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SHORT COMMUNICATIONS

ON ONE SYSTEM OF PARTIAL DIFFERENTIAL EQUATIONS
DEGENERATED AT ONE POINT

Jikia v.

Iv. Javakhishvili Tbilisi State University

Abstract. The system of differential equations

zν ζ µ ∂n+qw(z, ζ)

∂ζ n ∂zq
= B(z, ζ) w∗(z, ζ),

is investigated. The sufficient condition when the system has only trivial so-
lution is derived. The interesting example, when this condition is not fulfilled
is given.
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The basic concept of classical complex analysis is the Cauchy-Riemann
system

∂u

∂x
− ∂v

∂y
= 0,

∂u

∂y
+

∂v

∂x
= 0.

It is well-known that the previous system can be rewritten in a complex
form

∂w

∂z
= 0,

where w(z) = u(x, y) + iv(x, y), z = x + iy. The generalization of this
system is a high-order differential system

∂nw

∂zn
= 0,

The solutions of which are called n-analytic functions. It has various ap-
plications in the theory of elasticity and was studied by numerous of authors.

In this paper more general system of differential equations is investigated by
means of complex analysis method. This method is widely used by numerous
of authors and has a long history (see for example [1–13]).

In a complex z plane (z = x + iy) consider the area G which contains the
point z = 0. Let us denote by G∗ the area for which ζ ∈ G implies ζ ∈ G∗.
Let as consider the area G4 in a 4D space which is defined by G4 = G×G∗.

In the area G4 let us consider the differential equation given by

zν ζ µ ∂n+qw(z, ζ)

∂ζ n ∂zq
= B(z, ζ) w∗(z, ζ), (1)
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where ν, µ, n, q are given non-negative integers, B is given analytic function
with respect to z and ζ in the area G4.

∂

∂z
=

1

2

( ∂

∂x
+ i

∂

∂y

)
,

∂

∂z
=

1

2

( ∂

∂x
− i

∂

∂y

)
,

w is an unknown function and the function w∗(z, ζ) is defined in the area G4

by the formula

w∗(z, ζ) = w(ζ, z).

We will investigate solutions of the equation (1) in the class of analytic
functions (with respect to x, y).

The following theorem is true.

Theorem. If B(0, 0) 6= 0 and ν + µ > n + q, then the equation (1) has
only the trivial solution.

Proof. As B(z, ζ) and w(z, ζ) are analytic functions in the area G4 then
they are representable by the double-series in the neighborhood of (0, 0)

B(z, ζ) =
∞∑

k=0

∞∑
m=0

bkm zk ζm,

w(z, ζ) =
∞∑

k=0

∞∑
m=0

wkm zk ζm.

It is obvious that in the neighborhood of (0, 0) we have

w∗(z, ζ) =
∞∑

k=0

∞∑
m=0

wmk zk ζm.

Multiplying the doubly series we obtain

zν ζµ ∂n+qw

∂ζn ∂zq
=

=
∞∑

k=ν

∞∑
m=µ

(m + n− µ)! (k + q − ν)!

(m− µ)! (k − ν)!
wk+q−ν,m+n−µ zk ζm,(2)

Bw∗ =
∞∑

k=0

∞∑
m=0

( k∑

l=0

m∑
p=0

bk−l,m−p wpl

)
zk ζm. (3)

From (2) and (3) we obtain

∞∑

k=ν

∞∑
m=µ

(m + n− µ)! (k + q − ν)!

(m− µ)! (k − ν)!
wk+q−ν,m+n−µ zk ζm =
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=
∞∑

k=0

∞∑
m=0

( k∑

l=0

m∑
p=0

bk−l,m−p wpl

)
zk ζm.

Equalize the coefficients at the same degrees of z and ζ, we obtain the
system of algebraic equations with respect to wmk

k∑

l=0

m∑
p=0

bk−l,m−p wpl = 0, where 0 ≤ m≤µ− 1, k=0, 1, 2, . . . ,

or m = 0, 1, 2, . . . , 0 ≤ k ≤ ν − 1, (4)
k∑

l=0

m∑
p=0

bk−l,m−p wpl =
(m + n− µ)! (k + q − ν)!

(m− µ)! (k − ν)!
wk+q−ν,m+n−µ,

where m ≥ µ, k ≥ ν. (5)

Let us prove, wmk = 0, m, k = 0, 1, 2, . . . .
The integer h = m + k we call the height of wmk. We will prove wmk = 0

by the mathematical induction method with respect to h.
If h = 0, then m = k = 0 and from (5) we obtain b00w00 = 0. b00 = B(0) 6=

0 implies w00 = 0.
Now, suppose for h > 0, wmk = 0. Consider the coefficient wmk for h + 1,

i.e. m + k = h + 1.
We have

k∑

l=0

m∑
p=0

bk−l,m−p wpl =
k−1∑

l=0

m−1∑
p=0

bk−l,m−p wpl +
k−1∑

l=0

bk−l,0 wml +

+
m−1∑
p=0

b0,m−p wpk + b00 wmk. (6)

As ν + µ > n + q, then (k + q− ν) + (m + n− µ) < k + m, and as b00 6= 0,
from (4), (5), (6) follows that wmk is the linear combination of the coefficients
wpl for the height h.

And as we suppose wpl = 0 for h = 0, then wmk = 0.
Hence w(z, ζ) = 0 in G4.

Note. In this theorem the condition ν + µ > n + q is essential.
Let us consider the example:
1. Let ν, µ, n, q,m, k > 0, ν +µ = n+ q and m−k = ν− q = n−µ, m ≥ n,

k ≥ q.
Let

B(z, ζ) =
m!

(m− n)!

k!

(k − q)!
,

then we obtain

zνζ µ ∂n+qw(z, ζ)

∂z n ∂zq
=

m!

(m− n)!

k!

(k − q)!
w∗(z, ζ).
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This equation has non-zero analytic solution w(z, ζ) = zkζ m.
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