SHORT COMMUNICATIONS

DIRICHLET PROBLEM FOR THE MARGUERRE-VON KÁRMÁN EQUATIONS SYSTEM
Devdariani G., Janjgava R., Gulua B.
I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University

Abstract: In the present paper the nonlinear boundary value problem for the system of the Marguerre-von Karman equations is considered. Using the general theorem of Banach spaces, the existence of solutions has been proved.

Key words: Shallow shell, Marguerre-von Karman equations, existence theorem

MSC 2000: 74K25

1. Introduction

The paper deals with the question of existence of solutions to the nonlinear boundary value problem of the Marguerre-von Karman equations. These equations describe the strong bending of the shallow shells. The Marguerrevon Karman equations are due to Marguerre [1] and von Karman \& Tsien [2]. As shown by Ciarlet \& Paumier [3], the method of formal asymptotic expansions, applied in the form of the displacement-stress approach, may be also used for justification of the Marguerre-von Karman equations.

The general theorem of Banach spaces [4] for the proof of existence of solutions has been used. This method has been used by Dubinski [4], [5] and Skripnik [6] for the different non-linear equations .

Let $\left(e_{i}\right)$ denote the basis of the Euclidean space R^{3}, and let ω be a domain in the plane spanned on the vectors \mathbf{e}_{α}. Assume that ω is bounded and connected and that its boundary γ is smooth enough. We donote by $O x_{1} x_{2} x_{3}$ Cartesian coordinates and let

$$
\partial_{\alpha}:=\frac{\partial}{\partial x_{\alpha}}, \quad \alpha=1,2 .
$$

Let $\theta\left(x_{1}, x_{2}\right): \bar{\omega} \rightarrow R$ be a function of class C^{2} such that

$$
\partial_{\alpha} \theta=0 \quad \text { along } \gamma, \quad \alpha=1,2 .
$$

$x_{3}=h \theta\left(x_{1}, x_{2}\right),\left(x_{1}, x_{2}\right) \in \bar{\omega}$, is the equation of the middle surface of the shell, where h is a semi-thickness of the shell.

The system of equations under consideration for homogeneous isotropic shallow shells has the following form

$$
\begin{align*}
& \frac{8 \mu(\lambda+\mu)}{3(\lambda+2 \mu)} \Delta^{2} \zeta-[\chi, \zeta+\theta]=p \quad \text { in } \quad \omega \\
& \frac{\lambda+\mu}{\mu(3 \lambda+2 \mu)} \Delta^{2} \chi+[\zeta, \zeta+2 \theta]=0 \quad \text { in } \quad \omega \tag{1}
\end{align*}
$$

where $h \zeta\left(x_{1}, x_{2}\right)$ is the deflection, $h^{2} \chi\left(x_{1}, x_{2}\right)$ is the Airy stress function, $h^{4} p\left(x_{1}, x_{2}\right)$ is function given in $\omega, \lambda>0$ and $\mu>0$ are the Lame constants, $\Delta^{2}:=$ $\partial_{1111}+2 \partial_{1122}+\partial_{2222}$ is the two-dimensional biharmonic operator and

$$
[\chi, \psi]:=\partial_{11} \chi \partial_{22} \psi+\partial_{22} \chi \partial_{11} \psi-2 \partial_{12} \chi \partial_{12} \psi
$$

Dirichlet boundary conditions for equations (1) look like

$$
\begin{equation*}
\zeta=\chi=0, \quad \partial_{1} \zeta=\partial_{2} \zeta=0, \quad \partial_{1} \chi=\partial_{2} \chi=0, \quad \text { on } \quad \gamma \tag{2}
\end{equation*}
$$

Let us reformulate the problem (1), (2) as the following equivalent problem

$$
\begin{gather*}
\frac{8(\lambda+\mu)}{3 k(\lambda+2 \mu)} \Delta^{2} \zeta-\left[\chi^{*}, \zeta+\theta\right]=p^{*} \quad \text { in } \omega, \\
\frac{k(\lambda+\mu)}{3 \lambda+2 \mu} \Delta^{2} \chi^{*}+[\zeta, \zeta+2 \theta]=0 \quad \text { in } \quad \omega, \tag{*}\\
\zeta=\chi^{*}=0, \quad \partial_{1} \zeta=\partial_{2} \zeta=0, \quad \partial_{1} \chi^{*}=\partial_{2} \chi^{*}=0 \quad \text { on } \gamma \tag{*}
\end{gather*}
$$

where $\chi^{*}=\frac{\chi}{k \mu}, p^{*}=\frac{p}{k \mu}, k>0$ should be some real constant such that

$$
\min \left(\frac{8(\lambda+\mu)}{3 k(\lambda+2 \mu)}, \frac{k(\lambda+\mu)}{3 \lambda+2 \mu)}\right)
$$

be maximal. It takes place when

$$
k=\sqrt{\frac{8(3 \lambda+2 \mu)}{3(\lambda+2 \mu)}}
$$

Let us represent the problem $\left(1^{*}\right),\left(2^{*}\right)$ as the operational problem

$$
A(u):=L(u)+B(u)+N(u)=f
$$

where $u=\left(\zeta\left(x_{1}, x_{2}\right), \chi^{*}\left(x_{1}, x_{2}\right)\right)$ is the vector function,

$$
\begin{gathered}
L(u):=\frac{2 \sqrt{2}(\lambda+\mu)}{\sqrt{3(\lambda+2 \mu)(3 \lambda+2 \mu)}}\left(\Delta^{2} \zeta, \Delta^{2} \chi^{*}\right) \\
B(u):=\left(-\left[\chi^{*}, \theta\right], 2[\zeta, \theta]\right) \\
N(u):=\left(-\left[\chi^{*}, \zeta\right],[\zeta, \zeta]\right) \\
f:=\left(p^{*}\left(x_{1}, x_{2}\right), 0\right)
\end{gathered}
$$

2. The Existence Theorem

In order to show the existence of solutions of the problem (1), (2) we remined the general theorem of the Banach spaces:

Theorem 1. Let X is the separable and reflexive Banach space and let X^{*} is the dual space of that. Assume that the generally non-linear operator $A(u): X \rightarrow X^{*}$ satisfies the following conditions:

1. The condition of coerciveness. For any $u \in X$

$$
\frac{<A(u), u>}{\|u\|_{X}} \rightarrow+\infty, \text { when }\|u\|_{X} \rightarrow+\infty
$$

2. The condition of weakly compactness. If $u_{n} \rightharpoonup u$ weakly in X, then for any $v \in X$

$$
\lim _{m \rightarrow \infty}<A\left(u_{m}\right), v>=<A(u), u>
$$

where u_{m} is the some subsequence of u_{n}.
Then for any $h \in X^{*}$ equation

$$
A(u)=h
$$

has at least one solution u in X.
Theorem 2. Let $\theta\left(x_{1}, x_{2}\right) \in C^{2}(\bar{\omega}), \max _{\left(x_{1}, x_{2}\right) \in \bar{\omega}}\left(\theta\left(x_{1}, x_{2}\right)-æ\right)<\frac{2 \sqrt{2}(\lambda+\mu)}{\sqrt{3(\lambda+2 \mu)(3 \lambda+2 \mu)}}$, where $æ=\frac{1}{2}\left(\max _{\left(x_{1}, x_{2}\right) \in \bar{\omega}} \theta\left(x_{1}, x_{2}\right)+\min _{\left(x_{1}, x_{2}\right) \in \bar{\omega}} \theta\left(x_{1}, x_{2}\right)\right), p^{*} \in W_{2}^{-2}(\omega)$, then the problem $\left(1^{*}\right),\left(2^{*}\right)$ has at least one generalized solution $\zeta \in W_{2}^{0}{ }_{2}^{2}, \chi^{*} \in W_{2}^{2}$.

Proof. Because of $\operatorname{dim} \omega=2, \theta \in C^{2}(\bar{\omega})$, and ${ }_{W}^{0}{ }_{2}^{2}(\omega) \subset C(\bar{\omega})$ we have $B(u) \in L_{2}(\omega) \subset W_{2}^{-2}(\omega)=X^{*}$ and $N(u) \in L_{1}(\omega) \subset W_{2}^{-2}(\omega)=X^{*}$. It is evident, that $L(u): X \rightarrow X^{*}$. Thus, $A(u): X \rightarrow X^{*}$.

For any $u \in W_{W}^{0}{ }_{2}^{2}(\omega)$ we have

$$
\begin{equation*}
<L u, u>=\frac{2 \sqrt{2}(\lambda+\mu)}{\sqrt{3(\lambda+2 \mu)(3 \lambda+2 \mu)}}\|u\|_{X} . \tag{3}
\end{equation*}
$$

For all $\chi^{*}, \zeta \in \stackrel{0}{W}{ }_{2}^{2}(\omega)$ and $\theta \in C^{2}(\omega)$ we have $\left(d x:=d x_{1} d x_{2}\right)$

$$
\begin{gather*}
\int_{\omega}\left[\chi^{*}, \theta\right] \zeta d x=\int_{\omega}[\zeta, \theta] \chi^{*} d x \\
\int_{\omega}\left[\chi^{*}, \theta\right] \zeta d x=\int_{\omega}\left[\chi^{*}, \zeta\right] \theta d x \tag{4}\\
\int_{\omega}\left[\chi^{*}, \zeta\right] d x=0
\end{gather*}
$$

By means of the formulas (4) we show

$$
\begin{gathered}
\left|<B(u), u>\left|=\left|\int_{\omega}\left[\chi^{*}, \zeta\right](\theta-æ) d x\right|=\right.\right. \\
=\left|\int_{\omega}\left(\partial_{11} \chi^{*} \partial_{22} \zeta+\partial_{22} \chi^{*} \partial_{11} \zeta-2 \partial_{12} \chi^{*} \partial_{12} \zeta\right)(\theta-æ) d x\right| \leq \\
\leq \max _{\left(x_{1}, x_{2}\right) \in \bar{\omega}}\left(\theta\left(x_{1}, x_{2}\right)-æ\right) \int_{\omega}\left\{\frac{1}{2}\left[\left(\partial_{11} \chi^{*}\right)^{2}+\left(\partial_{22} \zeta\right)^{2}+\left(\partial_{22} \chi^{*}\right)^{2}+\left(\partial_{11} \zeta\right)^{2}\right]+\right. \\
\left.+\left(\partial_{12} \chi^{*}\right)^{2}+\left(\partial_{12} \zeta\right)^{2}\right\} d x \leq \max _{\left(x_{1}, x_{2}\right) \in \bar{\omega}}\left(\theta\left(x_{1}, x_{2}\right)-æ\right)\|u\|_{X}^{2},
\end{gathered}
$$

Now, we have

$$
\begin{equation*}
<L(u), u>+<B(u), u>\geq c\|u\|_{X}^{2} \tag{5}
\end{equation*}
$$

where

$$
c:=\frac{2 \sqrt{2}(\lambda+2 \mu)}{\sqrt{3(\lambda+2 \mu)(3 \lambda+2 \mu)}}-\max _{\left(x_{1}, x_{2}\right) \in \bar{\omega}}\left(\theta\left(x_{1}, x_{2}\right)-æ\right) .
$$

In view of (5), $L(u)+B(u)$ is coercive. As $L(u)$ and $B(u)$ are the linear bounded operators, the condition of coercivennes is fulfilled for them.

Let us show that a non-linear operator $N(u)$ is orthogonal, i.e., for any $u \in{ }_{W}^{0}{ }_{2}^{2}(\omega)$

$$
<N(u), u>=0
$$

Let $\zeta\left(x_{1}, x_{2}\right) \in D(\omega), \quad \chi^{*}\left(x_{1}, x_{2}\right) \in D(\omega)$, then

$$
\begin{align*}
& -\int_{\omega}\left[\chi^{*}, \zeta\right] \zeta d x=\int_{\omega}\left[\partial_{22} \chi^{*}\left(\partial_{1} \zeta\right)^{2}-2 \partial_{12} \chi^{*} \partial_{1} \zeta \partial_{2} \zeta+\partial_{11} \chi^{*}\left(\partial_{2} \zeta\right)^{2}\right] d x \tag{6}\\
& \int_{\omega}[\zeta, \zeta] \chi^{*} d x=-\int_{\omega}\left[\partial_{22} \chi^{*}\left(\partial_{1} \zeta\right)^{2}-2 \partial_{12} \chi^{*} \partial_{1} \zeta \partial_{2} \zeta+\partial_{11} \chi^{*}\left(\partial_{2} \zeta\right)^{2}\right] d x \tag{7}
\end{align*}
$$

By (6) and (7), for any finite function $<N(u), u\rangle=0$. As $\overline{D(\omega)}={ }_{W}^{0}{ }_{2}^{2}(\omega)$ and ${ }_{W}^{0}{ }_{2}^{2}(\omega) \subset C(\bar{\omega}) \quad(\operatorname{dim} \omega=2)$, operator $N(u)$ is orthogonal for all $u \in{ }_{W}^{0}{ }_{2}^{2}(\omega)$.

Since the operator $N(u)$ is orthogonal, the operator $A(u)$ is coercive.
Now, we show that the operator $N(u)$ is weakly compact.
Lemma 3. For any $\zeta\left(x_{1}, x_{2}\right) \in{ }_{W}^{0}{ }_{2}^{2}(\omega) \chi^{*} \in{ }_{W}^{0}{ }_{2}^{2}(\omega)$ we have

$$
\begin{align*}
\int_{\omega}\left[\chi^{*}, \zeta\right] v d x=- & -\int_{\omega}\left[\partial_{22} \chi^{*} \partial_{1} \zeta \partial_{1} v-\partial_{12} \chi^{*}\left(\partial_{1} \zeta \partial_{2} v-\partial_{2} \zeta \partial_{1} v\right)\right. \tag{8}\\
& \left.+\partial_{11} \chi^{*} \partial_{2} \zeta \partial_{1} v\right] d x
\end{align*}
$$

$$
\begin{equation*}
\int_{\omega}[\zeta, \zeta] v d x=-\int_{\omega}\left[\partial_{1} \zeta \partial_{12} \zeta \partial_{1} v+\partial_{2} \zeta \partial_{12} \zeta \partial_{1} v-\partial_{1} \zeta \partial_{2} \zeta \partial_{12} v\right] d x \tag{9}
\end{equation*}
$$

Lemma 4. If $u_{n}(x) \rightharpoonup u(x)$ weakly in $L_{2}(\omega), \quad q_{n}(x) \rightarrow q(x)$ in $L_{2}(\omega)$, then for any bounded $v(x)$ function

$$
\int_{\omega} u_{n} q_{n} v d x \rightarrow \int_{\omega} u q v d x .
$$

By virtue of (8), (9) and the lemma 4 we get the weakly compactness of $N(u)$.

Now the proof of the theorem 2 immediately follows from the theorem 1.

References

[1] Marguerre K. Zur Theorie der gekrummten Platten grosser Formänderung. Proceedings of Fifth International Congress for Applied Mechanics, 1938, 93-101.
[2] Von Karman T., Tsien H.S. The buckling of spherical shell by external pressure. J.Aero. Sci. 7 (1939), 43-50.
[3] Ciarlet P.G., Paumier J.C. A justification of the Marguerre-von Karman equations. Computational Mech. 1 (1986), 177-202.
[4] Dubinskii, I.A., Generalized functions and their applications. Nonlinear elliptic problems, Moscow, 1976, 32-40 (in Russian).
[5] Dubinskii, I.A., Nonlinear elliptic and parabolic type equations. Contemporaneous Mathematics Problems, Moscow, 9 (1976).
[6] Skrypnik, I.V., Solvability and attribute of the solutions of nonlinear elliptic equations. Contemporaneous Mathematics Problems, Moscow, 9 (1976).

Received November, 4, 2005; revised May, 24, 2006; accepted June, 30, 2006.

