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DYNAMICS OF ULF ELECTROMAGNETIC WAVE
STRUCTURES IN THE SHEAR FLOW INDUCED
IONOSPHERE

G. Aburjania, Kh. Chargazia
Iv. Javakhishvili Thbilisi State University, I.Vekua Institute of
Applied Mathematics, Tbilisi, Georgia,
khatuna.chargazia@gmail.com

Generation and further linear and nonlinear dynamics of
planetary ultra-low-frequency (ULF) waves are investigated in
the rotating dissipative ionosphere in the presence of
inhomogeneous zonal wind (shear flow). Hall currents in E-
region of the ionosphere and the permanently acting global
factors — spatial inhomogeneity of the geomagnetic field and
the angular velocity of the Earth rotation provokes the
generation of the fast and slow planetary electromagnetic
waves (PEW). Effective mechanism of PEW amplification at
interaction with the zonal inhomogeneous wind is analyzed. In
case of the shear flows, the operators of the linear problem are
not self-adjoint, therefore the eigen functions of the problem
maybe non-orthogonal and can hardly be studied by the
canonical modal approach. Hence it becomes necessary to use
the so-called nonmodal mathematical analysis. It has been
shown that the PEW effectively extract an energy of the shear
flow at the linear stage and sufficiently increase own energy
and amplitude. Necessary and enough condition of shear flow
instability in the ionospheres medium is estimated. With
development of the shear flow instability and perturbations’
amplitude growth, the nonlinear mechanism of self-localization
comes into play and the process ends with self-organization of
the nonlinear solitary strongly localized vortex structures.
Depending on a shear flow velocity profile the structures can be
the pure monopole vortices, as far as the vortex streets on the
background of the inhomogeneous zonal winds. Recording

such vortices can create strong turbulent state in the ionosphere
medium.

Acknowlegment. This work was supported by the European Union
Seventh Framework Program [FP7/2007-2013] wunder grant
agreement Ne 269198 - Geoplasmas (Marie Curie International
Research Staff Exchange Scheme).

THE PROBLEM OF CRACK PROPAGATION
IN AN ELASTIC STRIP

Guram Baghaturia*, Giorgi Baghaturia®*
*Georgian Technical Univerity, Tbilisi, Georgia, nogela@yahoo.com
** Georgian Technical Univerity, N.Muskhelishvili institute of
Computational Mathematics, Tbilisi,Georgia, nogela@gmail.com

The problem of propagation of transversely displaced crack in
compound elastic strip is solved. The problem is solved by means of
integral transformation of Fourier and the method of Wiener-Hoph
[1]. The coefficient of intensity of stress is defined.

References
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EFFECTIVE SOLUTION OF THE NEUMAN BVP OF THE
LINEAR THEORY OF THERMOELASTICITY WITH
MICROTEMPERATURES FOR A SPHERICAL RING

Lamara Bitsadze*
*Tv. Javakhishvili Thbilisi State University, I.Vekua Institute of Applied
Mathematics, Thbilisi, Georgia, lamarabitsadze@yahoo.com

In this paper the expansion of regular solution for the equations of
the theory of thermoelasticity with microtemperatures is obtained that
we use for explicitly solving the Neumann boundary value problem
(BVP) for the equations of the linear equilibrium theory of
thermoelasticity with microtemperatures for the spherical ring. The
obtained solutions are represented as absolutely and uniformly
convergent series.
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ON LEAK DETECTION IN
PIPELINES FOR GAS STATIONARY AND NON-
STATIONARY FLOW

Teimuraz Davitashvili*, Givi Gubelidze**
*Tv. Javakhishvili Thbilisi State University, I.Vekua Institute of Applied
Mathematics, Thilisi, Georgia, tedavitashvili@gmail.com
** goubelidze@gmail.com

At present pipelines become the main practical means for liquid
and gas substances transportation. Indeed oil, water and gas
transportation by pipelines is the safest and cheapest method in
comparison with railway, marine and motor transportation systems.
That is way a large number of pipeline networks were constructed
worldwide during the last 70 years for natural gas transportation. At
the same time it should be noted that the gas delivery infrastructure is
rapidly ageing. The main fault of the outdated pipelines is leak and as
a consequence, explosion, fire and deterioration of environment. For
instance leakage of methane which is the most principal greenhouse
gases contributes to climate change. Owing to earthquakes, floods,
corrosion and terrorist attacks escape of gas may occur at any time
and location in pipeline networks, therefore, timely detection of leaks
is important for the safe operation of pipelines, for minimization
of environment contamination and economical loss. So elaboration
of leak detection and location methods for gas pipeline system is an
urgent and sensitive issue of nowadays. Unfortunately there have not
been yet invented a fully perfect method for leak detection and
localization so finding out the new methods and techniques for the
leak fast detection and location in the pipelines is an urgent issue.
There are many different methods that can detect natural gas pipe line
leaks and location, among them we can note a very simple manual
inspection using training dogs and also advanced satellite based
detective systems. But mainly the various methods can be classified
into non-optical and optical methods. In the paper are reviewed some
methods for pipelines leak detection and location.

Also in this paper we have created a new mathematical model
defining the leak detection in oil and gas complex (having several
branches) transmission pipelines for the gas stationary flow. The



mathematical model (an algorithm) does not required knowledge of
corresponding initial hydraulic parameters at entrance and ending
points of each sections of the pipeline (receiving of this information
is rather difficult without using telemetric informational system).
Numerical experiments gave positive results. We have created a new
mathematical model defining of leak detection in the claimed gas
transmission pipeline for the gas stationary flow. Previous numerical
experiments are in good approaches with the observed values of the
pipelines accidental leaks.

Acknowlegment. This work was supported by Shota Rustaveli
National Scientific Foundation Grant #GNSF/ST09-614/5-21.

ONE MATHEMATICAL MODEL OF THE MICROTREMOR
USE FOR STRUCTURE REAL SEISMIC
RESOURCE ASSESSMENT

Guram Gabrichidze

Study of the structure behavior under microtremors to assess its
real operating condition or to ascertain its dynamic characteristics is a
widespread method in the world. It is distinguished for its cheapness,
mobility, though it has also certain limitations. It is that transition
process from microtremor to real is not univocal and relies on certain
assumptions. Therefore, when we use this approach in practice, we
are offered different algorithms and technologies of material
processing obtained as the result of the experimental observation of
the structure under microtremor, which creates probability
of structure operational condition, particularly, its earthquake
resistance distinctive assessment. Mathematical model and algorithm
constructed on its basis, which univocally ascertains how to
process displacements recorded under microtremors that to speak
substantially about structure behavior whenreal seismic wave
(seismogram) passes its foundation are suggested in the present
article

ADDITIVELY-AVERAGED MODELS AND SCHEMES FOR
SOLUTION OF SOME PROBLEMS OF
THERMOELASTICITY

D. Gordeziani
Iv. Javakhishvili Thbilisi State University,l.Vekua Institute of Applied
Mathematics, e-mail: dgord37@hotmail.com

In the present work additively-averaged models and difference
schemes are constructed and investigated for the solution of some
problems of thermolasticity and theory of shells.

Three dimensional models are reduced to the solution of the
system of one-dimensional models. On the basis of obtained system
of one-dimensional models semi-discrete and totally discre-
te schemes are being constructed for the solution of initial three-
dimensional problem.

Approximation estimation error and convergence issues are
investigated. Stability of method is proved.
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DIFFERENTIAL HIERARCHICAL MODELS FOR ELASTIC
PRISMATIC SHELLS WITH MICROTEMPERATURES

George Jaiani
I. Javakhishvili Tbilisi State University, I. Vekua Institute of Applied
Mathematics & Faculty of Exact and Natural Sciences,
george.jaiani@gmail.com

The present talk is devoted to construction of differential
hierarchical models for elastic prismatic shells with microtem-
peratures; it is organized as follows. In Section I. a brief survey of
results concerning the linear theory for elastic materials with inner
structureswhose particles, in addition to the classical displacement
and temperature fields, possess microtemperatures is given. In
Section 2 prismatic and cusped prismatic shells are exposed.
Relation of the prismatic shells to the standard shells and plates are
analyzed. In a lot of figures 3D illustrations of the cusped prismatic
shells are given. Typical cross-sections of cusped prismatic shells are
also illustrated. Moments of functions and their derivatives are
introduced and their relations clarified. Section 3 contains
hierarchical models for elastic prismatic shells with microtem-
peratures. To this end, a dimension reduction method based on
Fourier-Legendre expansions is applied to basic equations of linear
theory of thermoelasticity of homogeneous isotropic bodies with
microtemperatures. The governing equations and systems of
hierarchical models are constructed with respect to so called
mathematical moments of temperature and of stress and strain
tensors, displacement and microtemperature vector components.
Section 4 is devoted to deriving the governing relations and systems
of the N = 0 approximation (hierarchical model) for elastic prismatic
shells with microtemperatures. Some preliminary conclusions are
made.

Acknowledgement. The present work was carried out within the
framework of the CNR-SRNSF joint project (2012/2013)
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ON A METHOD OF THE SOLUTION OF TWO-
DIMENSIONAL CARRIER STATIC EQUATION

Nikoloz Kachakhidze*, Zviad Tsiklauri**, Nodar Khomeriki***
*QGeorgian Technical University, Tbilisi, Georgia, n.kachakhidze@gtu.ge
** Georgian Technical University, Tbilisi, Georgia,
zviad_tsiklauri@yahoo.com
*#*Georgian Technical University, Tbilisi, Georgia, n.khomeriki@mail.ru

Let us consider the following boundary value problem

qf:l( i;wﬁxdy){u;x + w}.}.} = filx. v}, (1)
(x.v)e
wix, }’} lan=0, 2)

where Q={x, )| 0<x <L 0<y=<1} 00 s the
boundary of the domain @ @ = ¢@{z}, f =0 are the given
functions and W = w{x,v} is the function we want to find. It is

assumed that ®(zL0 =z <0 s a continuously differentiable
function that satisfies the condition

wlz) > a >0, 0=z < oo,

Equation (1) describes the static state of a two-dimensional body

and is obtained by truncating the time argument ¢ in a two-
dimensional oscillation equation based on a Carrier theory [1], [3].

To find w{x. ¥} we will use M. Chipot’s approach [2].

The problems of realizing the method have been considered in this
work.

The results of the test example solved on the computer have been
given in it.

The similar problem for Kirchhoff two-dimensional equation has
been discussed in [4].
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ON FRAMEWORK BUILDING COLUMNS SEISMIC
IMPACT EFFECT

Murad Kalabegashvili, Revaz Thschvedaze, David jankarashvili,
Lali Qajaia, Ani Tabatadze
m.kalabegashvili@gtu.ge, r.thschvedadze@gtu.ge ,
d.jankarashvili@gtu.ge , l.qajaia@gtu.ge,
a.tabatadze@gtu.ge (Georgian Technical University, Tbiisi, Georgia)

The issue of earthquake caused seismic load, as of impact effect,
on framework building columns influence study is considered.

Analysis of the strong earthquakes results is given, where it is
mentioned, that damage of the part of buildings takes place just at the
initial moment of the seismic load. It is underscored, that always
creation of the transversal impact in the building vertical elements
advances earthquake inertial forces. [1,2,3] The mechanical
conception of the seismic processes, elaborated by the seismologists
of the Far East branch of the Academy of Russian Federation is
given, according to which the seismic radiation represents the
propagation of mechanical impulse, that occurs in space under the
laws of mechanics of impact [4].

To examine the conclusion, made in these papers, that seismic
impact causes framework building first floor columns cut, building
column oscillation problem is considered, when it in the lower end,
which may be fastened in point foundation or foundation plate, is
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under the impulse action in the impact mode. Regarding upper end
the cases are considered, when it is immovable (fastened rigidly) or
undergoes displacement, horizontal displacement and rotational
displacement as well are implied, the value of which depends on
both, forces, excited by seismic load and building rigidity.

Transversal and longitudinal oscillations as well are considered
and existing analytical solutions are analyzed [5,6,7,8]. In case of
transversal oscillations the equation is as follows [10]:

Therefore, it equals to zero everywhere, except the pillar end and
is taken into account in the boundary conditions.

In both cases, for the purpose of the equations solution, linear
derivatives are substituted by differential scheme and oscillation
ordinary differential equations system is obtained, which
subsequently is solved numerically, using Runge-Kuta method.
Calculations are carried out in case of impulse different shape.
Diagrams of the transversal forces are drawn and it is shown that
transversal force value in the span (at some distance from force
action point) may be more than given force value, which takes place
under vibration load action as well [9,10]. In case of transversal
impact it is concluded, that in columns existing constructing
conditions impact may cause columns damage approximately in the
middle by the height, followed by longitudinal reinforcement
buckling [11]. This conclusion may be important especially for the
constructions, that are erected near the tectonic fault, since as recent
investigations [12] show here vibration intensity can exceed 1,5-2,5
times the design intensity 9.
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MICROMECHANICAL ANALYSIS OF SMART COMPOSITE
MATERIALS AND STRUCTURES BASED ON THE
ASYMPTOTIC HOMOGENIZATION

Alexander L. Kalamkarov
Dalhousie University, Halifax, Nova Scotia,
Canadaalex.kalamkarov@dal.ca

Composite materials and structures are widely used in various
areas of modern engineering. The integration of sensors and actuators
with structural composites gave birth to smart composite materials
and structures. They have the ability to respond adaptively in a useful
and efficient manner to changes in environmental conditions, as well
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as to certain changes in their own state, and therefore significantly
increase their functionality and serviceability. As a consequence of
their structural makeup, the formulation of the pertinent
micromechanical models must take into consideration both, the local
and global aspects. Accordingly, the developed mechanical models
should be rigorous enough to enable the consideration of the
mechanical behavior of the different constituents (reinforcing
elements, matrix, actuators, sensors, etc) at the local level, but not too
complex to be applied to solve problems of a practical importance.
Commonly smart composites have a regular structure with the size of
a unit cell much smaller than the overall dimension of the composite
structure. Consequently, the coefficients of the corresponding
differential equations describing mechanical behavior of the smart
composites are rapidly varying functions in spatial coordinates. The
resulting boundary-value problems are very complex. It is important,
therefore, to develop rigorous analytical methods allowing significant
simplification of the original problems. At present, asymptotic
techniques are applied in many cases in micromechanics of
composites. Various asymptotic approaches in the analysis of
composite materials have apparently reached their conclusion within
the framework of the mathematical theory of multiscale asymptotic
homogenization [1,2]. Indeed, the proof of the possibility of
homogenizing a periodic composite material, i.e. of examining a
homogeneous solid instead of the original inhomogeneous composite
solid, is one of the principal results of this theory. Theory of
asymptotic homogenization has also indicated a method of transition
from the original problem with the rapidly varying coefficients to a
problem for an equivalent homogeneous solid. This transition is
accomplished through the solution of the so-called unit-cell
problems. The objective of micromechanical analysis of smart
composites based on asymptotic homogenization is to derive the
accurate analytical and numerical results for the effective properties
and local stresses for different types of smart composite and
reinforced structures of a practical importance. The comprehensive
review of a state-of-the-art in asymptotic homogenization modelling
of composite materials and structures can be found in [3].

This paper provides details on the application of asymptotic
homogenization method to the micromechanical analysis of smart
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composite materials and thin-walled structures. The basics of the
asymptotic homogenization technique and its applications to the
analysis of a wide range of smart composite materials and structures
are presented. The asymptotic homogenization technique is applied to
the analysis of 3D smart composite structures and smart composite
shells. The analytical solutions of the corresponding unit cell
problems are obtained and the explicit analytical formulae are
derived for the effective properties of 3D generally orthotropic grid-
reinforced smart composites of various structures, smart grid-
reinforced composite shells, rib- and wafer-reinforced shells and
plates, sandwich composite shells with cellular cores of different
geometry. Finally, the analytical expressions for the effective
mechanical properties of carbon nanotubes are presented.

Acknowledgment. This work was supported by the Natural Sciences
and Engineering Research Council of Canada (NSERC).
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SOME BOUNDARY VALUE AND BOUNDARY-
TRANSMISSION PROBLEMS OF MICRO-THERMAL
ELASTICITY OF STRESS/STRAIN STATE IN
GENERALIZED CYLINDRICAL AND SPHERICAL
COORDINATES

Nuri Khomasuridze
Iv. Javakhishvili Thbilisi State University, I.Vekua Institute of Applied
Mathematics, Thbilisi, Georgia, khomasuridze.nuri@gmail.com

In generalized cylindrical and spherical coordinates a three-
dimensional system of differential equations is considered, which
describes thermo-elastic equilibrium of homogeneous isotropic
elastic materials, microelements of which, in addition to classical
displacements and thermal fields, have micro- temperatures. Some
boundary value and boundary value contact problems of micro-
elasticity are stated for bodies bounded by coordinate surfaces of the
above-mentioned systems of coordinates and an analytical solution of
this class of problems is constructed.

If thermal coefficients (k, =k, =...=k, =0) characterrizing

micro-thermal effects are assumed to be zero, the obtained solutions
will lead to the solution of a classical thermo-elasticity problem.

It should me emphasized that the aim of the given paper is to
construct an analytical solution for a class of boundary value and
boundary value contact problems rather than study the validity and
applicability of the corresponding theory.

Acknowlegment. This work has been supported by Shota
Rustaveli National Scientific grant AR/91/5-109/11.
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SOLUTION OF SOME BOUNDARY VALUE PROBLEMS OF
THERMO-ELASTICITY OF A RECTANGULAR
PARALLELEPIPED TAKING INTO ACCOUNT MICRO-
TEMPERATURE EFFECTS

Nuri Khomasuridze*, Roman Janjgava™*
*Iv. Javakhishvili Thilisi State University, I.Vekua Institute of Applied
Mathematics, Thilisi, Georgia, khomasuridze.nuri@gmail.com
** [v. Javakhishvili Thilisi State University, I. Vekua Institute of Applied
Mathematics, The University of Georgia, Tbilisi, Georgia,
roman.janjgava@gmail.com

A three-dimensional system of differential equations is
considered, which describe thermoelastic equilibrium of
homogeneous isotropic elastic materials micro-elements of which, in
addition to classic displacements and thermal fields also have micro-
temperatures.

In the Cartesian system of coordinates a general solution of this
system of equations is constructed by means of harmonic and meta-
harmonic functions. A statement of a class of boundary value
problems of micro thermal elasticity is given for a rectangular
parallelepiped and using the above-mentioned general solution an
analytical solution is constructed for the given class of boundary
value problems.

The obtained solutions lead to the solution of a corresponding
classical problem of thermoelasticity if we assume that thermal
coefficients (k, =k, =...=k, =0) characterizing effects of micro
temperatures are equal to zero.

It should be noted that the aim of the present paper is to construct
an analytical solution for a class of boundary value problems rather
than investigate validity and applicability of the corresponding
theory.

Acknowlegment. This work was supported by Shota Rustaveli
National Scientific Foundation grant AR/91/5 - 109/11.
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INVESTIGATION OF ELASTIC EQUILIBRIUM OF A
MULTILAYER RECTANGULAR PARALLELEPIPED
UNDER POINT LOAD AND CREATION OF A
CORRESPONDING WIDE-SERVICE PROGRAMME

Nuri Khomasuridze*, Natela Zirakashvili**, Miranda Narmania***
*Iv. Javakhishvili Thbilisi State University, . Vekua Institute of Applied
Mathematics, Thilisi, Georgia, khomasuridze.nuri@gmail.com
** Tv. Javakhishvili Thilisi State University, . Vekua Institute of Applied
Mathematics, Thilisi, Georgia, natzira@yahoo.com ***University of
Georgia, Thilisi, Georgia, miranarmal 9@gmail.com

A boundary value contact problem of elastic equilibrium is
solved for a multilayer (three-layer) rectangular parallelepiped under
external point load. The corresponding boundary value contact
problem of elasticity is analytically solved where displacements are
represented as infinite series, with each series term representing a
product of trigonometric and exponential functions.

On the basis of the obtained analytical solution a comprehensive
user-friendly wide-service program is created.

Acknowlegment. This work was supported by Shota Rustaveli
National Scientific Foundation grant AR/91/5 - 109/11.

DYNAMICS OF SURFACES IN DIFFERENT APPLICATIONS

Dietmar Kroner*
*Albert-Ludwigs-Universitét Freiburg, Department of Applied
Mathematics, Freiburg, Germany, dietmar@mathematik.uni-freiburg.de

In this contribution we will consider moving surfaces in different
applications.

The first one concerns moving interfaces between the phases of a
two phase flows with phase transition. The underlying mathematical
model for a liquid-vapour flow including phase transition, which was
proposed by Korteweg already in 1901, is the so called Navier-
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Stokes-Korteweg model. It is an extension of the compressible
Navier-Stokes equations with some additional capillarity terms which
are responsible for the phase transition. We will give an introduction
for the derivation of the mathematical model and we will present
some dynamical numerical experiments. Finally we will point out
some shortcomings of this ansatz and we will show, how this can be
improved by phasefield models.

The second one concerns conservation laws on moving
hypersurfaces. In this work the velocity of the surface is prescribed.
But one may think of the velocity to be given by PDEs in the bulk
phase. We prove existence and uniqueness for a scalar conservation
law on the moving surface and we present some numerical
experiments. As in the Euclidean case we expect discontinuous
solutions, in particular shocks. It turns out that in addition to the
“Euclidean shocks” geometrically induced shocks may appear.

Acknowlegment. This is a joint work with D. Diehl, G. Dziuk,
M, Kraenkel, T. Mueller and is supported by the Deutsche
Forschungsgemeinschaft.

ON THE APPLICATION OF THE METHOD OF A SMALL
PARAMETER FOR NON-SHALLOW SHELLS

Tengiz Meunargia
I.Vekua Institute of Applied Mathematics of Iv. Javakhishvili
Thilisi State University, Tbilisi, Georgia
tengiz.meunargia@viam.sci.tsu.ge

For the non-shallow shells the basis vectors have the form
R, = (af —x3bf)77ﬁ, R = S’I[af +x3(b5 —2Haf)]l7ﬂ,

—

Ry=R’=ii, (9=1-2Hx,+Kx)
and

R, =7, R*=7F" R, =R’ =1,

a a s

N
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are the basis vectors for the shallow shells. Here, a f and bf are the
1
coefficients of I and II quadratic forms of the midsurface, H = Ebs

and K = b/b; —bb) are middle and main curvatures (x3 = O).
A small parameter has the form

h
£=—, —h<x,<h,
R
where 2/ is the thickness of the shell, R is a certain characteristic

radius of curvature of the midsurface. Then the basis vectors of the
surfaces x; = const have the form

R, = (af — &yb? )?ﬁ, R* =97'a’ +f,y(bf —2Ha” )];ﬂ.

Further, by means of I. Vekua method 3-dimensional problems
are reduced to 2-dimensional one’s, after that the method of a small
parameter are used.
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HERITAGE OF V. KUPRADZE IN 3D ELASTICITY:
POTENTIAL METHOD AND FUNDAMENTAL SOLUTIONS
METHOD

David Natroshvili
Georgian Technical University, Department of Mathematics,
Thilisi, Georgia & 1.Vekua Institute of Applied Mathematics
1. Javakhishvili Tbilisi State University, Tbilisi, Georgia
natrosh@hotmail.com

The presentation concerns the scientific heritage of Professor
Viktor Kupradze in the linear theory of three-dimensional elasticity.
We will consider two main directions:

e Development of potential method for spatial problems of
elasticity and
e Method of fundamental solutions.

We describe main achievements of the worldwide known school
of V. Kupradze in the theoretical study of boundary value problems
of elastostatics, elastodymanics and elastic vibrations based on the
boundary integral equations methods.

We give also an overview of results related to the universal and
easily realizable numerical method: Method of fundamental
solutions.

In the final part, we describe some new developments of the
potential theory and treat some open problems.
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AN ANALYTICAL SOLUTION FOR A CLASS OF
BOUNDARY VALUE PROBLEMS
OF THERMOELASTICITY FOR A NON-HOMOGENEOUS
RECTANGULAR PARALLELEPIPED

Giorgi Nozadze*, Nuri Khomasuridze**
*LEPL G. Tsulukidze Mining Institute, Thbilisi, Georgia,
g nozadze@yahoo.com
**]v. Javakhishvili Tbilisi State University, I. Vekua Institute of Applied
Mathematics, Thbilisi, Georgia

In the Cartesian system of coordinates x, y, z analytical solutions
are constructed for a class of boundary value thermoelasticity
problems for a non-homogeneous in z isotropic parallelepiped

Q= {0 <x<x1, 0 <y <yl 0< 1z < zl}.

Boundary conditions of symmetry and antisymmetry are satisfied
on the lateral faces of the parallelepiped x=0,x=x1, y=0,y=yl
while on the two remaining sides z= 0, z =zl boundary conditions
are defined arbitrarily.

In order to construct the solution we represent the solution by
means of three harmonic functions. Based on this solution and using
the method of separation of wvariables components of the
displacement vector are represented as double infinite series. The
terms of these series represent a product of trigonometric and
exponential functions.

Acknowlegment. This work was supported by Shota Rustaveli
national scientific foundation grant #10/17.
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THE ACCURACY OF A METHOD FOR THE BERGER
DYNAMIC PLATE EQUATION

Vladimer Odisharia*, Jemal Peradze**
*Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia,
vodisharia@yahoo.com
**]v. Javakhishvili Tbilisi State University, Georgian Technical
University, Tbilisi, Georgia, j_peradze@yahoo.com

By using the approach due to Berger [1] it was shown by Wah [4]
that the vibration of rectangular plates

Q={(x,y)| O<x<a, O<y<b}

with large amplitudes may be described by the nonlinear differential
equation

Fw ow\? (owY B

in which w(x, y,t) is lateral deflection and & and S are some
nonnegative constants.

Consider equation (1) under the following initial boundary
conditions

p
6—w(x,y,0) =w’(x,y), p=01 wxy0),=0,
ot? ‘ )
where w’(x,y) and w'(x,y) are the given functions, Qis the
boundary of the domain 0 Q.

Note that in [2] the existence and uniqueness of a generalized
solution of the Cauchy problem is proved for the equation

(I + hAyu"+ A%u + [z + M (| 4P )}Au - f

a particular case of which is equation (1).
Let us perform approximation of the solution of problem (1), (2)
with respect to the variables x and y . For this, we use the Galerkin

method. A solution will be sought in the form of the series

mn jﬁy
X, V,t tsm—sm—
Wy (X, ,8) = E E () 5

i=l j=1
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where the coefficients w;" () are the solution of the system of

differential equations

s GRC
B3] G ol G o

i=L2,...,m, L2,.

with the initial conditions
dp mn
"
Applying the technique developed in [3] for a one-dimensional
problem, we estimate the error of the Galerkin method.

——jw”(x,y)sin@sin%dx dy, p=0,1.
a
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ON ONE CONTACT PROBLEM OF PLANE ELASTICITY
THEORY FOR A DOUBLY CONNECTED DOMAIN

Nana Odishelidze *, Francisco Criado -Aldeanueva**,
Francisco Criado ***

*Tv. Javakhishvili Tbilisi State University, Faculty of Exact and Natural
Sciences, Department of Computer Sciences, Tbilisi, Georgia,
nana_georgiana@yahoo.com
** Malaga University,Campus El Ejido, Department of Applied Physics II,
Polytechnic School, Malaga, Spain, fcaldeanueva@ctima.uma.es
*** Malaga University, Campus Teatinos, Department of Statistics and
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f criado@uma.es

The paper addresses a problem of plane elasticity theory for a
doubly connected body which external boundary is an isosceles
trapezoid boundary; the internal boundary is required full-strength
hole including the origin of coordinates. The trapezoid axis coincides

with the 0% axis. To every link of the broken line of given body are
applied absolutely smooth rigid punches with rectilinear bases
undergoing the action of normally-compressive forces. There is no
friction between the surface of given elastic body and punches.
Uniformly distributed normal stress be applied to the unknown full-
strength contour .Tangential forces on the boundary are equal to zero
and normal displacements are piecewise constant. Linear segments
are endowed with the boundary conditions of the third problem.
Using the methods of complex analysis [1], the unknown full-
strength contour and stressed state of the body are determined.

Acknowlegment. This work was supported by my colleagues of
Malaga University.
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ON APPROXIMATE SOLUTION OF A SYSTEM OF
SINGULAR INTEGRAL EQUATIONS

Archil Papukashvili*, Gela Manelidze**, Meri Sharikadze*
*Tv. Javakhishvili Thilisi State University, . Vekua Institute of
Applied Mathematics, Tbilisi, Georgia,
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In the present article the problems for composite (piece-wise
homogeneous) bodies weakened by cracks when cracks intersect an
interface or penetrate it at rectangular angle is studied. Antiplane
problems of the elasticity theory for piece-wise homogeneous
orthotropic plane is reduced to the system (pair) of singular integral
equations containing an immovable singularity with respect to the
tangent stress jumps (problem A). First the behavior of solutions in
the neighborhood of the crack endpoints is studied (see [1]). In a
partial case when one half-plane has a rectilinear cut of finite
length, which is perpendicular to the boundary, and one end of which
is located on the boundary. We have one singular integral equation
containing an immovable singularity (problem B). The question of
the approached decision of one system (pair) of the singular integral
equations is investigated. A general scheme of approximate solutions
is composed by the collocation and asymptotic methods are pre-
sented.

Let’s consider a system of singular integral equations containing

an immovable singularity with respect to leaps P1:(x) (see [1])

- | ” - . ‘Y 4
. 2e AP N
[ ¢ —- (EpTs Moy i = s e
L .“"\l ) v 34 L =P . - LI LR
Jo M —-x t4x7V d, f—2 Y xe(0;1),
(M
S (A Ay -
| Rl - Tz 7 —
Pz 4 4+t { - Pt = 2 Fg(a
. L P S A T , xel=1; 0}

where Pw{x}, fi{x} unknown and given and given real functions,
respectively, @x.Px constants,
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The system (1) the singular integral equations is solved by a
collocation method, in particular, a method discrete singular (see[2])
in cases both uniform, and non-uniformly located knots.

In a partial case when one half-plane has a rectilinear cut of
finite length, which is perpendicular to the boundary, and one end
of which is located on the boundary (problem B). We have one
singular integral equation containing an immovable singularity

(see[1])
ik @y
I (—5+5 - —)ote)dt = 21700, el
Algorithms of approximate solution of singular integral equation (2)
are considered using both asymptotic and its alternative methods (see
[3D).

The corresponding algorithms are composed and realized. The
results of theoretical and numerical investigations are presented.
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ABOUT SOME ISSUES OF STATIC AND DYNAMIC
CALCULATIONS OF A CABLE SUSPENSION
TRANSPORTATION DEVICE

David Pataraia*, E. Tsotseria, G. Nozadze*, G. Javakhishvili*,
R. Maisuradze*, T. Javakhishvili, G. Purtseladze
*LEPL G. Tsulukidze Mining Institute, Tbilisi, Georgia

The issues of static and dynamic calculations of the cable
suspension transportation device as a statically indeterminate system
are discussed. The calculations have been carried out using IRA 9.6
Program and original methods of computer modeling and calculation
of the cable-stick structures elaborated at the Mining Institute
(D.Pataraia).

The personal frequency spectrum of the traffic part of the system
has been investigated using Solid Work 12 Program Packet. The
possibility of the resonance frequency development caused by the
forced jerking in the system is shown that can be influenced
negatively on workability of the system.

The parameters and characteristics of the cable system of the
cable suspension transportation device have also been investigated
for the traffic part of various rigidities, the principal scheme of the
automatically working cable transportation equipment of special
purpose has been elaborated, the structures of its basic units have
been selected and the spheres and possibilities of use have been
determined.

The work has been carried out by funding of the Shota Rustaveli
National Scientific Foundation (Grant Project # 1-7/60).
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NECESSITY OF ACCOUNTING IN NEW GEORGIAN
SEISMIC CODES THE SPECIFICS OF THE CALCULATION
OF TALL BUILDINGS UNDER SEISMIC ACTION

Lali Qajaia*, Tsiala Tsiskreli**
*QGeorgian Technical University ,
Thilisi,,Georgia Qajaia@gmail.com
** Thilisi,,Georgia tsiala.tsiskreli@gmail.com

The seismicity of Georgia reflects the general tectonics of the
Caucasian region, being one of the most active segments of the
Alpine-Himalayan collision belt. Earthquake focal mechanism has
strike-slip nature. Seismic sources located shallow (crustal) with
minimal depth — 10-15km.. In Georgia there is no region without
tectonic fault. Recently developed probabilistic seismic hazard maps
have shown that entire territory of Georgia is active and could be
exposed to the earthquakes with high damaging ground accelerations
in the range of 0.1g to 0.5g.

Seismic safety is one of the country's strategic directions and
appropriate standards should this regulate. Currently in Georgia
earthquake engineering is conducted according to National Building
Codes and Rules-“Earthquake Engineering”/1/. The codes provide
only general recommendations for tall buildings and not reflect
spécifics issues for these buildings. The construction of tall buildings
is intensively developed in Georgia. However, it is considered that
tall buildings have particular characteristics that warrant special
consideration The Georgian codes for seismic design of buildings
were developed for low and medium rise buildings whose responses
are typically dominated by the first translational mode in each
horizontal direction and not for the modern generation of tall
buildings in which multiple modes of translational response can
contribute significantly to the global behavior. The codes are based
on elastic methods of analysis using global force reduction factors,
which cannot predict force, drift and acceleration response in tall
building framing systems that undergo significant inelastic action.
Seismic design is very critical issue for tall structures located near a
tectonic fault. Seismic ground shaking generally is determined using
site-specific seismic hazard analysis considering the location of the
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building with respect to causative faults, the regional and local site-
specific geologic characteristics, and the selected earthquake hazard
levels.

Post-elastic behaviour of structures could not be identified by an
elastic analysis. However, post-elastic behaviour should be
considered as almost all structures are expected to deform in inelastic
range during a strong earthquake. The elastic methods can predict
elastic capacity of structure and indicate where the first yielding will
occur, however they don’t predict failure mechanisms and account
for the redistribution of forces that will take place as the yielding
progresses.

Performance based design of tall buildings should investigate at
least two performance objectives explicitly, namely: 1. negligible
damage in once-in-a lifetime earthquake shaking demands having a
return period of about 50 years, i.e. the service-level assessment and
2. collapse prevention under the largest earthquake shaking that is
expected to occur at the site with a return period of approximately
2500 years- the collapse-level assessment /2,3/.

These questions are necessary to include in the new redaction of
the Georgian seismic codes.

Acknowledgment. This work was completed by Zavriev Institute of
Structural Mechanics and Earthquake Engineering, 2010. Tbilisi,
Georgia.
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SOME ISSUES OF CONDUCTING FLUID UNSTEADY
FLOWS IN PIPES UNDER THE ACTION OF A
TRANSVERSE MAGNETIC FIELD
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In this article is considered the unsteady flow of viscous
incompressible electrically

conducting fluid in an infinitely long pipe placed in an external
uniform magnetic field

perpendicular to the pipe axis. It is considered that the motion is
created by applied at the

initial time in constant longitudinal pressure fall. The exact
general solution of problem is

obtained.

In this section is given a formulation of problem and are stated the
general considerations, related with its solution for an arbitrary
profile of transverse cross-section pipe. The next three sections of
work (§§ 2-4) are devoted to the detailed study of flow in rectangular
pipes. Finally in the last §5 is considered special case of motion in a
circular pipe.
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SOLUTION OF THE BASIC PLANE BOUNDARY VALUE
PROBLEMS OF STATICS OF ELASTIC MIXTURES FOR A
MULTIPLY CONNECTED DOMAIN BY THE METHOD OF

D. SHERMAN

Kosta Svanadze
Department of Mathematics, AkakiTsereteli State University
Kutaisi, Georgia
email: kostasvanadze@yahoo.com

In the present work we consider the basic plane boundary value
problems of statics of the linear theory of elastic mixture for a
multiply connected finite domain,when on the boundary are given a
displacement vector (the first problem) and a stress vector (the
second problem).

For the solution of the problem we use the generalized Kolosov-
Muskhelishvili’s formulas and the method of D. Sherman.

SOME APPROXIMATE METHODS FOR SOLVING
BVPS OF REFINED THEORIES

Tamaz Vashakmadze
I. Vekua Institute of Aplplied Matematics, Tbilisi, Georgia

We consider von Karman-Reissner-Mindlin type refined treories.
The variotional-discrete methods for solving some BVPs are
developed.
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THE METHOD OF AUXILIARY SOURCES V. KUPRADZE
AND RAYLEIGH HYPOTHESIS

Revaz Zaridze, D. Kakulia, 1. Petoev, V. Tabatadze
Thilisi State University, Laboratory of Applied Electrodynamics,
3, Chavchavadze Ave. Tbilisi, Georgia
E-mail: revaz.zaridze@tsu.ge

On 1907 Lord Rayleigh, published the paper: “On the Dynamical
Theory of Gratings”, 1907 RSPSA.79, 08. Rayleigh derived explicit
expressions for a perfectly conducting sinusoidal surface for
perpendicular incidence of the electromagnetic plane wave. There
were no essential arguments against Rayleigh’s approach until 1953,
when Lippmann published a short note (B. Lippmann, J. Opt. Soc.
Am. 43, 1953, 408.) in which he criticized the usage of solely
outgoing plane waves in the representation of the scattered field in
the grooves. Since this time there have been published several
arguments, proofs, and discussions concerning the correctness and
the range of validity of Rayleigh’s approach in general. It was shown
that the validity of the Rayleigh hypothesis is governed by the
distribution of the Scattered Field’s Singularities in the analytic
continuation of the exterior field. Discussion on this problem is
continuous until now (A. Voronovich. “Rayleigh Hypothesis in the
Theory of Wave Scattering from Rough Surfaces”, 2010,
http://electroscience.osu.edu/article.cfm?id=5657).

On 1967 V. Kupradze published: “About approximation solution
of the Math. Phys. Problems”, Success in Math. Sciences, Moscow,
1967. In this theoretical paper he presented several methods of
approximation solutions. Particularly, solution of the Electromagnetic
(EM) or acoustic wave scattering problems on dielectric or solid
body, named as Method of Auxiliary Sources (MAS). The main idea
of the MAS was to present the scattered by Greene functions (their

completeness and linearly independents in the r Lebesgue space
was proofed) as an Auxiliary Sources (AS) shifted inside and outside
from the real body’s boundary. This one helps to avoid singularities
in solution of the appropriate integral equation and sharply increase
the convergence calculations results. He intuitively assumed, that
scattered field must be analytically continued inside and outside of
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the body’s surface. Therefore, like in case of Rayleigh’s problem,
efficient application of the Kupradze method tightly bound with
Rayleigh hypothesis. We have developed the MAS and used
efficiently for solution many applied electrodynamics problems
considering singularities in the analytic continuation of the exterior
scattered field like in case of the validity of the Rayleigh hypothesis.
We believe that the study of the Scattered Field’s Singularities and its
analyticity area is one of the mathematical physic’s fundamental
problems, which have deep physical interpretation. Historically it is
associated with a Rayleigh’s hypothesis. This paper discusses
physical sense of the mentioned mathematical notion. How far from
the real surface can be continued scattered field analyticity inside or
outside of the object? Is it possible to present the scattered field with
the functions which singularities are being the scattered field’s one?
The main question was on the approach which is considered to be
affected by Rayleigh’s hypothesis especially for near-field
calculations. Mathematicians were deal with this analyticity during
solution some particular problems cases. Problems arise when it is
necessary to consider SFS, when we have to take in account the
positional relationship between SFS and Green function’s
singularities. How it depends the rate of convergence results of
calculations on their positional relationship. According of our
understanding, the Rayleigh hypothesis assumes that in any way
scattered field can be found by this algorithm. In first part of
presentation will be discussed more details about our old vision on
the mentioned problems. The results provide confirmation of criteria
for the validity of Rayleigh hypothesis that have been criticized by us
and several investigators. Further, our new vision on the Rayleigh
hypothesis is discussed based on several new results of computer
simulations. Possible or actual singularities in the analytic
continuation of the scattering problem solutions for the two and tree
dimensional Helmholtz equation are studied for the Rayleigh
hypothesis validity. The computer simulations uses for the solution
particular problems, relates to the several types of singularities, with
the elementary source as well as boundary curve’s singularities in the
solution. All mentioned topics will be discussed during oral
presentation.
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