, F., Sequentially quotient mappings, Czech. Math. J., 26(1976), 174-182

[5] Chaber, J., Conditions which imply compactness in countably compact spaces, Bull. Pol. Acad. Math., 24(1976), 993-998

[6] Davis, S.W., More on Cauchy condition, Topology Proc., 9(1984), 31-36

[7] Engelking, R., General Topology(revised and completed edition), Berlin: Heldermann, 1989

[8] Franklin, S.P., Spaces in which sequence suffice, Fund. Math., 57(1965), 107-115

[9] Gale, D., Compact sets of functions and function rings, Proc. Amer. Math. Soc., 1(1950), 303-308

[10] Gao, Z., \aleph -space is invariant under perfect mappings, Q and A in General Topology, 5(1987), 271-279

[11] Ge, Y., On sn-metrizable spaces, Acta Math. Sinica, 45(2002), 355-360

[12] Ge, Y., Characterizations of *sn*-metrizable spaces, Publ. Inst. Math., Nouv. Ser., 74(88)(2003), 121-128

[13] Ge, Y., Spaces with countable *sn*-networks, Comment Math. Univ. Carolinae, 45(2004), 169-176

[14] Gruenhage, G., Michael, E. and Tanaka, Y., Spaces determined by point-countable covers, Pacific J. Math., 113(1984), 303-332

[15] Guthrie, J.A., A characterization of $\aleph_0\text{-spaces},$ General Topology Appl., 1(1971), 105-110

[16] Lin, S., On normal separable \aleph -space, Q and A in General Topology, 5(1987), 249-254

[17] Lin, S., Spaces with a locally countable k-network, Northeastern Math. J., 6(1990), 39-44

[18] Lin, S., On g-metrizable spaces, Chinese Ann. Math., Ser A, 13(1992), 403-409

[19] Lin, S., Generalized Metric Spaces and Mappings, Chinese Science Press, Beijing, 1995

[20] Lin, S., A note on the Arens' spaces and sequential fan, Topology Appl., 81(1997), 185-196

[21] Lin, S., A note on spaces with a locally countable k-network, J. of Jishou Univ., 18(3)(1997), 10-12

[22] Lin, S., Point-Countable Covers and Sequence-Covering Mappings, Beijing: Chinese Science Press, 2002

[23] Lin, S., and Yan, P., Sequence-covering maps of metric spaces, Topology. Appl, 109(2001), 301-314

[24] Liu, C., Spaces with a locally countable weak base, Math. Japonica, 41(1995), 261-267

[25] Liu, C., Notes on weak bases, Q and A in General Topology, 22(2004), 39-42

[26] Michael, E.A., ℵ₀-spaces, J. Math. Mech., 15(1966), 983-1002

[27] O'Meara, P., On paracompactness in function spaces with the compact-open topology, Proc. Amer. Math. Soc., 29(1971), 183-189

[28] Roitman, J., Basic S and L, In: Kumen K and Vaughan J E. eds, Handbook of Set-Theoretic Topology, Amsterdan: North-Holland, 295-326, 1984

[29] Siwiec, F., On defining a space by a werk base, Pacific J. Math., 52(1974), 233-245

[30] Tanaka, Y., Point-countable covers and k-networks, Topology Proc., 12(1987), 327-349

[31] Tanaka, Y., Theory of k-networks II, Q and A in General Topology, 19(2001), 27-46 [32] Tanaka, Y. and Ge, Y., Around quotient compact images of metric spaces, and

symmetric spaces, Houston J. Math.(in Press)

Received January, 8, 2007; accepted June, 29, 2007