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1. Introduction

sn-networks is a class of important networks between weak-bases and cs-
networks, which was introduced and called universal cs-networks by S. Lin
in [20]. It is an interesting work to discuss spaces with certain sn-network.
In recent years, sn-metrizable spaces (i.e. spaces with a σ-locally finite sn-
network) and sn-second spaces (i.e. spaces with a countable sn-network) have
attracted considerable attention and many interesting results have been ob-
tained ([11, 12, 13, 20, 22, 23, 32]).

In this paper, we discuss a class of spaces with a locally countable sn-
network. We give some characterizations of this class and establish the rela-
tion among spaces with a locally countable weak-base, spaces with a locally
countable sn-network and spaces with a locally countable cs-network. Also, we
investigate variance and inverse invariance of spaces with a locally countable
sn-network under certain mappings. As some applications of these results, we
obtain some results relative to spaces with a locally countable weak-base.

Throughout this paper, all spaces are assumed to be regular, T1 and all
mappings are continuous and onto. N, ω and ω1 denote the set of all natural
numbers, the first infinite ordinal and the first uncountable ordinal respectively.
For a set D, |D| denotes the cardinal of D. {xn} denotes a sequence, where the
n-th term is xn. Let X be a space and P ⊂ X. A sequence {xn} converging
to x in X is eventually in P if {xn : n > k}⋃{x} ⊂ P for some k ∈ N; is
frequently in P if {xnk

} is eventually in P for some subsequence {xnk
} of {xn}.

Let P be a family of subsets of X, x ∈ X and f be a mapping defined on X.
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Then f(P) = {f(P ) : P ∈ P}, (P)x denotes the subfamily {P ∈ P : x ∈ P}
of P ,

⋃P and
⋂P denote the union

⋃{P : P ∈ P} and the intersection⋂{P : P ∈ P} respectively.

2. Spaces with a Locally Countable sn-Network

Definition 2.1 ([8, 9]). Let X be a space and let x ∈ X.
(1) P ⊂ X is called a sequential neighborhood of x if each sequence {xn}

converging to x is eventually in P .
(2) A subset U of X is called sequentially open if U is a sequential neigh-

borhood of each of its points; a subset F of X is called sequentially closed if
X − F is sequentially open.

(3) X is called a sequential space if each sequentially open subset of X is
open in X, equivalently, if each sequentially closed subset of X is closed in X.

(4) X is called a k-space if for each A ⊂ X, A is closed in X iff A
⋂

K is
closed in K for each compact subset K of X.

Remark 2.2 (1) P is a sequential neighborhood of x iff each sequence {xn}
converging to x is frequently in P .

(2) The intersection of finite sequential neighborhoods of x is a sequential
neighborhood of x.

(3) sequential spaces =⇒ k-spaces.

Definition 2.3 Let P =
⋃{Px : x ∈ X} be a cover of a space X, where

Px ⊂ (P)x.
(1) P is called a network of X, if whenever x ∈ U ⊂ X with U open in X,

there is P ∈ Px such that x ∈ P ⊂ U , where Px is called a network at x in X.
(2) P is called a k-network of X([27]), if whenever K ⊂ U with K compact

in X and U open in X, there is a finite F ⊂ P such that K ⊂ ⋃F ⊂ U .
(3) P is called a cs∗-network of X([10]), if each convergent sequence S

converging to a point x ∈ U with U open in X, then S is frequently in P ⊂ U
for some P ∈ P.

Definition 2.4 Let P =
⋃{Px : x ∈ X} be a network of a space X, where

Px ⊂ (P)x.
(1) P is called a cs-network of X([15]), if each convergent sequence S

converging to a point x ∈ U with U open in X, then S is eventually in P ⊂ U
for some P ∈ Px, where Px is called a cs-network at x in X.

Assume Px also satisfies the following Condition (∗) for each x ∈ X in the
following (2) and (3).

Condition (∗): If P1, P2 ∈ Px, then there is P ∈ Px such that P ⊂ P1

⋂
P2.

(2) P is called a weak-base of X([1]), if for G ⊂ X, G is open in X iff
for each x ∈ G there is P ∈ Px such that P ⊂ G, where Px is called a weak
neighborhood base at x in X.
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(3) P is called an sn-network of X([11]), if each element of Px is a se-
quential neighborhood of x for each x ∈ X, where Px is called an sn-network
at x in X.

Remark 2.5 ([23]). (1) weak-bases =⇒ sn-networks =⇒ cs-networks =⇒
cs∗-networks.

(2) In a sequential space, weak-bases ⇐⇒ sn-networks.
(3) sn-networks are called universal cs-networks in [20].

The following example belongs to S. Lin.

Example 2.6 In a k-space, sn-networks 6=⇒ weak-bases.

Proof. Let X be the Stone − C̆ech compactification βN of N. Then X
is compact, and so it is a k-space. Since each convergent sequence in βN is
trivial, P = {{x} : x ∈ X} is an sn-network of X. It is clear that P is not a
weak-base. ¥

Definition 2.7 (1) A space X is called g-metrizable ([8]) (resp. sn-metrizable
([12]), ℵ([27])) if X has a σ-locally finite weak-base (resp. sn-network, k-
network).

(2) A space X is called g-second countable ([29]) (resp. sn-second countable
([13]), ℵ0([26])) if X has a countable weak-base (resp. sn-network, k-network).

(3) A space X is called g-first countable ([1]) (resp. sn-first countable
([12]), cs-first countable ([20])), if X has a weak-base (resp. sn-network, cs-
network) P =

⋃{Px : x ∈ X} such that Px is countable for each x ∈ X.

Remark 2.8 (1) By Remark 2.5, a space X is g-metrizable (resp. g-second
countable, g-first countable) iff it is sequential and sn-metrizable (resp. se-
quential and sn-second countable, sequential and sn-first countable).

(2) If X has a point countable weak-base (resp. sn-network, cs-network),
then X is g-first countable (resp. sn-first countable, cs-first countable).

(3) It is well known that a space is a ℵ0-space iff it has a countable cs-
network, iff it has a countable cs∗-network.

(4) sn-first countable is called universally csf -countable in [20].

The following lemma is obtained by combining [19, Theorem 2.8.6] and [22,
Corollary 5.1.13].

Lemma 2.9 The following are equivalent for a space X.
(1) X has a locally countable cs-network.
(1) X has a locally countable cs∗-network.
(1) X has a locally countable k-network.
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Theorem 2.10 The following are equivalent for a space X.
(1) X has a locally countable sn-network.
(2) X is an sn-first countable space with a locally countable cs-network

(resp. k-network, cs∗-network).
(3) X is a locally sn-second countable space with a σ-locally countable sn-

network
(4) X is a locally ℵ0-space with a σ-locally countable sn-network.
(5) (MA +¬CH + TOP ) X is a locally hereditarily separable space with a

σ-locally countable sn-network.
(6) X is a locally (hereditarily) Lindelöf space with a σ-locally countable

sn-network.

Proof. (1) =⇒ (2). Note that a space with a locally countable sn-network
is sn-first countable. So (1) =⇒ (2) from Remark 2.5(1) and Lemma 2.9.

(2) =⇒ (1). By Lemma 2.9, let P be a locally countable cs-network of X.
We can assume that P is closed under finite intersections. For each x ∈ X, let
{Bn(x) : n ∈ N} be an sn-network at x in X, and let Px = {P ∈ P : Bn(x) ⊂
P for some n ∈ N}, then each element of Px is a sequential neighborhood
of X. Put P ′ =

⋃{Px : x ∈ X}, then P ′ ⊂ P is locally countable. It
suffices to prove that Px is a network at x in X for each x ∈ X. If not, there
is an open neighborhood U of x such that P 6⊂ U for each P ∈ Px. Let
{P ∈ P : x ∈ P ⊂ U} = {Pm(x) : m ∈ N}. Then Bn(x) ⊂ Pm(x) for each
n,m ∈ N. Choose xn,m ∈ Bn(x) − Pm(x). For n ≥ m, let xn,m = yk, where
k = m + n(n − 1)/2. Then the sequence {yk : k ∈ N} converges to x. Thus ,
there is m, i ∈ N such that {yk : k ≥ i}⋃{x} ⊂ Pm(x) ⊂ U . Take j ≥ i with
yj = xn,m for some n ≥ m. Then xn,m ∈ Pm(x). This is a contradiction.

(1) =⇒ (3). Let P be a locally countable sn-network of X. For each x ∈ X,
there is an open neighborhood U of x such that PU = {P ⋂

U : P ∈ P} is
countable. It is easy to prove that PU is a countable sn-network of subspace
U . So U is an sn-second countable space. Hence, X is a locally sn-second
countable space.

(3) =⇒ (4) =⇒ (5). It is clear that sn-second countable =⇒ ℵ0 =⇒
hereditarily separable. So (3) =⇒ (4) =⇒ (5).

(5) =⇒ (6). It suffices to prove that X is locally hereditarily Lindelöf . Let
x ∈ X and U be a hereditarily separable neighborhood of x. Recalled a space
is an S-space if it is a hereditarily separable and not hereditarily Lindelöf .
Since (MA + ¬CH + TOP ) there are no S-spaces([28, Theorem 7.2.3]), U is
hereditarily Lindelöf . So X is locally hereditarily Lindelöf .

(6) =⇒ (1). Let P =
⋃{Pn : n ∈ N} be a σ-locally countable sn-network

of a Locally Lindelöf space X, where each Pn is locally countable in X. Let
x ∈ X and let U be a Lindelöf neighborhood of x. Let n ∈ N. For each
y ∈ U , there is an open neighborhood Uy of y such that Uy intersects at
most countable many elements of Pn. The open cover {Uy : y ∈ U} of U
has countable subcover V . Put V =

⋃V , then U ⊂ V and V intersects at
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most countable many elements of Pn. So U intersects at most countable many
elements of Pn. Moreover, U intersects at most countable many elements of
P . Thus P is a locally countable sn-network of X. ¥

Question 2.11 Can “(MA+¬CH +TOP )” in Theorem 2.10(5) be omitted?

We give some partial answers of Question 2.11 by assuming X is a k-space.

Lemma 2.12 ([14, 22]). The following hold for a space X.
(1) If X is a compact space with a point countable k-network, then X is

metrizable.
(2) If X is a k-space with a point countable k-network, then X is sequential.
(3) If X has a point countable cs∗-network and each compact subset of X

is metrizable, then X has a point countable k-network.

Lemma 2.13 If X is a k-space with a σ-locally countable cs∗-network, then
X is sequential.

Proof. Let P be a σ-locally countable cs∗-network of X. Whenever K
is a compact subset of X, put PK = {P ⋂

K : P ∈ P}, then PK is a σ-
locally countable cs∗-network of K. It is easy to see that PK is a countable
cs∗-network of K, and so K has a countable k-network from Remark 2.8(3).
By Lemma 2.12(1), K is metrizable. So X has a point-countable k-network
from Remark 2.12(3), hence X is sequential from Remark 2.12(2). ¥

Theorem 2.14 The following are equivalent for a k-space X.
(1) X has a locally countable sn-network.
(2) X is a topological sum of sn-second countable spaces.
(3) X is a sn-metrizable, locally (hereditarily) separable space.
(4) X is a locally (hereditarily) separable space with a σ-locally countable

sn-network.

Proof. (1) =⇒ (2). X is a k-space with a locally countable cs-network, so
X is a topological sum of ℵ0-spaces([17, Theorem 1]). It is easy to see that sn-
first countability is hereditary to subspace. Note that each sn-first countable,
ℵ0-space is sn-second countable ([13, Theorem 2.1]). So X is a topological
sum of sn-second countable spaces.

(2) =⇒ (3). Let X = ⊕{Xα : α ∈ Λ}, where each Xα is sn-second
countable. Note that each Xα is a (hereditarily) separable, open subspace of
X, So X is locally (hereditarily) separable. For each α ∈ Λ, let {Pα,n : n ∈ N}
be a countable sn-network of Xα. Put Pn = {Pα,n : α ∈ Λ} for each n ∈ N,
and put P =

⋃{Pn : n ∈ N}, then P is a locally finite sn-network of X. So
X is an sn-metrizable space.

(3) =⇒ (4). It is clear.
(4) =⇒ (1). By Theorem 2.10, it suffices to prove that X is locally

Lindelöf . Let P be a σ-locally countable sn-network of X. X is a sequential
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space from Lemma 2.13, so P is a σ-locally countable k-network of X([30,
Corollary 1.5]). Recalled a space is meta-Lindelöf if each open cover of it has
a point countable open refinement. Thus X is hereditarily meta-Lindelöf([17,
Proposition 1]). Each hereditarily meta-Lindelöf , locally separable space is
locally Lindelöf([14, Proposition 8.7]), so X is locally Lindelöf . ¥

Corollary 2.15 A space X is a k-space with a locally countable sn-network
iff X has a locally countable weak-base.

The following examples to shows that “k” in Theorem 2.14 can not be
omitted.

Example 2.16 There is a space with a locally countable sn-network, even it
is not a topological sum of ℵ0-spaces.

Proof. Let D is a discrete space, where |D| = 2ω. By [3, Example 4.2],
there is an almost disjoint family {Pα : α < 2ω} consisting of countable infinite
subsets of D such that for each uncountable subset P of D, there is α <
2ω such that Pα ⊂ P . Let {Pα,n : n ∈ N} be a mutually disjoint family
consisting of infinite subsets of Pα. For each α < 2ω and each n ∈ N, choose
pα,n ∈ Pα,n − Pα,n, where Pα,n is the closure of Pα,n in the Stone − C̆ech
compactification βD of D. Put X = D

⋃{pα,n : α < 2ω, n ∈ N}, and X is
endowed the subspace topology of βD.

Claim 1. X has a σ-locally countable sn-network.
In fact, since each compact subset of X is finite ([22, Example 1.5.5]), and

so each convergent sequence of X is finite. Then, it is easy to see that each
cs-network of X is an sn-network. X has a σ-locally countable cs-network([22,
Example 5.1.18(1)]), so X has a σ-locally countable sn-network.

Claim 2. X is not a topological sum of ℵ0-spaces([22, Example 5.1.18(1)]).
¥

Example 2.17 There is a space with a locally countable sn-network, even it
is not an ℵ-spaces.

Proof. Let X = ω1

⋃
(ω1 × {1/n : n ∈ N}). Define a neighborhood base

Bx for each x ∈ X for the desired topology on X as follows.
(1) If x ∈ X − ω1, then Bx = {{x}}.
(2) If x ∈ ω1, then Bx = {{x}⋃

(
⋃{V (n, x) × {1/n} : n ≥ m}) : m ∈

N and V (n, x) is a neighborhood of x in ω1 with the order topology}.
By [17, Example 1], X has a locally countable k-network, which is not an

ℵ-space. It suffices to prove that X is sn-first countable from Theorem 2.10.
Let x ∈ X. If x ∈ X−ω1, then {{x}} is a countable sn-network at x in X.

If x ∈ ω1, put Px = {Px,m : m ∈ N}, where Px,m = {x}⋃{(x, 1/n) : n ≥ m}.
Then Px is a countable network at x in X. We only need to prove that each
Px,m is a sequential neighborhood of x.
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Let {xn} be a sequence converging to x. Put K = {x}⋃{xn : n ∈ N}, then
K is a compact subset of X. By [17, Example 1], we have the following facts.

Fact 1. K
⋂

ω1 is finite.
Fact 2. K −⋃{{y}⋃{(y, 1/n) : n ∈ N} : y ∈ K

⋂
ω1} is finite.

Case 1. If there is y ∈ K
⋂

ω1 such that y = xn for infinite many n ∈ N,
i.e., there is a subsequence {xnk

} of {xn} such that y = xnk
for each k ∈ N,

then y = x, So {xn} is frequently in Px,m.
Case 2. If Case 1 does not hold, without loss of the generalization, we may

assume K
⋂

ω1 = {x} from Fact 1. By Fact 2, K − {x}⋃{(x, 1/n) : n ∈ N}
is finite. If there is y ∈ K − {x}⋃{(x, 1/n) : n ∈ N} such that y = xn for
infinite many n ∈ N, then {xn} is frequently in Px,m by a similar way in the
proof of Case 1. Conversely, there is k0 ∈ N such that {x}⋃{xn : n ≥ k0} ⊂
{x}⋃{(x, 1/n) : n ∈ N}. So {xn} is eventually in Px,m.

By the above Case 1 and Case 2, Px,m is a sequential neighborhood of x
from Remark 2.2(1). ¥

Recalled a space X is sequentially separable ([6]) if X has a countable subset
D such that for each x ∈ X, there is a sequence {xn} in D converging to x,
where D is a sequentially dense subset of X. It is know that each sequentially
separable space is separable.

Proposition 2.18 Let X have a point countable sn-network P. If X is se-
quentially separable, then P is countable. So X is sn-second countable.

Proof. Let D be a sequentially dense subset of X, and let P = {Px : x ∈
X}, where Px is an sn-network at x in X for each x ∈ X. For each x ∈ D,
since P is point countable, (P)x is countable. Hence

⋃{(P)x : x ∈ D} is
countable. For each x ∈ X and P ∈ Px, there is a sequence S in D converging
to x. Note that P is a sequential neighborhood of x. S is eventually in P .
This proves that each element of P intersects with D. Thus, it is easy to see
that P =

⋃{(P)x : x ∈ D}. So P is countable. ¥

Corollary 2.19 Let X have a σ-locally countable (or point countable) sn-
network P. If X is locally sequentially separable, then P is locally countable
in X. So X has a locally countable sn-network.

Proof. Since σ-locally countable =⇒ point countable, we only need to
prove parenthetic part.

Let X be locally sequentially separable. For each x ∈ X, there is an
open neighborhood of x such that U is sequentially separable. It is clear that
{P ⋂

U : P ∈ P} is a point countable sn-network of U . {P ⋂
U : P ∈ P} is

countable from Proposition 2.18, So P is locally countable in X. ¥
The following example shows that “sequentially separable” in Proposition

2.18 can not be relaxed to “separable”, which is due to [16, Example 1].

Example 2.20 There is a separable, sn-metrizable space. But it is not an
ℵ0-spaces, and so it is not an sn-second countable space.
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Proof. Let Q ⊂ X ⊂ R and |X| > ω, where Q and R are the set of
all rational numbers and the set of all real numbers respectively. Let Y =
X

⋃
(
⋃{Q× {1/n} : n ∈ N}). Define a neighborhood base By for each y ∈ Y

for the desired topology on Y as follows.
(1) If y ∈ Y −X, then By = {{y}}.
(2) If y ∈ X, then By = {{y}⋃

(
⋃{([ay,n, y)

⋂
Q) × {1/m} : n ≥ m}) :

m ∈ N and y > ay,n ∈ R}.
Then Y is a separable, ℵ-space and not an ℵ0-space ([16, Example 1]). On

the other hand, each compact subset of Y is finite ([16, Example 1]). By a
similar way as in the proof of Example 2.16(claim 1), we can prove Y has a
σ-locally finite sn-network. That is, Y is an sn-metric space. ¥

3. Mappings on Spaces with a Locally Countable sn-Network

In this section, we discuss invariance and inverse invariance of spaces with
a locally countable sn-network under certain mappings

Definition 3.21 Let f : X −→ Y be a mapping.
(1) f is called a perfect mapping ([7]) if f is closed and f−1(y) is a compact

subset of X for each y ∈ Y ;
(2) f is called a Lindelöf mapping ([31]) (resp. strongly Lindelöf mapping

([31]) if for each y ∈ Y , f−1(y) is a Lindelöf subset of X (resp. f−1(U) is a
Lindelöf subset of X for some neighborhood U of y in Y ).

(3) f is called a 1-sequence-covering mapping ([23]) if for each y ∈ Y there
is x ∈ f−1(y), such that whenever {yn} is a sequence converging to y in Y ,
there is a sequence {xn} converging to x in X with each xn ∈ f−1(yn).

(4) f is called a finite subsequence-covering mapping ([25]) if for each y ∈
Y there is a finite subset F of f−1(y), such that for any sequence S in Y
converging to y, there is a sequence L in X converging to some x ∈ F and
f(L) is a subsequence of S.

(5) f is a sequentially-quotient mapping ([4]) if whenever S is a convergent
sequence in Y there is a convergent sequence L in X such that f(L) is a
subsequence of S.

(6) f is a quotient mapping ([7]) if whenever U ⊂ Y , f−1(U) is open in X
iff U is open Y .

We call a space X to be point-Gδ if for each x ∈ X, there is a sequence
{Un} of neighborhoods of x in X such that {x} =

⋂{Un : n ∈ N}. It is clear
that if a space X has a locally countable cs-network, then X is point-Gδ(see
[26, (D)], for example).

Remark 3.22 ([19]). (1) 1-sequence-covering mappings or sequentially-quotient,
finite-to-one mappings =⇒ finite subsequence-covering mappings =⇒ sequentially-
quotient mappings.

(2) Closed mappings =⇒ quotient mappings.
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(3) If the domain is point-Gδ, then closed mappings =⇒ sequentially-quotient
mappings

(4) If the domain is sequential, then quotient mappings =⇒ sequentially-
quotient mappings.

(5) Quotient mappings preserve k-spaces and perfect mappings inversely
preserve k-spaces.

Definition 3.23 ([20]). Let X be a space. Put σ = {P ⊂ X : P is sequen-
tially open in X}. The (X, σ), the set X with the topology σ, is called the
sequential coreflection of X, which is denoted by σX.

Definition 3.24 ([2]). Let T0 = {an : n ∈ N} be a sequence converging to
x0 6∈ T0, and let Tn be a sequence converging to an 6∈ Tn for every n ∈ N. Let
T be the topological sum of {Tn

⋃{an} : n ∈ N}. Sω is defined as a quotient
space obtained from T by identifying all point an ∈ T to the point x0.

The following lemma is obtained by combining [20, Theorem 3.6] and [20,
Theorem 3.13].

Lemma 3.25 ([20]). A point-Gδ space X is sn-first countable iff X is cs-
first countable and contains no closed subspace having Sω as its sequential
coreflection.

Lemma 3.26 ([21]). Let f : X −→ Y be a perfect mapping and X have
a Gδ-diagonal. If Y has a locally countable k-network, then X has a locally
countable k-network.

Lemma 3.27 ([11]). Let f : X −→ Y be a closed mapping and X be point-Gδ.
If F is sequentially closed in X, then f(F ) is sequentially closed in Y .

Theorem 3.28 Let f : X −→ Y be a perfect mapping and X have a Gδ-
diagonal. If Y has a locally countable sn-network, then X has a locally count-
able sn-network.

Proof. If Y has a locally countable sn-network, then X has a locally
countable cs-network from Remark 2.5(1), Lemma 2.9 and Lemma 3.6. It is
clear that X is cs-first countable. Since X has a Gδ-diagonal, X is point-Gδ. It
suffices to prove that X contains no closed subspace having Sω as its sequential
coreflection from Theorem 2.10 and Lemma 3.5.

Assume X contains closed subspace S having Sω as its sequential coreflec-
tion. Put g = f |σs : σS −→ σf(S).

Claim 1. g is closed.
Proof. Let A be a closed subset of σS, then A is sequentially closed in S.

It is clear f : S −→ f(S) is closed and S is point-Gδ. So f(A) is sequentially
closed in f(S) from Lemma 3.7, thus f(A) is closed in σf(S).
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Claim 2. g−1(y) is compact in σS for each y ∈ σf(S).
Proof. Let y ∈ σf(S). Note that X has a Gδ-diagonal and f−1(y) is

compact in X, so f−1(y) is metrizable ([5]). Therefore, the topology on the
sequential coreflection of f−1(y)

⋂
S is equivalent to the induced topology of

subspace S of X. Thus g−1(y) = f−1(y)
⋂

S is compact in σS.
By the above two claims, g is perfect. Since Sω, which is homeomorphic to

σS, is a Fréchet, ℵ-space and perfect mappings preserve Fréchet, ℵ-spaces,
σf(S) is a Fréchet, ℵ-space. On the other hand, Y is sn-first countable, so
f(S), as a subspace of Y , is sn-first countable. By [20, Theorem 3.13], σf(S)
is g-first countable, so σf(S) is sn-first countable. Thus σf(S) is a metric
space ([11, Theorem 2.4]), and so σS is a metric space ([5]). This contradicts
that Sω is not metrizable. ¥

We have the following corollary from Corollary 2.15 and Remark 3.2(5) and
Theorem 3.8.

Corollary 3.29 Let f : X −→ Y be a perfect mapping and X have a Gδ-
diagonal. If Y has a locally countable weak-base, then X has a locally countable
weak-base.

Example 3.30 A perfect image of a g-second countable space has not any
locally countable sn-network.

Proof. Let X = {0}⋃
N

⋃
(N×N), F = {F ⊂ N : F is finite}, NN = {f :

f is a correspondence from N to N}. For n,m, k ∈ N, F ∈ F and f ∈ NN,
put V (n,m) = {n}⋃

(n, k) : k ≥ m}, H(F, f) =
⋃{V (n, f(n)) : n ∈ N − F}.

Define a neighborhood base Bx for each x ∈ X for the desired topology on X
as follows.

(1) If x ∈ N× N, then Bx = {{x}}.
(2) If x ∈ N, then Bx = {V (x,m) : m ∈ N}.
(3) If x = 0, then Bx = {{x}⋃

H(F, f) : F ∈ F , f ∈ NN}.
Let Y be the quotient space obtained from X by shrinking the set {0}⋃

N
to a point, f : X −→ Y be a natural mapping. Then

Claim 1. f is perfect and X is g-second countable ([18, Example 3.1]).
Claim 2. Y is not sn-first countable ([11, Example 3.2]), so Y has not any

locally countable sn-network from Theorem 2.10. ¥
Which mappings preserve spaces with a locally countable sn-network? We

give some answers for this question.

Lemma 3.31 Let f : X −→ Y be a finite subsequence-covering mapping. If
X is sn-first countable, then Y is sn-first countable.

Proof. Let y ∈ Y . Then there is a finite subset F of f−1(y), such that for
any sequence S in Y converging to y, there is a sequence L in X converging to
some x ∈ F and f(L) is a subsequence of S. X is sn-first countable, for each
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x ∈ F , let Px = {Px,n : n ∈ N} be a decreasing sn-network at x in X. Put
Fy = {⋃{f(Px,n) : x ∈ F} : n ∈ N}. Then Fy is countable decreasing.

(1) Fy is a network at y in Y . In fact, let U be an open neighborhood of
y, then F ⊂ f−1(y) ⊂ f−1(U). For each x ∈ F , there is nx ∈ N such that
x ∈ Px,nx ⊂ f−1(U), so y ∈ f(Px,nx) ⊂ U . Put n0 = max{nx : x ∈ F}, then
Px,n0 ⊂ Px,nx for each x ∈ F . So y ∈ ⋃{f(Px,n0) : x ∈ F} ⊂ ⋃{f(Px,nx) : x ∈
F} ⊂ U .

(2) Let
⋃{f(Px,n1) : x ∈ F}, ⋃{f(Px,n2) : x ∈ F} ∈ Fy. Put n0 =

max{n1, n2}, then
⋃{f(Px,n0) : x ∈ F} ∈ Fy and

⋃{f(Px,n0) : x ∈ F} ⊂
(
⋃{f(Px,n1) : x ∈ F}) ⋂

(
⋃{f(Px,n2) : x ∈ F}).

(3)
⋃{f(Px,n) : x ∈ F} is a sequential neighborhood of y for each n ∈ N.

In fact, let S be a sequence in Y converging to y. Then there is a sequence
L in X converging to some x0 ∈ F and f(L) is a subsequence of S. For each
n ∈ N. Since Px0,n is a sequential neighborhood of x, L is eventually in Px0,n.
So f(L) is eventually in f(Px0,n), hence S is frequently in f(Px0,n). Moreover,
S is frequently in

⋃{f(Px,n) : x ∈ F}. By Remark 2.2(1),
⋃{f(Px,n) : x ∈ F}

is a sequential neighborhood of y. ¥

Lemma 3.32 Let f : X −→ Y be a closed, Lindelöf mapping. If P is a
locally countable family of subsets of X, then f(P) is a locally countable family
of subsets of Y .

Proof. Let P = {Pα : α ∈ Λ} be a locally countable family of subsets of
X and let y ∈ Y . For each x ∈ f−1(y), there is an open neighborhood Ux of x
such that {α ∈ Λ : Ux

⋂
Pα 6= ∅} is countable. f−1(y) ⊂ ⋃{Ux : x ∈ f−1(y)}

and f−1(y) is Lindelöf , so there is a countable subset B of f−1(y) such that
f−1(y) ⊂ ⋃{Ux : x ∈ B}. Put U =

⋃{Ux : x ∈ B}. It is clear that
{α ∈ Λ : U

⋂
Pα 6= ∅} is countable. Note that f is closed. By [7, Theorem

1.4.13], there is an open neighborhood V of y such that f−1(V ) ⊂ U . Thus
Λ′ = {α ∈ Λ : f−1(V )

⋂
Pα 6= ∅} is countable. It is easy to check that

{α ∈ Λ : V
⋂

f(Pα) 6= ∅} = Λ′. So {α ∈ Λ : V
⋂

f(Pα) 6= ∅} is countable.
This proves that f(P) is a locally countable family of subsets of Y . ¥

Theorem 3.33 Let f : X −→ Y be a closed, finite-to-one mapping. If X has
a locally countable sn-network, then Y has a locally countable sn-network.

Proof. Let P be a locally countable sn-network of X. Then f is se-
quentially quotient from Remark 3.2(3), and so Y is sn-first countable from
Remark 3.2(1) and Lemma 3.11. Since sequentially quotient mappings preserve
cs∗-networks([19, Proposition 2.7.3]), f(P) is a cs∗-network of Y . f(P) is lo-
cally countable from Lemma 3.12, so f(P) is a locally countable cs∗-network
of Y . Thus Y has a locally countable sn-network from Theorem 2.10. ¥

Question 3.34 Do closed, countable-to-one mappings preserve spaces with a
locally countable sn-network?
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A clopen mapping means an open and closed mapping.

Theorem 3.35 Let f : X −→ Y be a clopen, Lindelöf mapping. If X has a
locally countable sn-network, then Y has a locally countable sn-network.

Proof. Let P =
⋃{Px : x ∈ X} be a locally countable sn-network of X.

Since f is closed, Lindelöf , by a similar way as in the proof of Theorem 3.13,
f(P) is a locally countable cs∗-network of Y . It suffices to prove that Y is
sn-first countable from Theorem 2.10. Let y ∈ Y . Put Fy = {f(P ) : P ∈
Px and x ∈ f−1(y)}, then Fy ⊂ f(P), so Fy is locally countable. Note that
y ∈ ⋂Fy, Fy is countable. It is clear that Fy is a network at y in Y . We
only need to prove that each element of Fy is a sequential neighborhood of y.
Let f(P ) ∈ Fy and {yk} be a sequence in Y converging to y. Then there is
x ∈ f−1(y) such that P ∈ Px. Since X is point-Gδ, {x} =

⋂{Un : n ∈ N},
where each Un is open in X and Un+1 ⊂ Un. For each n ∈ N, y ∈ f(Un)
and f(Un) is open as f is open, so there is mn ∈ N such that yk ∈ f(Un)
for each k ≥ mn. Pick xn ∈ Un such that f(xn) = ymn . Since f is closed,
it is not difficult to prove that the sequence {xn} converges to x ∈ P . P
is a sequential neighborhood of x, so {xn} is eventually in P . Consequently,
{f(xn)} is eventually in f(P ), so {yk} is frequently in f(P ). By Remark 2.2(1),
f(P ) is a sequential neighborhood of y. ¥

Corollary 3.36 Let f : X −→ Y be an open, perfect mapping. If X has a
locally countable sn-network, then Y has a locally countable sn-network.

Clopen mappings preserve spaces with a locally countable weak-base ([24,
Theorem 4.7]). But the following question is still open.

Question 3.37 Do clopen mappings preserve spaces with a locally countable
sn-network (resp. cs-network)?

Lemma 3.38 Let f : X −→ Y be a strongly Lindelöf -mapping. If P is a
locally countable family of subsets of X, then f(P) is a locally countable family
of subsets of Y .

Proof. Let P = {Pα : α ∈ Λ} be a locally countable family of subsets of X
and let y ∈ Y . Then there is a neighborhood W of y in Y such that f−1(W ) is
a Lindelöf subset of X. It suffices to prove that {α ∈ Λ : W

⋂
f(Pα) 6= ∅} is

countable. For each x ∈ f−1(W ), there is an open neighborhood Ux of x such
that {α ∈ Λ : Ux

⋂
Pα 6= ∅} is countable. f−1(W ) ⊂ ⋃{Ux : x ∈ f−1(W )}

and f−1(W ) is Lindelöf , so there is a countable subset B of f−1(W ) such
that f−1(W ) ⊂ ⋃{Ux : x ∈ B}. It is easy to see that {α ∈ Λ : (

⋃{Ux : x ∈
B}) ⋂

Pα 6= ∅} is countable, so Λ′ = {α ∈ Λ : (f−1(W )
⋂

Pα 6= ∅} is countable.
It is easy to check that {α ∈ Λ : W

⋂
f(Pα) 6= ∅} = Λ′. This completes the

proof. ¥
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Theorem 3.39 Let X have a locally countable sn-network. If one of the fol-
lowing holds, then Y has a locally countable sn-network.

(1) f is finite subsequence-covering, strongly Lindelöf .
(2) f is 1-sequence-covering, strongly Lindelöf .
(3) f is sequentially-quotient, finite-to-one, strongly Lindelöf .

Proof. We only need to prove part (1) from Remark 3.2(1). Let f : X −→
Y be a finite subsequence-covering, strongly Lindelöf -mapping and P be a
locally countable sn-network of X. Then Y is sn-first countable from lemma
3.11 and f(P) is a locally countable family of subsets of Y from Lemma 3.18.
By a similar way as in the proof of Theorem 3.13, we can prove f(P) is a cs∗-
network of Y . So Y has a locally countable sn-network from Theorem 2.10.
¥

The following corollary is obtained from Remark 3.2(2),(4),(5), Corollary
2.15, Theorem 3.13 and Theorem 3.19.

Corollary 3.40 Let X have a locally countable weak-base. If one of the fol-
lowing holds, then Y has a locally countable weak-base.

(1) f is closed, finite-to-one.
(2) f is finite subsequence-covering, quotient, strongly Lindelöf .
(3) f is 1-sequence-covering, quotient, strongly Lindelöf .
(4) f is quotient, finite-to-one, strongly Lindelöf .
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