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LIFE, ACTIVITIES, AND SCIENTIFIC HERITAGE
OF ILIA VEKUA
George Jaiani
Ilia Vekua Institute of Applied Mathematics
& Department of Mathematics
of Ivane Javakhishvili Tbilisi State University
george.jaiani@gmail.comyge

The present talk is devoted to a con-
cise survey of scientific, pedagogical,
and educational activities of the out-
standing Georgian mathematician and
mechanist Ilia Vekua. Biographical data
are also given.

If we look through the Mathematical

1li Vekua Subject Classification, we find Ilia Ve-

kua’s name among the names of a few

outstanding mathematicians and mechanists of the world: “30G20 —
Generalizations of Bers and Vekua type (pseudoanalytic, p-analytic,
etc, functions). It’s remarkable that only Ilia Vekua has such an
honour amidst Georgian scientists. In this connection we quote here
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an outstanding American mathematician L. Bers: “While “Vekua’s
generalized analytic functions” are basically the same as my
“pseudoanalytic functions”, our motivation and our aims were
somewhat different”.

I.Vekua’s parents:

Vekua’s Parents house in

Liza (Memu) Apshilava and Shesheleti
Nestor Vekua

I].i Vekua in
1925

Ilia Vekua was born on April 23rd, 1907 in a pic-
turesque region of Georgia, in Abkhazia, namely in
the district Samurzakano in the village Shesheleti.
After finishing a secondary school in the capital of
another ravishing region of Georgia Samegrelo,
Zugdidi, in 1925 Ilia Vekua was enrolled at the Fa-
culty of Physics and Mathematics of the Tbilisi State
University (TSU).




He graduated from the university with honours in 1930 and, having
the recommendation of academician Nikoloz Muskhelishvili, left
Thilisi for Leningrad (former and present Saint-Petersburg) and be-
came Ph.D. student of the well-known mathematician and mechanist
A.N. Krylov.

The first works of Ilia Vekua were devoted to the torsion and ben-
ding of elastic bars and propagation of electric waves in an infinite
layer with parallel plane boundaries. These results subsequently for-
med his Ph.D thesis “Propagation of Elastic Oscillations in an Infini-
te Layer” which he successfully defended at the age of 29.

Ilia Vekua

at the age of 29 Ilia Vekua

at the aoe of 37

When he was 32 years old, Ilia Vekua received Doctor of Science
degree (A Complex Representation of Solutions of Elliptic Equations
and its Application to Boundary Value Problems). At the age of 39 he
became a member of the Georgian Academy of Sciences and a
corresponding member of the Soviet Academy of Sciences. In 1958
he was elected a member (academician) of the Soviet Academy of

Ilia Vekua and

. . Ilia Vekua with the first
Nikoloz Muskhelishvili graduates of Novosibirsk
State University

Sciences.
Ilia Vekua was one of the enthusiastic founders of the Razmadze
Mathematical Institute, Novosibirsk State University and its first

I.Vekua Institute of
Applied Mathematics

First Council of the Institute
of Applied Mathematics

Rector, the founder and the first director of the Institute of Applied
Mathematics of the Tbilisi State University until his decease in 1977.

-

Computer’s room of the Institute of Applied
Mathematics (BESM-6/7)

Now it is called I.Vekua Institute of Applied Mathematics of TSU.

At different times he was a Rector of TSU, the second (after
N. Muskhelishvili) President of the Georgian Academy of Sciences,
Professor of Lomonosov Moscow State University, etc.

—

L ]avakhisvili Thilisi M. Lomonosov Georgian National

State University Moscow State Academy of
University Sciences



Scientific studies of Ilia Vekua as a rule start with problems of
Mechanics, continue by fundamental investigations in Complex Ana-
lysis, Integral and Partial Differential equations and are crowned with
applications to Mechanics. Results of Ilia Vekua, published in leading
scientific journals, were summarized in consequent monographs,
published in Russian, English, German, Chinese (later also Georgian),
and other languages. The most important of his monographs were:

New Methods of Solving Elliptic Equations (1948), Generalized
Analytic Equations (1948), Generalized Analytic functions (1959),
Shell Theory: General Methods of Constructing (first published
Russian after his decease in 1982 under the slightly different title),

then in 1985 by Pitman Advanced Publishing Program and in 2007 by
the Tbilisi University Press in
Georgian. All these monographs
were awarded by different state
prizes.

Richard

Courant
and David
Hilbert in
. their well-
known book “Methods of Mathematical Physics”
were skeptical about the use of general complex
representations of solutions of PDEs. Later,
Courant confessed that the above opinion was
totally wrong and it was proved by Vekua’s
David Hilbert methods developed on the basis of general com-

plex representations.

Now, I’d like to quote the following extract from the foreword of
Gaetano Fichera to the English edition of I. Vekua’s book in shell
theory: “The present monograph by I.N. Vekua, which is now offered

Ricard Courand and Ilia Vekua Ilia Vekua and Gaetano Fichera

to Western applied mathematicians in an English translation, is the
natural continuation of the ideological program of the Thilisi school.
It is concerned with shell theory which, as is well known, constitutes
an elevated and difficult generalization of plane elasticity. The rele-
vant geometric continua of shell theory, although two- dimensional,
are no longer planar and their geometric properties deeply influence
the analysis of the problems that arise in this important field of elas-
ticity.”

Once again L. Bers. He wrote: “In the theory
of elliptic partial differential equations in the pla-
ne Vekua followed two different paths. One, si-
milar to the work of Stefan Bergman, led to
explicit formulas for solutions of elliptic equa-
tions with real analytic coefficients, in terms of
arbitrary holomorphic functions of a complex
variable. Vekua applied his formulas to very ge-
neral boundary value problems and, in this con-

nection, obtained a result which is today recog-
nizable as a precursor of the Atiyah-Singer

Lipman Bers

index theorem.

The other main direction of Vekua’s investigations was concerned
with properties of systems of two first order elliptic equations, viewed
as generalized Cauchy- Riemann equations. This time real analyticity
of the coefficients is not assumed, and it turns out that the properties

8



in question are best understood in terms of generalized complex
function theory. While Vekua’s “generalized analytic functions” are
basically the same as my “pseudoanalytic function”, our motivation
and our aims were somewhat different. In particular, Vekua applied his
theory to elastic shells and to infinitesimal deformations of surfaces in
3-space”.

The life of 1. Vekua can be devided in to 8 periods:

¢ Shesheleti, Gali 1907-1924

* Zugdidi 1925

* Thilisi 1925-1930

e Petersburg 1930-1933

e Thilisi 1933-1951

*  Moscow 1951-1958

* Novosibirsk 1958-1964

e Tbilisi 1964-1977

Main positions held:

e Thilisi 1933-1951
1. Scientific secretary of the Tbilisi Mathematical Institute
2. Head of the theoretical mechanics chair of the Transcaucasian
Institute of Engineers of Means of Communications
3. Deputy director of the Mathematical Institute of the Geor-
gian Branch of USSR Academy of Sciences
4. Dean of the physical-and-mathematical faculty of the Tbilisi State
University
5. Head of the geometry chair of the Thbilisi State University
6. Head of the applied mathematics department at the A. Razmadze
Mathematical Institute of the Academy of Sciences of the Georgian
SSR
7. Vice-Rector of Tbilisi State University
8. Chairman of the mathematical and natural sciences department of
the Academy of Sciences of the Georgian SSR
9. Academician-Secretary of the Academy of Sciences of the Geor-
gian SSR
10.Head of the higher mathematics chair of Tbilisi State University

e Moscow 1951-1958
1. Head of a department of the Central Aerohydrodynamics Institute,

9

Moscow
2. Acting deputy director of the Precise Mechanics and Com-
puter Hardware Institute of the USSR Academy of Sciences, Moscow
3. Head of the theoretical mechanics chair of the Moscow Physi-
cal Technical Institute
4. Professor of the differential equations chair of the M. Lomono-
sov Moscow State University
5. Deputy director of the VA. Steklov Mathematical Institute of
the USSR Academy of Sciences
e Novosibirsk 1958-1964
1. Member of the Presidium of the Siberian Branch of the USSR
Academy of Sciences
2. Rector of Novosibirsk State University
3. Head of the mathematical physics chair of the Novosibirsk
University
4. Head of the theoretical department of the Hydrodynamics Institute
of the Siberian Branch of the USSR Academy of Science
e Thilisi 1964-1977

1. Vice-President of the Academy of Sciences of the Georgian SSR
2. Head of the mechanics sector of the A. Razmadze Tbilisi
Mathematical Institute of the Academy of Sciences of the Georgian
SSR
3. Rector of the Tbilisi State University
4. Scientific supervisor, director of the Institute of Applied Mathe-
matics of the Tbilisi State University
5. President of the Academy of Sciences of the Georgian SSR.

Ilia Vekua left an indelible trace everywhere, in every field he had
been working.

His scientific heritage is immortal and it is being developed in
different countries of the world by his PhD students, PhD students of
his PhD students, and his followers.

10



PhD Students

A. Bitsadze (Georgia) P. Dubov (Russia)

I. Danilyuk (Ukraine) A. Dzhuraev (Tajikistan)
V. Ivanov (Russia) N. Tovmasyan (Armenia)
L. Mikhailov (Russia) V. Jgenti (Georgia)

O. Kharazov (Azerbaijan) G. Gagua (Georgia)

E. Obolashvili (Georgia) L. Kiknadze (Georgia)
A. Kalandia (Georgia) Sh. Metskhovrishvili (Georgia)
V. Khvedelidze (Georgia) R. Kordzadze (Georgia)
B. Bojarski (Poland) Cher (North Korea)

W. Schmidt (Germany) Sun, Che-shen (China)

V. Vinogradov (Russia) Y. Zhio Chen (China)

Y. Krivenkov (Russia) G. Jaiani (Georgia)

I. Belov (Russia) N. Kaldani (Georgia)

More than 100 PhD students of PhD Students.
It is impossible to give an approximate number of disciples.
Among them are T. Meunargia, T. Vashakmadze and late D. Gorde-
ziani from [.Vekua Institute of Applied Mathematics of TSU.

Now, we give a brief account of the most typical features of
I. N. Vekua’s rich legacy that have greatly influenced the develop-
ment of the respective problems of mathematics.

The general linear boundary value problem for analytic functions of
one complex variable, studied comprehensively by 1. N. Vekua, holds
the key position in the modern theory of the so-called non-
Fredholmian problems for elliptic equations.

One of the basic problems of the function theory is associated with
names of Riemann and Hilbert: Define a function ®(z) analytic in D

and satisfying the boundary condition

Re[A(t)D" (¢)]=g(t), tedD, (1)
where A and g are the known functions of the arc abscissa s of 0D
(i.e. t=1t(s)) of D, while ®"(¢) is the boundary value of the

unknown function for z —> ¢ from D .
Introducing the notation

11

A(0) = A (0) +id (0, @ <z>=g—;‘—i2—;‘,

problem (1) can be reduced to the problem with an oblique derivati-
ve, i.e. , to the Poincaré problem: Define a function harmonic in D
and satisfying the following boundary condition

A ou + 4, ou =g(t), teodD. ()
ox oy

In connection with the study of problems (1) and (2) the one-
dimensional singular integral equation

Aot) = a)e) + pOSe(t)+Te(t) = f(1), t€dD,  (3)
is considered, where S is a Cauchy-type singular operator:

So(t) = % j%, teaD,
oD

and T is the Fredholm integral operator.

One of the main questions of the theory of singular integral
equations of the form (3) is the reduction of this equation to an
equivalent second kind Fredholm equation (the problem of equivalent
regularization). I. N. Vekua’s solution of this problem is considered
as a brilliant result in the theory of singular integral equations.
Developing Carleman’s idea, in the 1940s 1. N. Vekua worked out (in
classical assumptions) a way for constructing a theory of integral
equations (3) known at present as the Carleman-Vekua method. It
involves three stages: 1) solutions of a characteristic singular equa-
tion (i.e. , eq. (3) for T'=0) as well as of its associated equation are
constructed effectively; 2) these solutions are used for an equivalent
regularization of eq. (3) and of its associated equation; 3) Fredholm
integral equations, constructed in this manner, are used for proving
the Noether theorems for eq. (3).

The regularization problem can be solved using, in addition to the
above-mentioned method, the method of regularization by multiplica-
tion of operators. The idea of this method is in the following: it is
required to construct an operator B of type 4 (see (3)) such that the
equation BA @ = Bf be Fredholmian. In this case B is said to be the

left regularizer of A . If the equations A = fand BA@ = Bf are

12



equivalent, whatever f from the considered class of functions is,

B is said to be the left equivalent regularizer of A4 . It was known that
such an operator does not always exist. In this connection a question
arises: is it possible to formulate the problem of constructing a
Fredholm equation equivalent to eq. (3) in such a way that it should
always have a solution? I. N. Vekua answered the question
positively. He showed that there exists an operator B, constructed
effectively in quadratures, such that either the equations 4¢ = f and

BAp =Bfor Ap= fand AB¢ = f are equivalent in the sense

that either of the equations is solvable, then so is the other, and the
connection @ = B¢ exists between their solutions.

Using the theory of eq. (3), by means of his own integral
representations of analytic functions

O(z) = It,u(t)ds

oD t—z

when ®(z) is a Holder continuous in D and

O(z) = J)y(t)(l — 5)’"‘ ln(l — ;) ds + J),u(t) ds

when @ (z) is Holder continuous in D, where u is a real

Holder continuous function of s, I. N. Vekua succeeded in solving
completely the Riemann-Hilbert problem (1) in the following general
formulation: In the domain D whose boundary 0D is a sufficiently
smooth, simple, closed curve; it is required to find an analytic
function @ satisfying the boundary condition

Re Y (4, O[@X (0] +T,[@Y) T} = £(1) 4

where (®"))* is a boundary value of the kth order derivative of
®from D; A, and f are the functions given on 0D and 7, are

the Fredholm integral operators.
I. N. Vekua’s results obtained in connection with problem (4)
formed the basis of his further research devoted to constructing a

13

theory of normally solvable boundary value problems in the case of
the following second order elliptic differential equation

Au +a,(x, y) +a ,(x, y) +a3(x V= (35)
oy

where a,, a, and a; are analytic functions. These problems are an
essential generalization of the Poincaré boundary value problem (2)

in the case of equation (5). Indeed, the boundary condition is of the
form

Jjt+k<m

6l+k ai+k
Z /k (t)|: ,a k T/'k (ﬁj} = f(t),t € 6D7 (6)

where @, and f are the known real functions on 0D, T, are the

Fredholm integral operators.
In the constructing the theory of this problem I. N. Vekua made
use of the integral representation of all regular solutions of eq. (5)

u(x,y) = Rela(z,2)p(z) + f p(z.z,09(0)dt],  (7)

where @ is an arbitrary analytic function, while @ and [ are
functions constructed by means of the coefficients a,, a,and a,.

Formulas similar to (7) were obtained by T. Carleman, H. Lewy
and S. Bergman. The method of constructing formula (7), known as
the Riemann-Vekua method, is considered to be the most simple,
clear and constructive one. Here we recall L. Bers again: “l. Vekua
applied his formulas to very general boundary value problems and, in
this connection, obtained a result which is today recognizable as a
precursor of the Atiyan-Singer index theorem”.

I. N. Vekua generalized the integral representation for the elliptic
equation

ANu+Y L (A" u)=0, (®)
=1
where L, is the kth order differential operator with analytic coeffi-

cients.

14



Employing his formulas, I. N. Vekua investigated the following
boundary value problem: Find the regular solution of this equation in
the simply connected domain D, satisfying the conditions

Qg j=0Ln-l,
av’|,,
where V is the outward normal of 0D,

In the theory of general complex representations of solutions of
elliptic equations I. N. Vekua discovered a remarkable fact of a
possibility of equivalent reduction of any boundary value problem for
eq. (8) to the corresponding boundary value problem for a system of
analytic functions.

As is well-known, the theory of analytic functions
®(z) =u(x,y)+iv(x,y)of one complex variable z = x +iy is the

theory of the Cauchy-Riemann system
Ou 0Ov 0 ou N ov

———=0, —+—=0.
ox Oy oy Ox
This system is the particular case of the elliptic system

0
—u—@+au+bv:0,
ox Oy
a—qu@+0u+dv:O, )
oy Ox

with the real coefficients a,b,c,d which are functions of the real
variables x, y.
Introducing the notation

W(z)=u+iv, 22:22—1'2, 22_::i+ii
0z oOx Oy 0z oOx Oy
44=a+d+i(c-b), 4B=a—-d +i(c+b),
system (9) can be rewritten as

a—Vf+AW+BV7=0. (10)
0z

Back in the 19 th century Beltrami and Picard tried to construct a
theory of generalized analytic functions w = u + iv. Important re-

3
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sults in this direction were obtained by T. Carlemann and M.A. Lav-
rentyev. I. N.Vekua’s intensive research also yielded basic results
that formed the principal component part of the modern theory of
functions satisfying the equation

OF OF oF —
oF _OF _ OF riBF-o. 3
z Ny Ty ()

If |q1|+|q2|<l,then many properties of solutions of system (9)

remain valid for eq. (11) which is a complex form of a linear elliptic
system of two equations with respect to the real and imaginary parts

of F'. In the constructed theory the known functions ¢,,q,,4 and

B are required to be sufficiently smooth.

IN. Vekua made a substantial contribution to the theory of
metaharmonic functions which are solutions of the Helmholtz
equation

o’u o’u .,

—tt—+Au=0,A=const, p>2. (12)
OX; ox,
He gave the following integral representation of metaharmonic

functions
1
0
U(Xy50es X, ) = Uy (X500, X)) —Iuo(xl,t,...,xpt) t1 8—10(/1}"\/1 —1)dt,
¢
0
. . . . p—2
where u, 1is an arbitrary harmonic function, ¢ =-"-——,

2

PP+t x;, and [ is the Bessel function. He also construc-

ted an inverse integral representation of this formula and, moreover,
in the case of a real A he showed that under the Sommerfeld
conditions

0 -
M idu=o0(r ") and u=0@""?),
r
providing the uniqueness of the solution of the external Dirichlet and
Neumann problems in the case of eq. (12), the second condition is the

consequence of the first one.

16



I. N. Vekua showed that his method of constructing solutions of
elliptic linear equations could be used in the investigation of the
properties of solutions of some nonlinear elliptic equations. Thus, for
example, he studied the properties of solutions of the Gaussian
equation

Alogv(x, y) = =2K(x, y)v(x, y),
which enabled him to find a simple proof of the well-known Hilbert
theorem on the nonexistence of a regular surface with a negative
curvature, conformally homeomorphic to the whole plane.

The range of theoretical results obtained by I.N. Vekua is wide.
On the basis of his methods of investigation of elliptic equations a
consistent theory of elastic shells was constructed. In particular,
LN. Vekua proposed two versions of this theory, one of which is
used in the investigation of thin shells, and the other in the construc-
tion of a membrane theory of shells.

The elastic body is called a prismatic shell if it is bounded above
and below by, respectively, the surfaces (so called face surfaces)

() )
Xy = h(x,%,) and x;= h(x,X,),
laterally by a cylindrical surface I" of generatrix parallel to the x;-

axis and its vertical dimension is sufficiently small compared with
other dimensions of the body (see Fig. 1).
In other words, the 3D elastic prismatic shell-like body occupies a

bounded region Q with boundary 02, which is defined as:
) )
Q.= {(xl,xz,x3) eR’:(x,x,) em, h(x,x,)<x,<h (xl,xz)}, (13)

where @:= @0 is the so-called projection of the prismatic shell
Q:=QuaiQ

1+)
——x=h(x,.x,)

) (
2 ()
\ ~ .1'_;!!(.1‘ 1Y)

o
Figure 1: Prismatic shell with constant thickness

17

(+)
\'__.=.l’1(\'|.\'__.} =

(-
xy=hix x,)

Figure 2: A sharp cusped prismatic shell with a semicircle projection. O€2 is a
Lipschitz boundary

-~ xy=h(x,.x,)

Figure 3: A cusped plate with sharp }, and blunt ¥, edges, ¥, =7, Y 7,.
0Q2 is a non-Lipschitz boundary

In what follows we assume that

7 (x1.3,) € C* (@) A C(®),
and
) ) >0 for (x,,x,)e€n,
2h(x19x2) =h ('xl’x2)_ h (xlsxz)

>0 for (x,x,)edw

is the thickness of the prismatic shell €2 at the points (x,,x,) € o.
max{2h} is essentially less than the characteristic dimensions of @

(see Figures 1-8). Let x; = h (x,,x,) denote the “middle” surface of
the prismatic shell, then
~ (+) =)
2h (x;,x,) = h (x;,x,)+ h(x,x,).
In the symmetric case of prismatic shells, i.e., when

18



) +) ‘ ~
h(x,x,)=—h(x,x,), e, 2h (x,,x,)=0,

we have to do with plates of variable thickness 2/(x,,x,) and a mid-
plane @ (see Fig. 3). Prismatic shells are called cusped prismatic
shells if a set ), , consisting of (x,,x,) € 0w for which 2A(x,,x,)=0,
is not empty (see Fig. 2, Fig. 3).

Distinctions between the prismatic shell of a constant thickness
and the standard shell of a constant thickness are shown in Fig. 4,
where cross-sections of the prismatic shell of a constant thickness
with its projection and of the standard shell of a constant thickness
with its middle surface are given in red and green colors, respectively
(common parts are given in blue, see Fig. 4, Fig. 5).

M

1

Figure 4: Comparison of cross-sections of prismatic and standard shells

Figure 5: Cross-sections of a prismatic (left) and a standard shell with the same
mid-surface

The lateral boundary of the standard shell is orthogonal to the
"middle surface" of the shell, while the lateral boundary of the
prismatic shell is orthogonal to the prismatic shell's projection on
x, =0 (Fig. 5).

In what follows X, and e; are the stress and strain tensors,

1
respectively, u, are the displacements, @, are the volume force
components, o is the density, A and u are the Lamé constants, 50.

is the Kronecker delta. Moreover, repeated indices imply summation
(Greek letters run from 1 to 2, and Latin letters run from 1 to 3,
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unless otherwise stated), bar under one of the repeated indices means
that we do not sum.

By u,, X,., e

ijr 2

® . we denote the 7 -th order moments of the

ir °

corresponding quantities u,, X, ¢,, @, as defined below:

(uir ’Xijr ’eijr ’(Djr)(xl 5 Xy, t)

(+)
h (xl sxz)

= J- (ui,X,'j,eij'a(Dj)(xlaxzax},t)P;«(axZ' _b)dxz,a l,]:E(lé")

;)(xl,xz)
where
1 ~
a(xl’xZ)::—a b(xl:xz)::h (XI,XZ):
h(x;,x,) h(x,x,)

and
1 d' (> -1)
2t det
are the r -th order Legendre Polynomials
[.Vekua's hierarchical models for elastic prismatic shells are the
mathematical models (Vekua 1955, 1985). Their constructing is
based on the multiplication of the basic equations of linear elasticity:

Motion Equations
2

b.(7)=

r=0,1,

u.
Y — . 3
l'j,i+q)j_p?2/(x1ax2ax3at)a (XI,XZ,X3)€QCR >

15)
>4, j=13;
Generalized Hooke's law (isotropic case)
X, =200, +2pe;, i,j=13, O0:=e,; (16)
Kinematic Relations

1 ..
e; = E(ui’j +u;.), 6j=13, (17)
by Legendre polynomials P(ax;—b) and then integration with
) (+)
respect to X; within the limits 4 (x,,x,) and A (x,x,).
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By constructing Vekua's hierarchical models in Vekua's first
version on upper and lower face surfaces stress-vectors are assumed
to be known, while there the values of the displacements

() ) > 1 s & (FD)(2s+1

u; = ui(xpxzal’l (xpxz):t):Za(s'ki)u;‘x(il)» :Z( ) ( )u;‘x
s=0 2 s=0 2h

are calculated from their (displacements’) Fourier-Legendre-series

- 1
(ui aXij :eij )(xl ° x2 b x3 b t) = Za(r + E)(uir 7X;‘/’r 7e;‘/’r )(xl ° x2 s t)})r (ax3 - b)
r=0
, ) +) ,

expansions on the segment x; €[/ (x,,x,),4 (x,,x,)] and vice
versa in his second version.

So, we get the equivalent to (15)-(17) infinite system with respect
to the so called r-th order moments X, , e, , u, . Then, in the

ijr> Cijr>
usual way, we construct an equivalent infinite system with respect to
the r -th order moments u, (Vekua 1955). After this, if we suppose
that the moments whose subscripts, indicating moments' order, are
greater than N equal zero and consider for each j=1,2,3 only the

first N+1 equations (» =0, N) in the obtained infinite system of

equations with respect to the 7 -th order moments u,., we obtain the

ir

N —th order approximation (hierarchical model) governing system
consisting of 3N +3 equations with respect to 3N +3 unknown

N N
functions ;. (roughly speaking ;. is an "approximate value" of

N —_

u.., since y, are solutions of the derived finite system), i =1,3,

ir

r=0,N.

21 N 201 NV 21 N
,U{ h Var,j),a +(h er,a)’a:| +/15aj(h vyr,y)’a (18)

N r r—1
N r r+l+l N r+l+l (N N
r+s+l
+ Z (Bog'ks h Vkvj + zail |:/15,;/h Vi, + 4h (Vil,j + le,ij
a  1=0

s=r+l
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N
NI rts+l N - T 482}2”1 i —
+ZB,.].ksh 1v,m}+h’ Xj:ph’Tv”, r=0,N, j=13, Z(...)Eo,
s=I+1 q
where
N
N -
Ve = k=13, r=0,N,
r hr+1

r !
ai depend only on the thickness, Bjisdepend only on the thickness

and the Lamé parameters, X ; depend only on the stresses applied at
the face surfaces, the volume forces, and the thickness.
In the static case if N =0 we immediately get the governing

system of the N =0 approximation (superscript N =0 is omitted
below)

0
— (Mo ) o+ AV ) 1= AV, )y = X 5, f=1.2,
0

_ILl(hv:iO,a)’a:X?,) (19)

and the relations

0
Xo(/'O,a +Xj :0’

h
€a80 = E(V(zo,ﬂ V504 ),
h

€.30 =5V30,m €33 =0,

X o = A0 e, +2ue

Xy =X

In the static case for the symmetric shell I. Vekua's system in the
N =1 approximation has the form

0>

aa0 2

_/u[(hvao,ﬂ),a + (hvﬁo,a),a]_ﬁ“(hvyo,y),ﬂ (20)
0
=3A(hvy) s =Xy, B=12,
0
_lu(hvfio,a),a _31u(hval),a = X3 s (21)
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1 0) 0+ (B ) =2V, ),
1
+uh(vyy 5 +3vy)=h X, =12, (22)
—p(Bvy ) o+ AR,y 3 (A 20)hvy = h X, (23)

Systems (21), (22) and (20), (23) correspond to bending and tension-
compression, correspondingly.

Note that for the plate of a constant thickness 2/ from the ben-
ding system (21), (22), under the corresponding assumptions we can
derive the classical bending equation

AAu, = i*,
D
where
1
U = EV30
and
_ 2
D= MD.
1-2v

Here D is the classical flexural rigidity. So, Vekua's plate bending
model in the N =1 approximation actually coincides with the
classical bending model but by bending Vekua's plate is flexurally
more rigid than the classical one.

In the membrane theory of shells with an alternating Gaussian
curvature the main part is played by an equation of the mixed type, in
particular, by the Holmgren-Gellerstedt equation

o 02U O%u B

=0
ox® oy’
(m >0 is an integer) and Lavrentyev-Bitsadze equation
0%u 0’u

ax72+signyay72:0

for which the Tricomi problem and its various generalizations acquire
clearly defined mechanical sense. This fact, discovered by I.N. Vekua
in the mid-1950s evoked great interest among mathematicians and
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mechanists, since prior to that period equations of mixed type were
applied only to problems of aerodynamics.

Because of the depth and importance of I. N. Vekua’s
investigations and the new scientific trends founded by him he ranks
among the most outstanding scientists of our time.

Ilia Vekua was a great public figure and personality, the embodi-
ment of both physical and spiritual greatness.

That is why he was given everlasting abode at the Mtatsminda
Pantheon of Georgian writers and public figures.

He is gone 40 years ago but his scientific results and ideas are still
important and applied and developed by his former PhD students and
followers, in general. Finally, we give in short a survey of develop-
ment of his results and ideas only in one direction: Lower dimensio-
nal theories formulated from the 3D theory of elasticity using a
displacement ansatz with the truncated (roughly speaking) Fourier
series expansion with respect to the Legendre polynomials. In other
words in the direction of hierarchical models for prismatic (in
particular, plates) and standard shells of variable thickness, in
general. We mostly touch cusped (tapered) prismatic shells”.

Works of 1. Babuska, D. Gordeziani, V. Guliaev, G. Jaiani,
I. Khoma, A.Khvoles, T. Meunargia, C. Schwab, T. Tskhadaia,
T. Vashakmadze, V. Zhgenti, and others are devoted to further
analysis of I.Vekua's models (rigorous estimation of the modelling
error, numerical solutions, etc.) and their generalizations (to non-
shallow shells, to the anisotropic case, etc.).

In 1955 and 1965 1.Vekua pointed out the importance of investti-

) For references see G. Jaiani, Cusped Shell-like Structures, Springer,
Heidelberg-Dordrecht-London-New York, 2011
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gation of cusped prismatic shells, which is connected with degenerate
(singular) equations and systems, but no one tackled this problem. In
1968 he, as my PhD advisor, suggested to concentrate my interest on
this problem. Until the early nineties of the last century only my
publications were devoted to this problem preceded with a work of
A. Khvoles, dealing with Vekua’s representations of general solu-
tions of some equations connected with the cusped prismatic shells.
Later, I managed to involve in studies in this direction my PhD
students and some colleagues within the framework of international
projects.

Applying the function-analytic method, developed by Fichera
(1956, 1960), the particular case A = g of Vekua’s system (19) of

the N =0 approximation for general form cusped prismatic shells
have been investigated by Jaiani (1988). The main conclusion says

oh
that at a blunt cusped edge (a—:+ooj the displacement vector
n

components can be prescribed, while the sharp cusped edge

oh
(O < 5_ < Ooj should be freed from BCs (Keldysh type BVP for
n

displacements). The last result concerning sharp cusped edges is true
for the Nth approximation as well (Jaiani, 2001). In the
N =1 approximation for the symmetric prismatic shell in the case

2h(x,,x,) = hoxé‘, hy = const >0, k=const>0, x, 20, (24)
the tension-compression system (20), (23) is investigated by G.
Devdariani, G. Jaiani, S. Kharibegashvili, D. Natroshvili (2000). The
existence and uniqueness of generalized solutions of BVPs with
Dirichlet [for the weighted zero moments when k<1 and for
weighted first moments when & <1/3] and Keldysh type (for the
weighted zero-moments when k>1 and for the weighted first
moments when k >1/3) BCs are proved in weighted Sobolev
spaces.

Jaiani and Schulze (2007) studied the vibration tension-compre-
ssion system [(vanishing of the vibration frequency corresponds to
the static system) (20), (23)] under all reasonable nonhomogeneous
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Dirichlet, weighted Neumann, and mixed BCs when the thickness
satisfies the unilateral condition

2h(x,,x,) > hyxs, h, =const >0, k=const>0, x,>0. (25)

The bending [see system (21), (22)] vibration problem can be
investigated in an analogous manner.

The method of investigation of hierarchical models based on the
idea to get Korn’s type inequality for 2D models from the 3D Korn’s
inequality for non-cusped domains and then to use Lax-Milgram
theorem belongs to D. Gordeziani (1974) which (the method) found
its complete realization in works of D. Gordeziani, G. and M.
Avalishvili (2003). By means of the solutions of these 2D BVPs, a
sequence of approximate solutions in the corresponding 3D region is

constructed. This sequence converges in the Sobolev space H " to the
solution of the corresponding original 3D BVP. The analogous
approach is developed by Schwab (1996). This idea with the
corresponding modifications was successfully used by G. Jaiani,
S. Kharibegashvili, D. Natroshvili, and W. Wendland (2003, 2004) in
the case when the cusped prismatic shell occupies a Lipschitz 3D
domain, on the face surfaces stress vectors, while on the non-cusped
edge weighted moments of displacement vector components are
given. With the help of variational methods, the existence and uni-
queness theorems for the corresponding 2D BVPs are proved in the
appropriate weighted function spaces. The systems of differential
equations corresponding to the 2D variational hierarchical models are
explicitly constructed for a general system of functions and for the
Legendre polynomials, in particular, i.e., in [.Vekua’s case. Investiga-
tions for plates, prismatic and general standard shells whose thick-
ness may vanish on their boundaries but occupy Lipschitz 3D do-
mains are carried out by D. Gordeziani G. Avalishvili, M. Avalish-
vili, B.Miara (2004-2010). Their works (2004, 2005) are also devoted
to the design of a hierarchy of 2D models for dynamical problems
within the theory of multicomponent linearly elastic mixtures in the
case of prismatic shells with thickness which may vanish on some
parts of its boundary, provided that the 3D domain occupied by the
prismatic shell is the Lipschitz one. The above method does not
allow to consider BVPs when on the cusped edge either displace-
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ments or loads (the loads in this case are concentrated along the cus-
ped edges) are prescribed.

By N. Chinchaladze, R. P. Gilbert, G. Jaiani, S. Kharibegashvili,
D. Natroshvili (2008) the well-posedness of BVPs for elastic cusped
plates (i.e., symmetric prismatic shells) in the N th approximation
N > 0of I.Vekua’s hierarchical models [see system (18) in the static
case] under all the reasonable BCs at the cusped edge and given
displacements at the non-cusped edge are studied. The approach is
applicable in the same way also for non-symmetric prismatic shells.
Special attention is drawn to the N =0,1,2 approximations as to
important cases from the practical point of view. For example,
N =0and N =1models, roughly speaking, coincide with the plane
deformation and Kirchhoff-Love model, respectively. It is assumed
that the cusped plate projection @ has a Lipschitz boundary

ow=y,Uy,, where y, is a segment of the x,-axis and y, lies in
the upper half-plane x, > 0; moreover, in some neighborhood of an

edge of the plate, which may be cusped, the plate thickness has the
form (24). Then y,will be a cusped edge for k£ > 0. Note that in the

last case, on the one hand, a 3D domain ) occupied by the plate is
non-Lipschitz for k£ >1; on the other hand, the governing system
consisting of 3N + 3 simultaneous equations [see (18) in the static
case] is elliptic in €2 and has an order degeneration on y, for any

k > 0. The classical and weak setting of the BVPs in the case of the
N th approximation is considered. For arbitrary k >0 appropriate

weighted function spaces X ]]; (@) which are crucial in analysis of the
problem are introduced. X ]]f, (w) is the completion of the space

[D()]’ with the help of the norm:

g =00, =3 (H jjzey, %“:%zz(r j

wi-Jj=1

N r r 2
XI|:hr+l (Vzrj +ert)+ Z hSH(bjs Vis +bis V :|

@ s=r+l
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,
where b depend only on the thickness. Coerciveness of the corres-
ponding bilinear form is shown and uniqueness and existence results
for the variational problem are proved. The structure of the spaces

X f; is described in detail and their connection with weighted Sobo-
lev spaces is established. Moreover, some sufficient conditions for a
linear functional arising in the right hand side of the variational
equation to be bounded are given. N =0,1,2 approximations are
considered in detail. Peculiarities characterizing these concrete
models are exposed. Note that for the rth order moments Dirichlet
and Keldysh BCs are correct when

I and k> 1 , ¥r=0,N,
2r+1 2r+1

k<

respectively.

The works of G. Jaiani (1973,2008) deals with a system consis-
ting of singular partial differential equations of the first and second
order arising in the zero approximation of I.Vekua’s hierarchical
models of prismatic shells, when the thickness of the prismatic shell
varies as a power function of one argument and vanishes at the
cusped edge of the shell [see (24)]. For this system of special type a
nonlocal BVP in the half-plane is solved in the explicit form. The
BVP under consideration corresponds to the stress-strain state of the
cusped prismatic shell under the action of concentrated forces and
concentrated couples.

Surveys of the works by G. Giorgadze, G. Avalishvili, N. Chin-
chaladze and R.P. Gilbert, T. Meunargia, T. Vashakmadze and some
other talks of the program of the GeoMech8 can be considered as
continuation of the present survey in the sense of presentation more
in detail the development of the heritage of Ilia Vekua which (the
development) should be treated as his heritage in a wide sense.

28



ON DEVELOPMENT OF I. VEKUA METHOD FOR
CONSTRUCTION OF HIERARCHICAL MODELS OF
ELASTIC STRUCTURES

Gia Avalishvili*, Mariam Avalishvili**
*1. Javakhishvili Tbilisi State University, Faculty of Exact and Natural
Sciences, Thbilisi, Georgia, gavalish@yahoo.com
**University of Georgia, Tbilisi, Georgia, mavalish@yahoo.com

In the present talk results on application of I. Vekua's dimensio-
nal reduction method, its extensions and generalizations for construc-
tion of hierarchical models of elastic structures are presented. In [1]
Ilia Vekua constructed a hierarchy of two-dimensional models for
linearly elastic homogeneous plates with variable thickness. In this
paper, multiplying equations, corresponding to three-dimensional
model by Legendre polynomials with respect to the variable x; of

plate thickness, integrating them and expanding components of the
displacement vector-function, stress and strain tensors into orthogo-

nal Fourier-Legendre series with respect to x; and considering par-

tial sums of the series a hierarchy of two-dimensional models for pla-
te was constructed. Note that the classical Kirchhoff-Love and
Reissner-Mindlin models can be incorporated into the hierarchy,
obtained by I. Vekua so that it can be considered as an improvement
of the frequently used engineering plate models. Mathematical
models of plates and shells, constructed by 1. Vekua, are presented in
his monograph [2].

First results on the investigation of mathematical models
constructed by 1. Vekua were obtained by D. Gordeziani in [3, 4],
where the static two-dimensional models for general thin shallow
shells in Sobolev spaces were investigated and the relationship
between the static three-dimensional model and two-dimensional
ones in the spaces of classical smooth enough functions in the case of
homogeneous isotropic linearly elastic plate with constant thickness
was studied. Later on, applying variational approach and an idea of I.
Vekua and its generalization [5] static and dynamical hierarchical
two-dimensional models for plates and shells and one-dimensional
models of bars were constructed and investigated within the
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frameworks of classical linear theory of elasticity, thermoelasticity,
theory of mixtures, thermoelasticity with microtemperatures, and
non-classical theories of thermoelasticity. On the basis of the results
of investigation of dimensional reduction algorithms for plates, shells
and bars pluri-dimensional hierarchical models were constructed and
studied for elastic multistructures consisting of several parts with
different geometric shapes.

Acknowledgement. This work was supported by Shota Rustaveli
National Science Foundation (SRNSF) [217596, Construction and
investigation of hierarchical models for thermoelastic piezoelectric
structures].
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SOLITARY WAVES IN FLUIDS WITH VARIABLE
DISPERSION

Vasily Yu. Belashov*, Elena S. Belashova**, Oleg A. Kharshiladze***
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** Kazan National Research Technical University named after A.N.
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**%], Javakhishvili Tbilisi State University, Tbilisi, Georgia,
oleg.kharshiladze@gmail.com

We study the problem of dynamics the 2D and 3D solitary
waves in fluids with the varying in time and space dispersive
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parameter 3 = (¢,r). For example, that have place on studying of

the evolution of the 3D FMS waves in magnetized plasma, which is
described by the KP equation [1], when [ is a function of the Alfvén
velocity vy=f[ B(t,1), n(¢,r)] (n is the plasma density) and the angle

0=0(k"B): B=v,(c’/203;)(cot> 0=m,/m;). Similar situation
takes place for the ion-acoustic (IA) waves in collisional dusty
plasma when in the absence of dissipation the dispersion law are
o =kV, where V, = \/(Te/mi)(nio Iney)+T; /m; is the IA speed
in dissipationless plasma with constant-charge dust. It is clear that the
dispersion will be variable with variation of ratio of plasma
components. Similar situation can also take place for solitary waves
on shallow water with variable depth [1]. We present here the results
of numerical simulation of the solitary waves in the KP model
distracting from a specific type of medium for different model
functions . As a result we have obtained the different types of stable
and unstable solutions including the solutions of the mixed "soliton —
non-soliton" type for different character of dispersion variations.

Acknowledgement. The work is performed according to the Russian
Government Program of Competitive Growth of Kazan Federal
University.
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NUMERICAL MODELING OF INTERACTION OF VORTEX
STRUCTURES IN FLUIDS AND PLASMAS

Vasily Yu. Belashov*, Oleg A. Kharshiladze**
*Kazan Federal University, Kazan, Russia, vybelashov@yahoo.com
**]. Javakhishvili Thbilisi State University, Tbilisi, Georgia,
oleg.kharshiladze@gmail.com

The results of numerical modeling of interaction of the vortex
structures in a continuum, and, specifically, in fluids and plasmas in
2D approach, when the Euler-type equations are valid, are presented.
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The equations’ set ¢d,x; =0, H/B, ¢d,y; =-0,HB,

0,p+V-Vp=0, v=—(2xVvy)/B, Ay=—p describing the conti-
nuum or quasi-particles with Coulomb interaction models [1], where
p is a vorticity or charge density and y is a stream function or
potential for inviscid fluid and guiding-centre plasma, respectively,
and H is the Hamiltonian, was considered. For numerical simulation
the CD method specially modified was used. The results showed that
for some conditions the interaction is nontrivial and can lead to
formation of complex forms of vorticity regions, such as the vorticity
filaments and sheets, and also can ended to formation of the turbulent
field. The theoretical explanation of the effects is given on the basis
of the generalized critical parameter which determines qualitative
character of interaction. We investigated the applications to dynamics
of vortex structures in the atmosphere, hydrosphere and plasma,
namely: evolution of the cyclonic type synoptic and ocean vortices,
and interactions in the vortex-dust particles system, and also
dynamics of streams of charged particles in a uniform magnetic field.
Our approach may be useful for the interpretation of effects
associated with turbulent processes in fluids and plasmas.
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Government Program of Competitive Growth of Kazan Federal
University.
References
1. Belashov V. Yu. Modeling of dynamics of vortex structures in continuous
media. Astrophys. Aerospace Technol. 4(3) (2016), 28.

ON SOME SOLUTIONS OF
ELASTIC MATERIALS WITH VOIDS
Lamara Bitsadze

[.Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State
University, Tbilisi, Georgia, lamarabitsadze@yahoo.com

In this talk the 3D quasi-static theory of elasticity for materials
with voids is considered. The representation of regular solution of the
system of equations in the considered theory is obtained. There the
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fundamental and some other matrixes of singular solutions are
constructed in terms of elementary functions.
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DETERMINATION OF STRESS — STRAIN STATE OF
WELDED LAYER AT ROLLING BY CREEP THEORY

Gulmira Bulyekbaeva*, Omar Kikvidze**
*Caspian State University of Technologies and Engineering named
after Sh. Yessenov miragul@mail.ru
**Akaki Tsereteli State University kikvidze61@mail.ru

Technological process of a weld carries out restoration of worn-
out surfaces of details. For the purpose of improvement of mechani-
cal characteristics and quality of a surface of the built-up layer plastic
deformation is necessary that is often carried out by a rolling. At a
rolling plastic deformation is made by a rigid cylindrical roller which
makes the flat parallel movement with a constant velocity.

We consider a two-dimensional, established, viscous — plastic
flow of a material on the basis of the theory of hardening [1]:

o,=al'k"
where x = Ifedt is the Odqvist parameter, o, is the equivalent

stress, ¢, is the equivalent speed of deformation, a,m,n are

constants of material.

The nonlinear differential equations of equilibrium are written
down concerning components of flow velocity whom include also
average stress [2].

Boundary conditions for numerical integration of the equations
are written down. After determination of velocity of a flow we calcu-
late components of a deviator of stress by the equations of Saint-
Venant-Levy—Mises. The force necessary for deformation of a layer
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and torque on a roller are defined. Therefore we define the power
characteristic of the technological process.
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CUSPED PRISMATIC SHELL-FLUID INTERACTION
PROBLEMS
Natalia Chinchaladze”, Robert Gilbert
" Ilia Vekua Institute of Applied Mathematics & Department of Mathematics

of Ivane Javakhishvili Thilisi State University, Tbilisi, Georgia
**University of Delaware, DE, USA

The talk is devoted to the updated survey of problems with the
some elastic cusped structure-incompressible fluids interaction
problems, when in the solid part either the Kirchhoff-Love plate or
Vekua’s prismatic shell in the lower order approximations are
considered (see, e.g. [1-6] and references therein).

Application of I. Vekua’s dimensional reduction method to the
viscous Newtonian fluid occupying thin prismatic domains will be
also presented [7].
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TRANSIENT GAS FLOW MODELING IN INCLINED AND
BRANCHED PIPELINE

Teimuraz Davitashvili
1. Javakhishvili Thilisi State University, I.Vekua Institute of Applied
Mathematics, Tbilisi, Georgia, teimuraz.davitashvli@tsu.ge

Natural gas distribution networks are complex systems with
hundreds or thousands of kilometers of pipes, compression stations
and many other devices for the natural gas transportation and
distribution service. Achievement in the power consumption points
with the required conditions is the main practical aspect and the most
difficult issue in the gas transmission pipeline system. Determination
of gas pressure and flow rate distribution along the pipelines is a ne-
cessary step for solving the above mentioned question. Searching of
gas flow pressure and flow rate along the inclined and branched
pipeline network has much more practical value but represents more
difficult issue. For this purpose development of the mathematical
models describing gas non-stationary flow in the branched and
inclined pipeline systems are actual. The purpose of this study is
determination of gas pressure and flow rate special and temporally
distribution along the pipeline based on simplified one-dimensional
partial differential equations governing the gas non-stationary flow in
the inclined and branched pipeline. The simplification is established
on the hypothesis that the boundary conditions do not change quickly
and the capacity of gas duct is relatively large. Analytical solution of
the simplified one-dimensional partial differential equations gover-
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ning the gas non-stationary flow in the inclined and branched
pipeline is obtained. Some results of numerical calculations of gas
flow in the inclined and branched pipelines are presented.

CONFLICTS AND CATASTROPHES

Guram Gabrichidze
Georgian National Academy of Sciences, Tbilisi, Georgi,
gabrichgur@gmail.com

The purpose of the work is to study conditions of conflict-free
and sustainable development of processes as well as its regulation
possibilities.

Extrapolation and generalization of the results obtained in the
mechanics give the basis to state that any process or situation may
also be characterized by two global parameters - the change of any
common features that unite the multiplicity and the attitude of the
objects or subjects involved in this union towards this change.

In any process, any kind of distinction is regarded as the cause
of the conflict. Representation of the new vector form of matrix
shows it clearly.

Conditions that provide the conflict-free and sustainable
development of the processes are formulated.

The received results are compared with the rule of relationship,
with so-called Golden rule and other models which are considered in
modern Game theory.
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I. VEKUA'S THEORY OF THE ANALYTIC FUNCTIONS:
THE SPACE OF GENERALIZED ANALYTIC FUNCTIONS

Grigori Giorgadze
[.Vekua Institute of Applied Mathematics, Tbilisi, Georgia,
gia.giorgadze@tsu.ge

The idea of using the methods of complex analysis for a wider
class of functions then the space of analytic functions takes its origin
from the end of 19th century and is actually connected with the
period of conception of complex analysis as the independent branch
of science. First attempts for the extension of the complex methods
were connected with the generalization of the Cauchy-Riemann
system and the investigation of the properties of the space of
solutions for such a system.

After the appearance of the monographs of .Vekua and L.Bers,
generalized analytic functions due to the terminology of Vekua and
pseudo-analytic functions due to Bers these problems are the subject
of investigation by many scientists.

We will consider also application of Bers-Vekua theory in the
conformal fields theory, in the theory of deformation of complex
structures and the theory of two dimensional exactly solvable models
of quantum mechanics (see [1]).
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N., Makatsaria G. Elliptic systems on Riemann surfaces. Lecture Notes
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IMPROVEMENT WAYS OF CRANE-TRANSPORT AND
ROAD-TRANSPORT MACHINES” WORKING APPLIANCES

Vazha Gogadze
A.Tsereteli state university, Georgia
vajagogadze@rambler.ru, Vazha.gogadze@atsu.edu.ge

In above work is described kinematic and structural researches
of crane-transport and road-machines’ working appliances.
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THE SOLUTION OF ONE PROBLEM OF THEORY OF
SHELLS BY METHOD OF I. VEKUA FOR
APPROXIMATION N=3
Bakur Gulua
L. Javakhishvili Tbilisi State University, I.Vekua Institute of Applied
Mathematics, Tbilisi, Georgia
Sokhumi State University, Tbilisi, Georgia
bak.gulua@gmail.com

We consider the geometrically nonlinear and non-shallow
spherical shells for I. N. Vekua N=3 approximation. The concrete
problems, using complex variable functions and the method of the
small parameter has ve been solved.

Acknowledgement. The designated project has been fulfilled by a
financial support of Shota Rustaveli National Science Foundation
(Grant SRNSF/FR/358/5-109/14).

SOME THREE-DIMENSIONAL BOUNDARY
VALUE PROBLEMS FOR AN ELASTIC BINARY MIXTURES
WITH DOUBLE POROSITY
Roman Janjgava

I.Vekua Institute of Applied Mathematics of 1. Javakhishvili Tbilisi State
University, Tbilisi, Georgia, roman.janjgava@gmail.com

The talk deals with a linear system of equilibrium equations for
elastic bodies with double porosity, where the solid body skeleton is
a mixture of two isotropic materials. The general solution of this
system of equations is represented by means of harmonic functions
and a metaharmonic function. On the basis of the general solution
and using the method of separation of variables, the class of boun-
dary value problems for a rectangular parallelepiped is analytically
solved.

Acknowledgement. The designated project has been fulfilled by a
financial support of Shota Rustaveli National Science Foundation
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ON ONE PROBLEM OF THE PLANE THEORY OF
ELASTICITY FOR THE REGION WITH A PARTIALLY
UNKNOWN BOUNDARY
Giorgi Kapanadze
I. Vekua Institute of Applied Mathematics of I. Javakhishvili
Thilisi State University, Tbilisi, Georgia
A. Razmadze Mathematical Institute of I. Javakhishvili
Thilisi State University, Tbilisi, Georgia
kapanadze.49@mail.ru

The problem of the plane theory of elasticity with a partially
unknown boundary (the problem of finding an equally strong
contour) for a rectangular plate weakened by an equally strong
contour (the unknown part of the boundary) is considered. It is
assumed that the linear segments of the boundary are under the action
of normal contractive forces with the given principal vectors and the
unknown part of the boundary is free from external forces. The
condition for the unknown contour to be equally strong is that the
tangential normal stresses are stable on it.

For solving the problem, the methods of complex analysis are
used; the sought complex potentials and equations of an unknown
contour are constructed effectively (in the analytical form).

Acknowledgement. This work was supported by a financial support

of Shota Rustaveli National Science Foundation (Grant
SRNSF/FR/358/5-109/14).
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MODELING OF NONELASTIC INTERACTIONS OF
OPTICAL SOLITONS

Oleg Kharshiladze***** Vasily Belashov**,
Jemal Rogava***, Khatuna Chargazia***#***
*Dept. of Physics, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia,
**Kazan Federal University, Kazan, Russia,
***]. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi
State University, Tbilisi, Georgia,
**%* M. Nodia Institute of Geophysics, 1. Javakhishvili Tbilisi State

University, Tbilisi, Georgia,
oleg kharshiladze@gmail.com

Investigation of laser soliton propagation and interaction in
optical fibber for the information transmission is a very actual
problem. This interaction sufficiently changes the characteristics of
the light field and distorts transmitted information. For the control of
the soliton shape, stability and dynamics, it is necessary to study an
influence of fibber defects, dispersive and nonlinear inhomogeneities,
and nonstationary parameters of medium on the character of soliton
propagation. The problem reduces to the nonlinear Schrodinger
(NLS) equation for the amplitude of the light field with coefficient
functions having spatial and temporal inhomogeneities.

Fourier splitting method for the NLS equation was used at nu-
merical modeling, and the inhomogeneities of coefficient functions
were taken into account. The NLS equation is divided into linear and
nonlinear parts, dispersive and nonlinear effects are considered sepa-
rately, corresponding operators are assumed commutative. Implicit
scheme of finite-difference method is used for investigation of soli-
ton propagation in non-uniform and nonstationary environment.

Numerical modeling shows that inhomogeneity of medium
changes the amplitudes of solitons and other light impulses, their ve-
locities of propagation, their quantity that is caused by their nonelas-
tic interaction in inhomogeneous fibber. Nonstationary medium chan-
ges a form of impulse and affects its spectral features. Changes of
modulation of the parameters of medium make possible variation of
character of nonelastic interaction at solitons attraction-repulsion.
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DYNAMICAL ANALYSIS OF FRICTIONAL
AUTO-OSCILLATIONS

Oleg Kharshiladze**** Khatuna Chargazia**-***
Nodar Varamashvili***, Dimitri Amilaxvari*, Levan Dvali*

*Dept. of Physics, 1. Javakhishvili Tbilisi State University, Tbilisi, Georgia
**]. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State
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An earthquake is commonly described as a stick-slip frictional
instability occurring along preexisting crustal faults. The seismic
cycle of earthquake recurrence is characterized by long periods of
quasi-static evolution (tectonic processes) which precede sudden slip
events accompanied by elastic wave radiation: the earthquake. This
succession of processes recalls the behavior of nonlinear relaxation
oscillations.

In the present work the nonlinear dynamics of three-block
systems due to Burridge-Knopoff model of dry frictions without
velocity restrictions is also studied using numerical methods and
possibility of ,,stick-slip® motion and triggering of instabilities by
recording of acoustic emission, accompanying the slip events is
revealed. Observation data analysis is carried out. Spectral features,
recurrent quantitative and qualitative characters, wavelet diagrams of
obtained signals are studied. Stick—slip occurs only within a narrow
range around these critical speeds of a system. External damping can
prevent stick—slip motion.

41

References

1. Varamashvili N., Chelidze T., Devidze M., Chelidze Z., Chikhladze V.,
Surmava A., Chargazia Kh., Tefnadze D. Mass-movement and seismic
processes study using Burridge-Knopoff laboratory and mathematical
models. Journal of Georgian Geophysical Society, Issue (A), Physics of
Solid Earth, (2015), 19-25.

2. Dieterich J.H. Modeling of rock friction 1. Experimental results and
constitutive equations. Journal of Geophysical Research, 84, BS, (1979),
2161-2168.

3. Burridge R., Knopoff L. Model and theoretical seismicity. Bulletin of the
Seismological Society of America, 57 (3): (1967), 341-371.

4. Ruina A. Slip instability and state variable friction laws. Journal of
Geophysical Research, 88, (1983), 10359-10370.

5. Chelidze T., Varamashvili N., Devidze M., Chelidze Z., Chikhladze V.,
Matcharashvili T. Laboratory study of electromagnetic initiation of slip.
Annals of Geophysics, 45 (2002), 587-599.

CALCULATION OF THE RIBBED SHELL
BY AFINITE ELEMENT METHOD

Gela Kipiani, Seit Bliadze
Aviation University of Georgia, Tbilisi, Georgia
gelakip@gmail.com, khuta60@gmail.com

In this article, the development of the stages of calculating plates
and shells with stiffeners is described. It is noted that the theory of
ribbed shells is one of the most controversial and incomeplete
sections of the general theory of shells. The calculations of shells
with longitudinal and transverse stiffeners by the finite element
method are considered. In the first variant, the stiffener is considered
as a beam end element, and the sheath is modeled as a finite element
by a thin plate. In the second case, both the ribs and the shell are
modeled as a finite element by a thin plate. In the third case, the
edges and shells are modeled as a single three-dimensional finite
element. In the fourth case, the edges are modeled as a three-dimen-
sional volume element, and the shell as a finite element of the plate.
Experimental studies of the indicated shells were carried out in the
laboratory of strength at the testing base of the JSC "Tbilaviamshe-
ni", certified according to BS EN ISO 9001 and EN 9100. A compa-
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rative analysis of the theoretical and experimental results (Accuracy
~5%).
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MATEHMATICAL MODELING OF THE DYNAMICAL
PROCESSES OF AVALANCHE-LIKE CURRENTS

Tariel Kvitsiani
Georgian Technical University, Tbilisi, Georgia, tarielk@mail.ru

Aiming at studying the dynamic processes of avalanche-like
currents, the work gives the data about the conditions of avalanche
hazard, in particular, the dependence of avalanching on surface
inclination giving a general view of the processes of origination and
distribution of avalanches and being quite important in theoretical
and quantitative evaluation.

A continuous deformed body model is taken as a main physical-
mechanical model of snow avalanches thoroughly showing the nature
of plasticity and loosening. The dynamic processes of snow avalan-
ches are described by means of a system of equations of a composite
environment (landslide-slide) presented as hydrodynamic equations
and its one-dimensional option [1]. These systems consider loose and
plastic properties and plasticity as well, which is typical of bin-
gamma liquids at the expense of considering motion limit strain in
the dynamic equations. When the parameters of the grain loose
environment equals zero, the given system is automatically transfor-
med into the Hencky-Ilyushin equation, which describes so called
plastic-viscous liquids (Bocher-Bingaman liquids) typical to “soft”
snow avalanches with significant humidity.

The equations of basic physical-mechanical model are made of:
the equation of the boundary state of a loose environment with the
angle of internal friction and adherence coefficient (Coulomb-Tresk-
St. Venant Condition), which defines the mutual connection between
the components of tangential and normal stresses, as well as the link
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between the components of stress tensor with the angle of internal
friction, and between the speed deformation tensor components,
which show the coincidence of the direction of the maximum speed
of motion deformation with one of the directions of the family of
sliding lines (Ishlinsky-Geniev Condition), plus considering the
plasticity caused by snow humidity [1].

A body of finite sizes is taken as a model of the avalanche body.
Its geometric sizes and difference between the center of masses and
speeds of moving the frontal areas are considered. The obtained
results play the role of such auxiliary factors, without which no
correct analysis or interpretation is possible. This concerns such
parameters, as the height and length of an avalanche body, coordinate
of its longitudinal profile, front speed as the function of distance and
time, power parameters influencing the resistances, impact of cold
winds on the snow cover, etc. playing an essential role in examining
the validity of the obtained results [2,3].
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ON THE IMMERSION OF THE SURFACE IN THE 3D
RIEMANN DIVERSITY
Tengiz Meunargia
[.Vekua Institute of Applied Mathematics of 1. Javakhishvili Tbilisi State
University, Thilisi, Georgia, tengizmeunargia37@gmail.com

The surfaces with non-zero Gaussian curvature are the Rie-
mann’s diversity of 2-dimension, which are investment in the 3-D
Euclidean space. Therefore, for these varieties of properties it is pos-
sible to construct quite clear representations. Further, it is shown that
any regular surface can be put in the Riemann’s 3-dimensional diver-
sity.
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A FEW REMARKS ON RECENT DEVELOPMENTS IN
MICROPOLAR CONTINUUM THEORY

Wolfgang H. Miiller*, Elena N. Vilchevskaya**

* Institute of Mechanics, Chair of Continuum Mechanics and Constitutive
Theory, Berlin Institute of Technology, Einsteinufer 5, 10587 Berlin,
Germany, whmueller1000@gmail.com
** Institute for Problems in Mechanical Engineering of the Russian
Academy of Sciences, Bol’shoy pr. 61, V.O., 199178 St. Petersburg, Russia
and Peter the Great Saint-Petersburg Polytechnic University,
Politekhnicheskaja 29, 195251 St.-Petersburg, Russia,
vilchevska@gmail.com

In this presentation we consider micropolar media that can
undergo structural changes and do not a priori consist of indestruc-
tible material particles. Initially the pertinent literature will be revie-
wed. Then the necessary theoretical framework for a continuum of
that type is presented: The standard macroscopic equations for mass,
linear and angular momentum are complemented by a recently
proposed balance for the moment of inertia tensor, which contains a
production term. Two examples illustrate the effect of the production.
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In the first example we study a continuous stream of matter on a
conveyor belt going through a crusher so that the total number of
particles will change. In context with this example it will also
become clear that the traditional Lagrangian way of describing the
motion of solids is no longer adequate and must be replaced by the
Eulerian point of view known from fluid mechanics. The second
example deals with hollow particles, which rotate because of the
presence of body couples. Now a transient temperature field is supe-
rimposed, such that the moment of inertia field will change due to
thermal expansion of the particles. This in turn will result in rotatio-
nal motion that is no longer constant but varies in space and time.
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MU1752/43-1 and by Russian Foundation for Basic Research (16-01-
00815).

INVESTIGATION OF THE BENDING DEFORMATION OF
CUSPED PRISMATIC PLATES BY FINITE ELEMENT
METHOD AND THE DEVELOPMENT OF THE REDUCTION
METHOD WITH THE USE OF APPROXIMATION BY
ANALYTIC FUNCTIONS
Giorgi Nozadze
LEPL G. Tsulukidze Mining Institute
g nozadze@yahoo.com

The talk deals with the bending deformation of a cusped
prismatic plate, which is bounded by surfaces of different curvature
and has a plane of symmetry (see, e.g. [1]). It is well-known, that the
three-dimensional elasticity problem in such a case can be reduced to
a two-dimensional problem of the elasticity of a plane deformed state
of a body.

The problem of pure bending of a uniformly loaded special
(cusped) segment of the body region is considered. A discrete
solution of the problem of elasticity in displacements can be obtained
with the help of the finite element method.
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According to the discrete solutions, the displacement function
can be represented by means of approximation by analytic functions.
In particular, sign variable functional power series with a finite
number of terms give satisfactory results at discrete points of the
solution of the presented problem.

On the basis of the work performed, it can be shown that in
solving elasticity problems in specific areas of geometric uncertainty,
it is possible to develop reduction analytical methods that could be
used to improve the study of the deformed state of the body in these
regions, within acceptable results in practice.
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ON APPROXIMATE SOLUTION OF THE ALGORITHMS
AND NUMERICAL COMPUTATIONS FOR SOME
KIRCHHOFF TYPE NONLINEAR INTEGRO-
DIFFERENTION EQUATIONS

Archil Papukashvili*, Giorgi Papukashvili**, Jemal Peradze***
* 1. Javakhishvili Thbilisi State University, I.Vekua Institute of Applied
Mathematics, Faculty of Exact and Natural Sciences
** V. Komarovi N 199 Public School, Georgian Technical University
**% 1, Javakhishvili Tbilisi State University, Faculty of Exact and Natural
Sciences, Georgian Technical University
Thbilisi, Georgia
archil.papukashvili@tsu.ge, gagapapukashvili@gmail.com,
j_peradze@yahoo.com

In the present talk we consider approximate solution issues for
the following two problems: 1.Nonlinear boundary value problem for
the Kirchhoff type static beam (see, for example [1], [2]). The
problem is reduced by means of Green’s function to a nonlinear
integral equation. To solve this problem we use the the Picard type
iterative method; 2. Nonlinear initial-boundary value problem for the
J.Ball dynamic beam (see, for example [3], [4]). Solution of problem
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is founded by means of an algorithm, the constituent parts of which
are the Galerkin method, a symmetric difference scheme and Jacobi
iterative method.

For both of these problems the new algorithms of approximate
solutions are constructed and numerical experiments are carried out.
The results of calculations are presented by tables and diagrams.
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MODELING AND ANALYSIS OF COMPLEX CABLE-ROD
STRUCTURES AND OTHER SIMILAR BUILDING
STRUCTURES BASED ON DISCRETE REPRESENTATION
AND SPECIAL ALGORITHMS

David Pataraia
G. Tsulukidze Mining Institute, Tbilisi, Georgia,
david.pataraia@gmail.com

The subject od research in the first place are complex cable-rod
structures such as cableways, cable truss bridges, spacecraft cable
systems and antennas, protective roofs of stadiums and other having
large sizes objects, avalanche-protection structures and arresting
netting. In general, the subject of research of presented work is
modeling and analysis of having similar complex configuration solid
deformable bodies.

The modeling and analysis of such objects by standard methods
and software is often associated with significant problems due to the
cause of hysterisis, clearances, friction and other essential nonlinear
relations. In addition, the analysis of large size objects, especially
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when the accuracy of the results is needed, also rises the increased
and often hard-to-conduct requirements for applied computing
methods and appropriate computer engineering.

The relevance of the research also is providing the complexity of
adaptability and application for solution of specific tasks of
appropriate universal methods and computational software packages,
especially when the object ubder study has non-linear characteristics
and even large size.

The novelty of the study lies in the method of static and dynamic

calculation of complex rope-rod structures and other similar building
structures developed by us, which is based on the discrete
representation of solid deformable bodies and a special computing
algorithm [1], [2], [3].

On the basis of the proposed approach, we developed an
algorithm and a countable program for the static and dynamic
calculation of solid deformable bodies with a complex configuration
and with nonlinear characteristics. The effectiveness and suitability

of the approach was confirmed by practical testing on specific objects
and comparison with the results obtained by the standard software.
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Thilisi State University and with its director Professor G. Jaiani.
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JACOBI ITERATION FOR A BEAM DYNAMIC PROBLEM

Jemal Peradze
I. Javakhishvili Thbilisi State University, Georgian Technical University,
Thilisi, Georgia, j peradze@yahoo.com

An initial boundary value problem for the differential equation
[1,2]

2 o'u
g?( t)+a4( x,t)— h (xt) (/%LJ[ («ft)} fJ ~(x,)=0
describing the dynamic behavior of beam is considered. As a result of
approximation of the solution with respect to the spatial and time
variables a nonlinear system of discrete equations is obtained, which
is solved by iteration. The convergence conditions and the error
estimate of the iteration are obtained.
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ON SOLUTION OF A SYSTEM OF NONLINEAR
ALGEBRAIC EQUATIONS FOR A TIMOSHENKO BEAM

Jemal Peradze*’**, Zviad Kalichava*
*Iv. Javakhishvili Thilisi State University, Tbilisi, Georgia,
**Georgian Technical University, Thbilisi, Georgia
j_peradze@yahoo.com, zviadi.kalichava@gmail.com

We consider an initial boundary value problem for the
nonlinear dynamic beam [1, 2]. The solution is approximated by a
variational method and implicit symmetric different scheme. The
system of equations obtained by discretization is solved by an
iteration method using Sherman-Morrison formula. The accuracy of
the iteration method is studied.
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ON THE STABILITY OF NONIZOTHERMAL FLOWS
BETWEEN POROUS CYLINDERS
Luiza Shapakidze
I. Javakhishvili Tbilisi State University, A.Razmadze Mathematical
Institute, Thilisi, Georgia, luiza@rmi.ge

In this report we present the investigations of instability and
complex chaotic regimes arising after the loss of stability of viscous
heat-conducting fluids between two porous heated rotating vertical
and fixed horizontal cylinders by pumping a fluid around the
annulus.
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THE BOUNDARY VALUE CONTACT PROBLEM OF
ELECTROELASTICITY FOR PIECEWISE-HOMOGENEOUS
PLATE WITH ELASTIC
INCLUSION AND CUT

Nugzar Shavlakadze
Iv. Javakhishvili Thilisi State University, A. Razmadze Mathematical
Institute, Tbilisi, Georgia, nusha@rmi.ge

We will consider a piecewise-homogeneous plate of piezo-
electric material, weakened by infinite crack and reinforced by an
infinite inclusion (beam) as an electrode by a normal force of

intensity p,(x) The normal stresses ¢,(x)and the electric potential
are given at the edges of the crack.

The problem consists of determining the expansion of cut f(x)
and the jump p(x) of normal contact stresses along the contact line,

of establishing their behavior in the neighborhood of singular points.
According to the equilibrium equation of inclusions elements we
have

d? d*v? (x)

S D) = py(x) - p(x), x>0 ()
dx dx
and the equilibrium equation of the inclusion has the form
[ ()= py(0))de =0, [tlp(t)—p, ()t =0, @
0 0

where v (x) is the vertical displacement of inclusion points; p(x)

is the jumps of normal contact stresses, subjects to determination.
D(x) is bending rigidity of the inclusions material.

On the boundary of a crack we have
0';2” (x)+ 0';2)_ (x)=2¢,(x), x<0 3)

On the interface of two material the following conditions are
valid
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where o

components, £ ;j ',D") are components of vectors of electrical

stress and of electrical inductive (j=1,2).
On the bases of the conditions (1-4) introducing the notation
w(t) = f(-t), we have the system of singular integral equations

with fixed singularity [1,2]
d 7 A < |
- f [+ R @ )p()de +£ R0y @d) =55 j dt j [po(D) = p(@)ldz, x>0
(5)
j - 4 + R, (—t,—x)|w (t)dt + j R,(t,—x)p(t)dt =q,(-x), x>0 (6)
0

. t—x

For solving the system (5)-(6), when D(x)= D = const,
X t

x>0, making notation ¢@(x)= jdtj[po (r)— p(r)ldr, using
00

generalized  Fourier  transform  [3] for the function

F(s)= % j @ (e°)e“*d¢, we obtain the boundary condition of
7z. 00
Karleman type problem for a strip
G(s)F(s+3i)— F(s)= P(s), —00< § <0 7

Therefore, we consider the problem: find the function F(z),
which is holomorphic in the strip 0< Imz <3, vanishing at infinity,
continuously extendable on the border of the strip and satisfying
condition (7).

Using the method of factorization the solution of this problem is
represented in an explicit form [4].

Applying the inverse integral transformation for normal contact
stresses we obtain the following estimate:

Py(X)=p(x)=0"(x)=0(x"), x—0+
53

The crack opening behavior has the form

f)=0(x""), x—>0-, O<w<l/2.
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BUCKLING PARADOX AND ANISOTROPIC PLASTIC
PLATE BIFURCATION

Suresh Shrivastava
Department of Civil Engineering and Applied Mechanics
McGill University
Montreal, Quebec, Canada H3A 2K6
suresh.shrivastava@mcgill.ca

The plastic plate buckling paradox originated from the work of
Handelman and Prager [1]. They found that the bifurcation stresses
predicted by the isotropic Mises incremental theory, the “correct” J,

theory of strain hardening plasticity, were absurdly higher than those
from the “incorrect” J, deformation theory of plasticity. Experi-

ments generally favour the predictions of the deformation theory.
Hence, the plastic plate buckling paradox: a correct theory yields the
wrong results, while an incorrect one gives the right results. Onat and
Drucker [2] explained the paradox by showing that by taking
“unavoidable” out-of-plane geometric imperfection into account in a
nonlinear growth analysis of a plate, the incremental theory gives
maximum loads matching the deformation theory bifurcation loads.
The growth analysis is quite complicated, and can only be done
numerically. Efforts have been made to lower the buckling loads of
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the J, incremental theory by various other means, but without much

success.

Here, using an analytical variational approach, bifurcation
analyses for plate buckling are performed by considering the
anisotropic behaviour of the plate material. For this purpose Hill’s
incremental theory [3] for anisotropic strain hardening of sheet
metals is used. The principal axis of anisotropy x is taken as the
rolling direction; y is the transverse principal axis. These anisotropy
axes are assumed to remain fixed, uninfluenced by the loading of the
plate for bifurcation. Plane stress conditions are assumed to prevail.

The loading is biaxial0,, = @0,.,~1<a <1, with {v axes parallel
to the sides of the rectangular plate, simply supported at £ =0, a and
at v=0,b. The {v axes are at an angle f (which may or may not
be zero) with respect to the xy principal axes of anisotropy.

Three cases are considered: (1) equibiaxial compression, =1,
(2) equal compression tension, o =—1, and (3) uniaxial compression,
a =0. The plastic plate buckling paradox is examined for each of the
cases. It is shown that by a suitable choice of initial anisotropic yield
stresses, the resulting bifurcation stresses can be rendered quite close
to those predicted by the J, deformation theory, which in turn are

considered close to the experimental results.
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DIFFRACTION OF NONLINEAR WAVES BY A SEMI-
SUBMERGED HORIZONTAL RECTANGULAR CYLINDER

Wojciech Sulisz
Polish Academy of Sciences, Institute of Hydroengineering
80328 Gdansk, Poland, sulisz@ibwpan.gda.pl

The design of ships and offshore structures requires information
regarding wave loads on a structure. A boundary-value problem for
the interaction of nonlinear water waves with a semi-submerged
horizontal rectangular cylinder is formulated. An analytical solution
is achieved up to second-order in wave steepness. The main attention
is paid to the modelling of large nonlinear wave load components.

The solution reveals a significant second-order load on a
cylinder. The second-order load component may exceed many times
the corresponding first-order quantities. This phenomenon occurs
within the commonly accepted range of the applicability of a second-
order wave theory.

Theoretical results are in a fairly good agreement with experi-
mental data. A reasonable agreement between theoretical results and
experimental data is observed even for steep waves.

BOUNDARY VALUE PROBLEMS OF STEADY VIBRATIONS
IN THE THEORY OF THERMOVISCOELASTICITY OF
BINARY MIXTURES

Maia Svanadze
Faculty of Exact and Natural Sciences, Tbilisi State University
I. Chavchavadze Ave., 3, Thilisi 0179, Tbilisi, Georgia
maia.svanadze@gmail.com

The present talk concerns the linear theory of thermoviscoelas-
ticity of binary mixture which is modelled as a mixture of an
isotropic elastic solid and a Kelvin-Voigt material. The basic bounda-
ry value problems (BVPs) of steady vibrations of the considered
theory are investigated and some basic results of the classical theory
of thermoviscoelasticity are generalized. The fundamental solution of
the system of equations of steady vibrations is constructed by
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elementary functions. The Green formulae and the formulae of integ-
ral representations of regular vector and regular (classical) solutions
are obtained. The uniqueness theorems for solutions of the internal
and external basic BVPs of steady vibrations are proved. The basic
properties of potentials and singular integral operators are presented.
Finally, the existence theorems for the above mentioned BVPs are
proved by means of the potential method and the theory of singular
integral equations.

Acknowledgments. This research has been fulfilled by financial
support of Shota Rustaveli National Science Foundation (Grant #
YS15 2.1.1 100).

THE STATIONARY FLOW OF LAMINAR LIQUID
IN AN CIRCULAR PIPE OF INFINITE LENGTH

Varden Tsutskiridze*, Levan Jikidze**, Eka Elerdashvili***
* Department of mathematics, Georgian Technical University,
77 M. Kostava st., 0175 Tbilisi, Georgia
b.tsutskiridze@mail.ru, btsutskirid@yahoo.com
**Department of engineering mechanics and technical expertise in
construction, Georgian Technical University, 77 M. Kostava st., 0175
Thilisi, Georgia, levanjikidze@yahoo.com
***Department of mathematics, Georgian Technical University,
77 M. Kostava st., 0175 Tbilisi, Georgia, ek.Elerdashvili@yahoo.com

In the article the stationary flow of viscous incompressible
electrically is considered conducting liquid in infinite length pipe at
existence of transversal magnet field. The motion is originated due
applied in the initial moment of time constant longitudinal drop of
pressure. The exact solution of the problem in the general form is
obtained [1-5].
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ON THE JUSTFICATION AND STABILITY OF THE
REFINED AND HIERACHICAL THEORIES FOR
THINWALLED ELASTIC STRUCTURES

Tamaz Vashakmadze
1. Javakhishvili Thilisi State University, I.Vekua Institute of Applied
Mathematics, Thbilisi, Georgia, tamazvashakmadze@gmail.com

In this report we consider the problems connected with
justification and stability of the finite (T. von Kérméan—E. Reissner—
R. Mindlin type) and hierarchical (I. Vekua, 1. Babuska) mathemati-
cal models, corresponding to elastic shells, plates and pivotal sys-
tems. Based on [1, 2] we demonstrate that for boundaring variational
methods of construction for these models is essential to a priori
define the admissible class of functions and existence of proof of the
desired extremals. These conditions are not sufficient for the stability
of corresponding processes and require (i.e. in case of the natural
boundary conditions) specific (see, e.g. [3,4]) corrections.
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STUDY OF STRESS STRAIN STA'TE OF SPONGY BONE
AROUND IMPLANT UNDER OCCLUSAL LOAD
Natela Zirakashvili
L. Javakhishvili Tbilisi State University, I.Vekua Institute of Applied
Mathematics, Thbilisi, Georgia, natzira@yahoo.com

The main purpose of this work is mathematical modeling and
study of stress-strain state of spongy bone of the jaw with implant.
Spongy bone may be considered as a multiporous medium where
fractures and intervening porous blocks are the most obvious
components of the dual-porosity system [1]. The spongy bone
consists of solid and liquid phases. The paper, in the solid phase,
presents the equations, which describe of the effect of fluid pressure
on the solid deformation within each individual component and in the
fluid phase, a separate equation written for each component of
distinct porosity or permeability [2]. This paper studies the stress-
strain state of the spongy bone of the jaw near the implant in the case
of occlusal load. Mathematical model of this problem represents a
contact problem of elasticity between the implant and the body of the
jaw. Boundary element methods, which are based on the solutions to
the problems of Flamant (BEMF) and Boussinesq (BEMB), are used
to obtain numerical values of stresses in the bone tissue under the
occlusal load on the implant. There are considered cases, when the
diameter of implant is equal to 0.4 cm, 0.6 cm, 0.8 cm and 1 cm. The
contours (isolines) of stresses in the bone tissue are constructed and
the results, obtained through BEMF and BEMB for the implants with
different diameters, are compared with each other.
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