AN ELASTIC GREEN MATRIX FOR A SEMISTRIP
 Peradze J.

Iv. Javakhishvili Tbilisi State University

Abstract. A Green matrix is constructed for one mixed two-dimensional problem of the elasticity theory. The results of work [1] are thereby defined more correctly.

Key words: system of equations of elasticity theory, Green matrix
AMS subject classification 2000: 35Q72, 35C15
Assume that that we are seeking for a solution of the system of equations of the elasticity theory

$$
\begin{align*}
& (\lambda+2 \mu) \frac{\partial^{2} u_{1}}{\partial x^{2}}+\mu \frac{\partial^{2} u_{1}}{\partial y^{2}}+(\lambda+\mu) \frac{\partial^{2} u_{2}}{\partial x \partial y}=f_{1}(x, y) \\
& (\lambda+\mu) \frac{\partial^{2} u_{1}}{\partial x \partial y}+\mu \frac{\partial^{2} u_{2}}{\partial x^{2}}+(\lambda+2 \mu) \frac{\partial^{2} u_{2}}{\partial y^{2}}=f_{2}(x, y) \tag{1}
\end{align*}
$$

in a domain $-\infty<x \leq 0,0 \leq y \leq b$, under the following boundary conditions, interesting from the standpoint of application

$$
\begin{array}{r}
\mu\left(\frac{\partial u_{1}}{\partial y}(x, \alpha b)+\frac{\partial u_{2}}{\partial x}(x, \alpha b)\right)=0, \quad u_{2}(x, \alpha b)=0, \\
-\infty<x \leq 0, \quad \alpha=0,1, \\
u_{1}(0, y)=0, \quad \mu\left(\frac{\partial u_{1}}{\partial y}(0, y)+\frac{\partial u_{2}}{\partial x}(0, y)\right)=0, \quad 0 \leq y \leq b,
\end{array}
$$

and that for $x \rightarrow-\infty$ a solution is bounded.
Suppose that $f_{i}(x, y) \in L_{1}((-\infty, 0],[0, b])$ and $\int_{-\infty}^{x} \int_{0}^{b} f_{i}(\xi, \eta) d \xi d \eta=O((1-$ $x)^{-1}$) as $x \rightarrow-\infty, i=1,2$.

To obtain the Green matrix of the posed problem we will use the method and notation of the paper [1]. Let us define the vectors $\mathbf{U}(x, y)=\left(u_{1}(x, y)\right.$, $\left.u_{2}(x, y)\right)$ and $\mathbf{F}(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right)$ (here and in what follows the vector transposition sign is omitted). Assume that

$$
\begin{gather*}
\mathbf{U}(x, y)=\sum_{n=0}^{\infty} Q_{n}(y) \mathbf{U}_{n}(x), \quad \mathbf{F}(x, y)=\sum_{n=0}^{\infty} Q_{n}(y) \mathbf{F}_{n}(x), \\
Q_{n}(y)=\operatorname{diag}(\cos \nu \mathrm{y}, \sin \nu \mathrm{y}), \quad \mathbf{U}_{\mathrm{n}}(\mathrm{x})=\left(\mathrm{u}_{1 \mathrm{n}}(\mathrm{x}), \mathrm{u}_{2 \mathrm{n}}(\mathrm{x})\right), \tag{3}\\
\mathbf{F}_{n}(x)=\left(f_{1 n}(x), f_{2 n}(x)\right), \quad \nu=\frac{\pi n}{b} .
\end{gather*}
$$

Owing to such a representation, conditions (2.1) are fulfilled. From (1)-(3) we conclude that to find a pair of functions $u_{1 n}, u_{2 n}, n=1,2, \ldots$, it is required
to solve the system of ordinary differential equations

$$
\begin{align*}
(\lambda+2 \mu) u_{1 n}^{\prime \prime}-\mu \nu^{2} u_{1 n}+(\lambda+\mu) \nu u_{2 n}^{\prime} & =f_{1 n}, \\
-(\lambda+\mu) \nu u_{1 n}^{\prime}+\mu u_{2 n}^{\prime \prime}-(\lambda+2 \mu) \nu^{2} u_{2 n} & =f_{2 n} \tag{4}
\end{align*}
$$

under the boundary conditions by which

$$
\begin{equation*}
u_{1 n}(0)=0, \quad u_{2 n}^{\prime}(0)=0, \tag{5}
\end{equation*}
$$

must be fulfilled at the point $x=0$, while for $x \rightarrow-\infty, u_{1 n}$ and $u_{2 n}$ are bounded.

As to the case $n=0$, here we have only one sought for function $u_{10}(x)$ satisfying the first equation in (4) and the first equality in (5) and bounded for $x \rightarrow-\infty$.

To solve problem (4),(5), we use the well-known method [2]. First we consider the homogeneous system corresponding to (4). The system of its fundamental solutions forms the rectangular matrix $\Phi_{n}=\left(\phi_{i j}^{n}\right), i=1,2, j=$ $1,2,3,4$, whose elements are

$$
\begin{aligned}
& \phi_{11}^{n}=-\phi_{21}^{n}=e^{\nu x}, \quad \phi_{12}^{n}=\phi_{22}^{n}=e^{-\nu x}, \\
& \phi_{i 3}^{n}=\left[(-1)^{i}(\lambda+\mu) \nu x+(i-1)(\lambda+3 \mu)\right] e^{\nu x}, \\
& \phi_{i 4}^{n}=[(\lambda+\mu) \nu x-(i-1)(\lambda+3 \mu)] e^{-\nu x}, \quad i=1,2 .
\end{aligned}
$$

Using fundamental solutions, we come to the conclusion that the general solution of system (4) has the form

$$
\begin{equation*}
\mathbf{U}_{n}(x)=\int_{-\infty}^{x} S_{n}(x, \xi) \mathbf{F}_{n}(\xi) d \xi+\Phi_{n}(x) D_{n}, \quad n=1,2, \ldots \tag{6}
\end{equation*}
$$

where $S_{n}(x, \xi)=\left(s_{i j}^{n}\right)$ is the second order matrix, $i, j=1,2$, whose elements are defined by the relations

$$
\begin{align*}
s_{i i}^{n}(x, \xi)= & \frac{m}{2}\left(\frac{1}{\nu}(\lambda+3 \mu) \operatorname{sh} \nu(\mathrm{x}-\xi)\right. \\
& \left.+(-1)^{i}(\lambda+\mu)(x-\xi) \operatorname{ch} \nu(\mathrm{x}-\xi)\right), \quad \mathrm{i}=1,2, \tag{7}\\
-s_{12}^{n}(x, \xi)= & s_{21}^{n}(x, \xi)=\frac{m}{2}(\lambda+\mu)(x-\xi) \operatorname{sh} \nu(\mathrm{x}-\xi), \\
m= & (\mu(\lambda+2 \mu))^{-1},
\end{align*}
$$

and $D_{n}=\left(d_{i}\right)$ is the column-matrix of arbitrary constants, $i=1,2,3,4$.
Taking into account (6), let us choose elements D_{n} so that (5) and the condition of the boundedness of $u_{1 n}$ and $u_{2 n}$ for $x \rightarrow-\infty$ be fulfilled. As a result, we obtain

$$
\begin{align*}
& d_{1}=\frac{m}{2} \int_{-\infty}^{0}\left[\left(\frac{1}{\nu}(\lambda+3 \mu) \operatorname{sh} \nu \xi-(\lambda+\mu) \xi \operatorname{ch} \nu \xi\right) f_{1}(\xi)\right. \\
&\left.+(\lambda+\mu) \xi \operatorname{sh} \nu \xi f_{2}(\xi)\right] \mathrm{d} \xi
\end{align*} \quad \begin{gathered}
 \tag{8}\\
d_{2}=d_{4}=0, \quad d_{3}=\frac{m}{2 \nu} \int_{-\infty}^{0}\left(\operatorname{sh} \nu \xi \mathrm{f}_{1}(\xi)-\operatorname{ch} \nu \xi \mathrm{f}_{2}(\xi)\right) d \xi .
\end{gathered}
$$

Formulas (6)-(8) imply

$$
\begin{equation*}
\mathbf{U}_{n}(x)=\int_{-\infty}^{0} g_{n}(x, \xi) \mathbf{F}_{n}(\xi) d \xi \tag{9}
\end{equation*}
$$

where $g_{n}(x, \xi)=\left(g_{i j}^{n}(x, \xi)\right)$ is the second order matrix, $i, j=1,2$, moreover,

$$
g_{i j}^{n}(x, \xi)= \begin{cases}\gamma_{i j}^{n}(x, \xi)+s_{i j}^{n}(x, \xi) & \text { for } \mathrm{x} \geq \xi, \tag{10}\\ \gamma_{i j}^{n}(x, \xi) & \text { for } \mathrm{x} \leq \xi\end{cases}
$$

and

$$
\begin{align*}
\gamma_{11}^{n}(x, \xi) & =m(p(x-\xi)-q(x-\xi)-p(x+\xi)+q(x+\xi)), \\
\gamma_{12}^{n}(x, \xi) & =m(p(x-\xi)+p(x+\xi)), \tag{11}\\
\gamma_{21}^{n}(x, \xi) & =m(p(x+\xi)-p(x-\xi)), \\
\gamma_{22}^{n}(x, \xi) & =-m(p(x-\xi)+q(x-\xi)+p(x+\xi)+q(x+\xi)),
\end{align*}
$$

with the notation

$$
p(u)=\frac{1}{4}(\lambda+\mu) u e^{\nu u}, \quad q(u)=\frac{1}{4 \nu}(\lambda+3 \mu) e^{\nu u} .
$$

Formula (9) holds for $n=0$ too, where $g_{0}(x, \xi)=\left(g_{i j}^{0}(x, \xi)\right), i, j=1,2$, and in the cases $x \geq \xi$ and $x \leq \xi \quad g_{11}^{0}$ is equal respectively to $m \mu x$ and $m \mu \xi$, while for other elements of the matrix $g_{0}(x, \xi)$ we have $g_{12}^{0}=g_{21}^{0}=g_{22}^{0}=0$ in both cases.

By virtue of (3) and (9)

$$
\mathbf{U}(x, y)=\int_{-\infty}^{0} \int_{0}^{b} G(x, y, \xi, \eta) \mathbf{F}(\xi, \eta) d \xi d \eta
$$

where the sought Green matrix $G(x, y, \xi, \eta)$ is defined by the relation

$$
\begin{equation*}
G(x, y, \xi, \eta)=\frac{1}{b} \sum_{n=0}^{\infty} \varepsilon_{n} Q_{n}(y) g_{n}(x, \xi) Q_{n}(\eta) \tag{12}
\end{equation*}
$$

Here ε_{n} is equal to 1 for $n=0$, and to 2 in other cases. To obtain an explicit form of the elements $G_{i j}(x, y, \xi, \eta)$ of the matrix $G(x, y, \xi, \eta), i, j=1,2$, we use (7), (10)-(12), the well-known formulas [3]

$$
\begin{aligned}
& \sum_{n=1}^{\infty} t^{n} \cos n \theta=(1-t \cos \theta)\left(1-2 t \cos \theta+t^{2}\right)^{-1}, \\
& \sum_{n=1}^{\infty} t^{n} n^{-1} \cos n \theta=-\frac{1}{2} \ln \left(1-2 t \cos \theta+t^{2}\right), \\
& t^{2}<1, \quad 0<\theta<2 \pi
\end{aligned}
$$

and the notation

$$
\begin{aligned}
& z=x+i y, \quad \zeta=\xi+i \eta, \quad \omega(u)=e^{\frac{\pi u}{b}}, \quad P(u)=\operatorname{Re}(1-\omega(\mathrm{u})), \quad \mathrm{S}(\mathrm{u})=\operatorname{Im} \omega(\mathrm{u}), \\
& E(u)=|1-\omega(u)|^{2}, \quad Q(u)=P(u) E^{-1}(u), \quad T(u)=S(u) E^{-1}(u) .
\end{aligned}
$$

When $x \leq \xi$, for the diagonal elements we have

$$
\begin{gathered}
G_{i i}(x, y, \xi, \eta)=\frac{2-i}{b} m \mu \operatorname{Re} \zeta+\frac{\mathrm{m}}{8 \pi}(\lambda+3 \mu) \ln [\mathrm{E}(\mathrm{z}-\zeta) \mathrm{E}(\mathrm{z}-\bar{\zeta})(\mathrm{E}(\mathrm{z}+\zeta) \times \\
\left.\times E(z+\bar{\zeta}))^{(-1)^{i}}\right]-\frac{m}{4 b}(\lambda+\mu) \sum_{k=-1,+1} k^{i} \operatorname{Re}(\mathrm{z}+\mathrm{k} \zeta)(\mathrm{Q}(\mathrm{z}+\mathrm{k} \zeta)+\mathrm{Q}(\mathrm{z}+\mathrm{k} \bar{\zeta})), \\
i=1,2
\end{gathered}
$$

while the nondiagonal ones are defined by the formula

$$
\begin{gathered}
G_{i j}(x, y, \xi, \eta)=\frac{m}{4 b}(\lambda+\mu) \sum_{k=-1,+1} k^{i} \operatorname{Re}(\mathrm{z}+\mathrm{k} \zeta)(\mathrm{T}(\mathrm{z}+\mathrm{k} \zeta)-\mathrm{T}(\mathrm{z}+\mathrm{k} \bar{\zeta})), \\
i, j=1,2, \quad i \neq j
\end{gathered}
$$

For $x \geq \xi$ these relations readily imply formulas for $G_{i j}(x, y, \xi, \eta)$ if we use the well-known property of symmetry: in the diagonal and nondiagonal elements we should make the replacement $x \leftrightarrow \xi$ and, in addition to this, the nondiagonal elements should be interchanged. We obtain

$$
\begin{array}{r}
G_{i i}(x, y, \xi, \eta)=\frac{2-i}{b} m \mu \operatorname{Rez}+\frac{\mathrm{m}}{8 \pi}(\lambda+3 \mu) \ln [\mathrm{E}(-\mathrm{z}+\zeta) \mathrm{E}(-\mathrm{z}+\bar{\zeta}) \times \\
\left.\times(E(z+\zeta) E(z+\bar{\zeta}))^{(-1)^{i}}\right]-\frac{m}{4 b}(\lambda+\mu) \sum_{k=-1,+1} k^{i+1} \operatorname{Re}(\mathrm{z}+\mathrm{k} \zeta)(\mathrm{Q}(\mathrm{kz}+\zeta)+ \\
+Q(k z+\bar{\zeta})), \\
G_{i j}(x, y, \xi, \eta)=\frac{m}{4 b}(\lambda+\mu) \sum_{k=-1,+1} k^{i+1} \operatorname{Re}(\mathrm{z}+\mathrm{k} \zeta)(\mathrm{T}(\mathrm{kz}+\zeta)-\mathrm{T}(\mathrm{kz}+\bar{\zeta})), \\
i, j=1,2, \quad i \neq j .
\end{array}
$$

Acknowledgment. The author expresses his gratitude to Professor T. Tadumadze and Candidate of Science P. Dvalishvili for useful discussions.

References

[1] Dolgova, I.M., Melnikov, Yu.A, Construction of functions and Green matrices for equations and systems of elliptic type, Prikl. Matem. i Mekhan. (in Russian), 42, 4 (1978), 695-700 (English transl.: Appl. Math. Mech.)
[2] Hartman, P., Ordinary differential equations, John Wiley and Sons, New York-London-Sydney, 1964.
[3] Gradshtein, I.S., Rizhik, I.M., Tables of integrals, sums, series and products, Nauka, Moscow, 1971 (in Russian).

