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THE ITERATION PROCESS FOR THE NONLINEAR
TWO-DIMENSIONAL OSCILLATION PROBLEM
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Abstract. The initial boundary value problem for an integro-differential Kirch-
hoff equation is considered in the case of a square domain. To find an approx-
imate solution, step-by-step discretization is performed with respect to spatial
variables and a time argument. The obtained cubic system is solved by the
iteration method. The method error is estimated.

Key words: Kirchhoff equation, Jacobi nonlinear iteration process, error esti-
mate

AMS subject classification 2000: 65M

Let us consider the following initial boundary value problem

wtt −
(
λ +

4

π2

∫

Ω

(w2
x + w2

y)dx dy
)
(wxx + wyy) = 0, (1)

(x, y) ∈ Ω, 0 < t ≤ T,

w(x, y, 0) = w(0)(x, y), wt(x, y, 0) = w(1)(x, y), (x, y) ∈ Ω, (2)

w(x, y, t) = 0, (x, y) ∈ ∂Ω, 0 ≤ t ≤ T, (3)

where Ω = {(x, y) | 0 < x < π, 0 < y < π}, ∂Ω is the boundary of the
domain Ω, w(0)(x, y) and w(1)(x, y) are given functions, λ > 0 and T are given
constants.

Equation (1) is a two-dimensional analogue of the well-known Kirchhoff
equation [1]

wtt −
(
λ +

2

π

∫ π

0

w2
xdx

)
wxx = 0 (4)

for string vibration. The studies of many researchers are devoted to Kirchhoff
type equations (for the bibliography see, e.g., [2], [3]).

We present here one numerical method of the solution of problem (1)–(3).
An approximate solution will be sought for as a finite sum

wn(x, y, t) =
n∑

i,j=1

wnij(t) sin ix sin jy,

where the coefficients wnij(t) are calculated from the Galerkin system

w′′
nij(t) +

[
λ +

n∑

p,l=1

(p2 + l2)w2
npl(t)

]
(i2 + j2)wnij(t) = 0, (5)
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i, j = 1, 2, . . . , n,

wnij(0) =
4

π2

∫

Ω

w(0)(x, y) sin ix sin jy dx dy,

w′
nij(0) =

4

π2

∫

Ω

w(1)(x, y) sin ix sin jy dx dy, i, j = 1, 2, . . . , n.

(6)

We replace problem (5), (6) by the problem of finding functions w nij(t),
i, j = 1, 2, . . . , n, where the relation between the functions wnij(t) and w nij(t)
is such that

wnij(t) =
1√

i2 + j2
w nij(t). (7)

We have to solve the following problem

w′′
nij(t) +

[
λ +

n∑

p,l=1

w2
npl(t)

]
(i2 + j2)w nij(t) = 0, (8)

i, j = 1, 2, . . . , n,

w nij(0) =
4

π2

√
i2 + j2

∫

Ω

w(0)(x, y) sin ix sin jy dx dy,

w′
nij(0) =

4

π2

√
i2 + j2

∫

Ω

w(1)(x, y) sin ix sin jy dx dy,

(9)

i, j = 1, 2, . . . , n.

To solve the obtained Cauchy problem (8), (9) we will use a difference
scheme of symmetrical type. To this end, we introduce the grid {tm | 0 = t0 <
t1 < . . . < tM = T} with a constant step τ = tm − tm−1. The approximate
values w nij(tm) are denoted by wm

nij, i, j = 1, 2, . . . , n, m = 0, 1, . . . , M .
The scheme has the form

wm
nij − 2wm−1

nij + wm−2
nij

τ 2
+

1

2

∑
u=−1,0

{[
λ +

n∑

p,l=1

(wm+u
npl )2 + (wm+u−1

npl )2

2

]

×(i2 + j2)
wm+u

nij + wm+u−1
nij

2

}
= 0, (10)

i, j = 1, 2, . . . , n, m = 2, 3, . . . , M,

w0
nij = wnij(0),

w1
nij = wnij(0) +

τ

2
w′

nij(0) (11)

+
2τ 2

π2

[
λ +

4

π2

∫

Ω

((w(0)
x )2 + (w(0)

y )2)dx dy
]
×

×
∫

Ω

(w(0)
xx + w(0)

yy ) sin ix sin jy dx dy, i, j = 1, 2, . . . , n.
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From system (10) we write a subsystem for fixed m, 2 ≤ m ≤ M . Then

8

τ 2(i2 + j2)
wm

nij +
{

2λ +
n∑

p,l=1

[(wm
npl)

2 + (wm−1
npl )2]

}

×(wm
nij + wm−1

nij ) =
8

τ 2(i2 + j2)
fm

nij
, i, j = 1, 2, . . . , n, (12)

where

fm

nij
= 2wm−1

nij − wm−2
nij − τ2

2

(
λ +

∑n
p,l=1

(wm−1
npl )2+(wm−2

npl )2

2

)
×

×(i2 + j2)
wm−1

nij +wm−2
nij

2
, i, j = 1, 2, . . . , n.

Let us agree that for the solution of problem (10), (11) we will use iteration
layerwise, more exactly, knowing the approximate solutions wm−2

nij and wm−1
nij ,

i, j = 1, 2, . . . , n, from (12) we find wm
nij, i, j = 1, 2, . . . , n, by iteration. As to

the initial values, i.e. values at the zero and the first layer, formulas (11) make
it possible to find w0

nij and w1
nij, i, j = 1, 2, . . . , n.

Denote the k-th iteration approximation wm
nij by wm

nij,k, i, j = 1, 2, . . . , n,
k = 0, 1, . . ..

From our algorithmic approach it follows that (12) is a system of equations
with respect to wm

nij, i, j = 1, 2, . . . , n. To solve this system we use the non-
linear Jacobi iteration process. From (12) it follows that the process has the
form

w3
nij,k+1 + aij w2

nij,k+1 + bij w nij,k+1 + cij = 0, (13)

where

aij = wm−1
nij , bij = dij + (wm−1

nij )2 +
8

τ 2(i2 + j2)
,

cij = (dij + (wm−1
nij )2)wm−1

nij − 8

τ 2(i2 + j2)
fm

nij
, (14)

dij = 2λ +
n∑

p, l = 1
p 6= i
l 6= j

[(wm
npl,k)

2 + (wm−1
npl )2], k = 0, 1, . . .

In addition to (14) we need the values

rij = dij +
2

3
(wm−1

nij )2 +
8

τ 2(i2 + j2)
,

sij =
2

3

(
dij +

10

9
(wm−1

nij )2
)
wm−1

nij − (15)

− 8

τ 2(i2 + j2)

(1

3
wm−1

nij + fm

nij

)
, i, j = 1, 2, . . . , n.
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Using the Cardano formulas [4], by (13) we write wm
nij,k+1 in the explicit

form
wm

nij,k+1 = ψij,k , (16)

where

ψij,k = −aij

3
+ σij,1 − σij,2, i, j = 1, 2, . . . , n, (17)

σij,v =
[
(−1)v sij

2
+

(s2
ij

4
+

r3
ij

27

) 1
2
] 1

3

, v = 1, 2, i, j = 1, 2, . . . , n. (18)

To establish the convergence conditions for the iteration process used, we
consider the Jacobi matrix

J =
{ ∂ψij,k

∂w ni1j1,k

}
, i, j = 1, 2, . . . , n, i1, j1 = 1, 2, . . . , n. (19)

Here ij and i1j1 are respectively the numbers of a row and a column of matrix
(19).

By (14)–(18) on the principal diagonal of the matrix J we find zeros. As
to nondiagonal elements, i 6= i1, j 6= j1, we find

∂ψij,k

∂wm
ni1j1,k

= −1

9
wm

ni1j1,k

2∑
v=1

1

σ2
ij,v

[
2wm−1

nij

+(−1)v
(
wm−1

nij sij +
1

3
r2
ij

)(s2
ij

4
+

r3
ij

27

)− 1
2
]
. (20)

From (18) we obtain the formulas

σij,1σij,2 =
rij

3
, σ3

ij,2 − σ3
ij,1 = sij,

(s2
ij

4
+

r3
ij

27

) 1
2

=
σ3

ij,1 + σ3
ij,2

2
,

which together with (20) give

∂ψij,k

∂wm
ni1j1,k

= ψ
(1)
iji1j1

+ ψ
(2)
iji1j1

, (21)

where

ψ
(v)
iji1j1

=
(2

3
wm

ni1j1,k

)
(sij)

v−1
(
− 2

3
wm−1

nij

)2−v

×
(
σ2v

ij,1 +
(
− rij

3

)v

+ σ2v
ij,2

)−1

, v = 1, 2. (22)

Let us estimate |ψ(v)
iji1j1

|, v = 1, 2. To this end, we consider the functions

ψ(u)(z) = (−r)u +
2∑

v=1

[z + (−1)v(z2 + r3)
1
2 ]

2u
3 ,

−∞ < z < ∞, r = const > 0,
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u = 1, 2. Each function ψ(u)(z), u = 1, 2, is even and increasing for any z ≥ 0
and therefore

min
−∞<z<∞

|ψ(u)(z)| = ψ(u)(0) = (2u− 1)ru, u = 1, 2.

The latter relation, (14), (15) and (22) imply

|ψ(u)
iji1j1

| ≤ [τ 2(i2 + j2)]u

26u− 20
|sij|u−1|wm−1

nij |2−u|wm
ni1j1,k|, u = 1, 2. (23)

From formulas (21), (23) and (14), (15) it follows that

∣∣∣ ∂ψij,k

∂w ni1j1,k

∣∣∣ ≤ 1

4
τ 2(i2 + j2)|wm

ni1j1,k|
{1

6
τ 2(i2 + j2)|wm−1

nij |
[
λ +

+
n∑

p,l=1

(1

2
(wm

npl,k)
2 +

5

9
(wm−1

npl )2
)]

+ |wm−1
nij |+ |fm

nij
|
}

. (24)

Let us introduce the vectors

wm−1
n = (wm−1

nij )n
i,j=1, wm

n,k = (wm
nij,k)

n
i,j=1, fm

n
= (f

nij
)n
i,j=1.

Besides, we also need vector and matrix norms. For the vector µ = (µs)
N
s=1 and

the matrix G = (grs)
N
r,s=1 we define ‖µ‖1 =

N∑
s=1

|µs| and ‖G‖1 = max
1≤s≤N

N∑
r=1

|grs|.

Let us consider the sums
n∑

i,j=1

(i2 + j2)u, u = 1, 2. Taking into account

that [5]

n∑

l=1

l2u =
n(n + 1)(2n + 1)

6

(3n2 + 3n− 1

5

)u−1

, u = 1, 2,

we obtain
n∑

i,j=1

(i2 + j2)u≤ n2(n + 1)(2n + 1)

3

(6n2 + 6n− 2

5

)u−1

, u = 1, 2. (25)

Note that for u = 1 in (25) we have the equality.
Let us estimate the norm of the Jacobi matrix (19). By virtue of (24) and

(25)

‖J‖1 ≤ τ 2n2(n + 1)(2n + 1)

12

×max
i1,j1

|wm
ni1j1,k|

{τ 2(3n(n + 1)− 1)

15
‖wm−1

n ‖1 ×

×
[
λ+

n∑
i,j=1

(1

2
(wm

nij,k)
2+

5

9
(wm−1

nij )2
)]

+‖wm−1
n ‖1+‖fm

n
‖1

}
, (26)

i1, j1 = 1, 2, . . . , n.
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Applying the principle of compressed mapping [6], we assume that

‖J‖1 ≤ q, 0 < q < 1,

‖wm
n,k − wm

n,0‖1 ≤
1

1− q
‖wm

n,1 − wm
n,0‖1, k = 1, 2, . . . ,

(27)

is fulfilled. From (26) it follows that for (27) to be hold, it is sufficient that
the following biquadratic inequality

α τ 4 + β τ 2 − γ ≤ 0 (28)

be fulfilled with respect to the step τ . Here

α =
3n(n + 1)− 1

15
‖wm−1

n ‖1

[
λ +

1

2

(
‖wm

n,0‖1 +

+
1

1− q
‖wm

n,1 − wm
n,0‖1

)2

+
5

9

n∑
i,j=1

|wm−1
nij |2

]
,

β = ‖wm−1
n ‖1 + ‖fm

n
‖1,

γ =
12q

n2(n + 1)(2n + 1)

(
‖wm

n,0‖1 +
1

1− q
‖wm

n,1 − wm
n,0‖1

)−1

.

Thus we come to a conclusion that if the parameter q and the step τ
satisfy inequality (28), then system (12) has a unique solution with respect to
the unknowns wm

nij, i, j = 1, 2, . . . , n. The vector wm
n = (wm

nij)
n
i,j=1 consisting

of the components of solutions wm
nij is the limit of a sequence of vectors wm

n,k,
as k →∞. Moreover, the estimate

‖wm
n,k − wm

n ‖1 ≤
qk

1− q
‖wm

n,1 − wm
n,0‖1, k = 0, 1, . . . ,

is true.
Formula (7) enables us to construct with the aid of wm

nij,k approximate
solutions of the function wnij(t) at the grid points.

The problem considered here for the one-dimensional equation (4) is studied
in [7].
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