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THE FLOW OF WEAKLYELECTROCONDUCTIVE LIQUID BETWEEN
POROUS WALLS

Tsutskiridze V., Tsutskiridze M.

Abstract. The pulsating flow of viscous incompressible liquid between porous walls with
heat transfer is studied when in perpendicular of walls external uniform magnetic field is
applied. The flow of liquid is caused due the pulsation drop of pressure and the pulsation
movement of the porous walls.

The physical characteristics of liquid flow are found.
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1. Introduction

The pulsating flow of viscous incompressible liquid between porous walls with heat
transfer is studied when in perpendicular of walls external uniform magnetic field is
applied. The flow of liquid is caused due the pulsation movement of the porous walls
and pulsation drop of pressure that is given by the formula:−1

ρ
∂P
∂z

= Ae−iωt. The
temperature change on porous walls of tube and in the tube is carried out by pulsating.
In the heat transfer equation is taken into account the dissipation of caused due friction
energy η

(
∂V
∂x

)
, as well as joules heat σV 2.

Exact solutions of Navier-Stokes and heat transfer equations are obtained in the case
of non-stationary motion of weak electroconductive viscous incompressible liquid fluid
is. The physical characteristics of motion and heat transfer are studied by taking into
account the impact of changes of Hartman, Prandtl, Reynolds numbers and pulsating
flow to the criteria of similarity.

According to the assessed problem are studied in [3,5,7,8] and in [4,6,10] works
laminar flow of fluid in pipe without a heat transfer is considered when on the walls
the intensive inflow or leakage is carried out.

2. Basic part

Let’s consider the weak electroconductive viscous incompressible liquid flow in pla-
nar porous pipe with taking into account the heat transfer when in perpendicular of
motion is applied the external homogeneous (H0) magnetic field. The internal induction
in comparison to external magnetic field is comparatively small and do it is neglected.

It is implied that the liquid velocity has components
−→
V (u∗0, 0, vz(x, t)) along the oz and

ox axles, and the temperature T (x, t) represents a function of x and t. u∗0 = const is
the leakage rate.

The motion and heat transfer equations in the non-inductive approximation gener-
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ally has the following form [1,2,9]:

∂
→
V

∂t
+

( →
V ∆

) →
V = −1

ρ
gradp + ν∆

→
V −

σ

ρ

[
H

[→
V ·

→
H

]]
,

ρCν

(
∂T

∂t
+

(
V∇

)
T

)
= k∆T + Φ + σ

[→
V ·

→
H

]2

, (1)

div
−→
V = 0, div

−→
H = 0,

where
[−→
V ·

−→
H

]2

is Joule’s heat and Φ is the energy dissipation due to the friction

that is equal to Φ = 2η
{

1
2

[(
∂Vx

∂y
+ ∂Vy

∂x

)2

+
(

∂Vy

∂z
+ ∂Vy

∂y

)2

+
(

∂Vz

∂x
+ ∂Vx

∂z

)2
]

+
(

∂Vx

∂x

)2
+(

∂Vy

∂y

)2

+
(

∂Vz

∂z

)2
}

.

If we take into account the above mentioned from system (1) we will get the di-
mensionless quantities

∂U

∂τ
− ∂2U

∂ξ2
−R

∂U

∂ξ
+ M2U = f(τ),

pr
∂θ

∂τ
− ∂2θ

∂ξ2
− prR

∂θ

∂ξ
=

(
∂U

∂ξ

)2

+ M2U2,

(2)

where ξ = x
L
, τ = ν

L2 t, U = V
V ∗
0
, θ = k

η(V ∗
0 )2

T are the dimensionless quantities, and V ∗0

and L are accordingly characteristic velocity and characteristic length. M = H0L
√

σ
η

is the Hartman number, α = ωL2

ν
is the similarity criteria of steady pulsation motion,

Pr = ηCν

k
is the prandtl number, R =

u∗0L

ν
is the liquid leakage characteristic Reynolds

number, σ is the conductivity ratio, ν is the kinematic coefficient of viscosity, η is the
dynamic coefficient of viscosity, ω is the frequency, Cν is the specific heat capacity, k
is the coefficient of conductivity.

For system (2) the initial and boundary conditions would generally be given in the
following form:

U(ξ, 0) = 0, U(1, τ) = ϕ1(τ), U(−1, τ) = ϕ2(τ), θ(ξ, 0) = θ1(ξ, 0) + θ2(ξ, 0) = 0, (3)

θ(1, τ) = θ1(1, τ) + θ2(1, τ) = q
(1)
1 (τ) + q

(2)
1 (τ) = q1(τ),

θ(−1, τ) = θ1(−1, τ) + θ2(−1, τ) = q
(1)
2 (τ) + q

(2)
2 (τ) = q2(τ),

(4)

where θ1(ξ, τ) is the temperature, when in the heat conductivity equation only the fric-
tion heat is considered, and θ2(ξ, τ) is the temperature, when in the heat conductivity
equation only Joule’s heat is considered.

We imply that the liquid immediately begins to move (i.e. U(ξ, 0) = 0) and the
temperature change of the planar tube walls in the initial moment is equal to zero.
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If for the solution of (2) - (3) boundary problem we apply Laplase integral trans-
formation we will obtain

U
′′

+ RU
′

− (M2 + s)U = −f(s), (5)

U(1, s) = ϕ1(s), U(−1, s) = ϕ2(s), (6)

where

U(ξ, s) =

∫ ∞

0

U(ξ, τ)e−sτdτ, f(s) =

∫ ∞

0

f(τ)e−sτdτ,

ϕ1(s) =

∫ ∞

0

ϕ1(τ)e−sτdτ, ϕ2(s) =

∫ ∞

0

ϕ2(τ)e−sτdτ.

For velocity transformation the solution of (5)-(6) boundary conditions gives

U(ξ, s) =

(
ϕ1(s)−

f(s)

M2 + s

)
e

R(1−ξ)
2

shβ(1 + ξ)/2

shβ

+

(
ϕ2(s)−

f(s)

M2 + s

)
e

R(1+ξ)
2

shβ(1− ξ)/2

shβ
+

f(s)

M2 + s
, (7)

where
β =

√
R2 + 4(M2 + s).

Let’s study the liquid flow that is caused due to pulsating motion of porous walls:
U(±1, τ) =Ae−iατ , ϕ1,2(s) = A1,2

s+iα
and the pulsating drop of pressure: −1

ρ
∂p
∂z

= f1(t) =

Ae−iωt, f 1(s) = A
s+iα

.
If we consider the above mentioned in formula (7) it would take the following form:

U(ξ, S) =
A1e

R(1−ξ)
2 shβ(1 + ξ)/2

(s + iα)shβ
+

A2e
−R(1+ξ)

2 shβ(1− ξ)/2

(s + iα)shβ

+
D

(M2 + s)(s + iα)shβ

(
shβ − e

R(1−ξ)
2 shβ(1 + ξ)/2− e−

R(1+ξ)
2 shβ(1− ξ)/2

)
, (8)

where D = AL2

νV ∗
0

is the amplitude of pulsating drop of pressure and A1 and A2 are the

amplitudes of walls motion.
If formula (8) would be written down in originals then for the calculation of velocity

we obtain the following formula:

U(ξ, τ) =
{(

A1 −
D

M2 − iα

)
e

R(1−ξ)
2 shβ(1 + ξ)/2

+

(
A2 −

D

M2 − iα

)
e−

R(1+ξ)
2 shβ(1− ξ)/2 +

Dshβ

M2 − iα

}e−iατ

shβ

+
1

2

∞∑
n=1

(−1)n−1µne
−snτ

iα− sn

[ (
A1 +

4D

R2 + µ2
n

)
e

R(1−ξ)
2 sin

µn(1 + ξ)

2

+

(
A2 +

4D

R2 + µ2
n

)
e−

R(1+ξ)
2 sin

µn(1− ξ)

2

]
= U1(ξ, τ) + U2(ξ, τ),

(9)
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where sn = −µ2
n+R2+4M2

4
, µn = πn, U1(ξ, τ) describes the steady pulsating flows be-

tween the porous walls and U2(ξ, τ) describes the oscillation caused due to porous walls
pulsating motion and pulsating drop of pressure in the liquid.

After a rather large interval in the liquid oscillations would be damped (U(ξ, τ) →
∞), thus for the velocity formula (9) takes the following form:

U(ξ, τ) = U1(ξ, τ) =
{(

A1 −
D

M2 − iα

)
e

R(1−ξ)
2 shβ(1 + ξ)/2

+

(
A2 −

D

M2 − iα

)
e−

R(1+ξ)
2 shβ(1− ξ)/2 +

Dshβ

M2 − iα

}e−iατ

shβ
. (10)

If in the equation of heat conductivity (2) first Joule’s heat and then the friction
heat are neglected we accordingly will obtain the following equations:

Pr
∂θ1

∂τ
− ∂2θ1

∂ξ2
− PrR

∂ϑ1

∂ξ
=

(
∂U

∂ξ

)2

, (11)

Pr
∂θ2

∂τ
− ∂2θ2

∂ξ2
− PrR

∂ϑ2

∂ξ
= M2U2. (12)

If we in the equations (11)-(12) consider the formula (10) of velocity and apply
the Laplace integral transformation formula then by taking into account boundary
conditions (4) the temperature in the transformations would be expressed as:

θm(ξ, τ) =
(
q
(m)
1 (s)− qm(1)

)
e

PrR(1−ξ)
2

shγ(1 + ξ)/2

shγ

+
(
q
(m)
2 (s)− qm(−1)

)
e−

PrR(1+ξ)/2
2

shγ(1− ξ)/2

shγ
+ qm(ξ), (13)

where m = 1, 2; γ =
√

P 2
r R2 + 4Prs, β1,2 = −R

2
± 1

2

√
R2 + 4(M2 − iα),

2β3 = β1 + β2, 2β4 = β1, 2β5 = β2; (14)

q1(ξ) = − 1

s + 2iα

{
2∑

k=1

β2
kake

2βkξ

4β2
k + 2PrRβk − sPr

+
(M2 − iα)a3e

−Rξ

R2(1− Pr)− sPr

}
,

q2(ξ) = − M2

s + 2iα

{
5∑

k=1

ake
2βkξ

4β2
k + 2PrRβk − sPr

+
a6

sPr

}
,

(15)

a1,2 =

[(
A1 − D

M2−iα

)
e−β2,1 −

(
A2 − D

M2−iα

)
eβ2,1

2sh(β1 − β2)

]2

, (16)

a3 = 1
2sh2(β1−β2)

[ (
A2 − D

M2−iα

)2
e2β3 +

(
A1 − D

M2−iα

)2

−2
(
A2 − D

M2−iα

) (
A1 − D

M2−iα

)
ch(β1 − β2)

]
,

a4,5 = D
(M2−iα)sh(β1−β2)

[ (
A2 − D

M2−iα

)
eβ2,1 −

(
A1 − D

M2−iα

)
e−β2,1

]
,

(17)
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a6 =
(

D
M2−iα

)2
. (18)

Let’s study the temperature changes at steady pulsating motion of liquid, when the
temperature change in the initial moment is equal to zero, and on the planar walls of
pipe changes by the pulsating law:

q
(1)
1,2(τ) = B

(1)
1,2e

−2iατ , q
(2)
1,2(τ) = B

(2)
1,2e

−2iατ .

If we consider the above mentioned in the (13) formula, then for the temperature
in originals accordingly we will get the following expressions:

θm(ξ, τ) =
[ (

B
(m)
1 − qm(−1)

)
e

PrR(1−ξ)
2 shγ(1 + ξ)/2

+
(
B

(m)
2 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + qm(ξ)shγ

]
e−2iατ

shγ

+1
2

∑∞
n=1

(−1)n−1µnesnτ

Pr(sn+2iα)

[ (
B

(m)
1 − q∗m(1)

)
e

PrR(1−ξ)
2 sin µn(1 + ξ)/2

+
(
B

(m)
2 − q∗m(−1)

)
e−

PrR(1+ξ)
2 sin µn(1− ξ)/2

]
,

(19)

where m = 1, 2; µn = πn, sn = −µ2
n+P 2

r R2

4Pr
, γ =

√
P 2

r R2 − 8iαPr,

q1(ξ) = −
∑2

k=1

β2
kake2βkξ

4β2
k+2PrRβk+2iαPr

− (M2−iα)a3e−Rξ

R2(1−Pr)+2iαPr
,

q2(ξ) = −M2
∑5

k=1
ake2βkξ

4β2
k+2PrRβk+2iαPr

+ M2a6

2iαPr
,

q∗1(ξ) = −
∑2

k=1

β2
kake2βkξ

4β2
k+2PrRβk−snP r

− (M2−iα)a3e−Rξ

R2(1−Pr)−snP r
,

q∗2(ξ) = −M2
∑5

k=1
ake2βkξ

4β2
k+2PrRβk−snPr

+ M2a6

2snPr
.

(20)

Let’s mention that at the q2(ξ) and q∗2(ξ) computation before the a3 and a4coefficients
would be implied the sign ”−”.

Case I. let’s consider the pulsating flow of liquid that is caused by the pulsating
motion of walls. Let’s say the pulsating motion of walls occurs in the same phase, by
the same amplitude (A1 = A2 = U0), the temperature change on the walls of tube

carried out pulsating in the same phase, by same amplitude, (B
(1)
1,2 = θ

(1)
1 = const,

B
(2)
1,2 = θ

(2)
1 = const), and the drop of pressure is equal to zero (D = 0).

Due to the consideration of above mentioned, for the velocity and temperature by
the (9) and (19) formulae we will obtain

U I(ξ, τ)

U0

=
e−iατ

shβ

(
e

R(1−ξ)
2 shβ(1 + ξ)/2 + e−

R(1+ξ)
2 shβ(1− ξ)/2

)

+
1

2

∞∑
n=1

(−1)n−1µne
−

(
M2+

R2+µ2
n

4

)
τ

iα− sn

(
e

R(1−ξ)
2 sin

µn(1 + ξ)

2
+ e−

R(1+ξ)
2 sin

µn(1− ξ)

2

)
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= U I
1 (ξ, τ) + U I

2 (ξ, τ), (9I)

θI
m(ξ, τ) =

[ (
θ

(m)
1 − qm(1)

)
e

PrR(1−ξ)
2 shγ(1 + ξ)/2

+
(
θ

(m)
1 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + +qm(ξ)shγ

]e−2iατ

shγ

+
1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[ (
θ

(m)
1 − q∗m(1)

)
e

PrR(1−ξ)
2 sin µn(1 + ξ)/2

+
(
θ

(m)
1 − q∗m(−1)

)
e−

PrR(1+ξ)
2 sin µn(1− ξ)/2

]
= θ∗m(ξ, τ) + θ∗∗m (ξ, τ), (19I)

where m = 1, 2, and q1,2(ξ) and q∗1,2(ξ) would be calculated due to formula (20).
If we calculate the friction force in liquid and on planar pipe’s walls, we will ac-

cordingly obtain the following formulae:

F I =
U0e

−iατ

2shβ

[
β

(
e

R(1−ξ)
2 ch

β(1 + ξ)

2
− e−

R(1+ξ)
2 ch

β(1− ξ)

2

)
−R

(
e

R(1−ξ)
2 sh

β(1 + ξ)

2
+ e−

R(1+ξ)
2 sh

β(1− ξ)

2

) ]
,

F I
1,2 =

U0e
−iατ

2shβ

[
β

(
±chβ ∓ e∓R

)
−Rshβ

]
,

and for the flow rate and average velocity we will have:

θI =
U0β (chβ/2− chR) e−iατ

(M2 − iα) sh(β1 − β2)
,

U I =
1

2

U0β (chβ/2− chR) e−iατ

(M2 − iα) shβ
.

When the pulsating fluid flow is caused by the porous walls pulsating motion (the
walls are moved in the same phase with the same amplitude), the friction force on the
pile walls takes the different, and the maximum value of velocity makes at the pipe’s
axis.

II. Let’s say that walls pulsating motion and temperature changes on the pipe walls
is made by different signs of amplitude (A1 = V0, A2 = −V0, B

(1)
1 = B

(1)
2 = θ

(1)
2 = const,

B
(2)
1 = B

(2)
2 = θ

(2)
2 = const). The drop of pressure in the pipe is still equal to zero

(D = 0).
If we consider the above mentioned for the velocity and temperature we will obtain

U II(ξ, τ)

V0

=
e−iατ

shβ

(
e

R(1−ξ)
2 shβ(1 + ξ)/2 e−

R(1+ξ)
2 shβ(1− ξ)/2

)

+
1

2

∞∑
n=1

(−1)n−1µne
−

(
M2+

R2+µ2
n

4

)
τ

iα−M2 − R2+µ2
n

4

(
e

R(1−ξ)
2 sin

µn(1 + ξ)

2
e−

R(1+ξ)
2 sin

µn(1− ξ)

2

)
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= U II
1 (ξ, τ) + U II

2 (ξ, τ), (9II)

θII
m (ξ, τ) =

[ (
θ

(m)
2 − qm(1)

)
e

PrR(1−ξ)
2 shγ(1 + ξ)/2

−
(
θ

(m)
2 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + +qm(ξ)shγ

]e−2iατ

shγ

+
1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[ (
θ

(m)
2 − q∗m(1)

)
e

PrR(1−ξ)
2 sin µn(1 + ξ)/2

(
θ

(m)
2 − q∗m(−1)

)
e−

PrR(1+ξ)
2 sin µn(1− ξ)/2

]
= θ∗m+2(ξ, τ) + θ∗∗m+2(ξ, τ), (19II)

where q1,2(ξ) and q∗1,2(ξ) would be calculated due to formula (20).
If we calculate the friction force in fluid and on the planar pipe walls accordingly

we will obtain the following formulae:

F II =
V0e

−iατ

2shβ

[
β

(
e

R(1−ξ)
2 ch

β(1 + ξ)

2
+ e−

R(1+ξ)
2 ch

β(1− ξ)

2

)
−R

(
e

R(1−ξ)
2 sh

β(1 + ξ)

2
− e−

R(1+ξ)
2 sh

β(1− ξ)

2

) ]
,

F II
1,2 =

V0e
−iατ

2shβ

[
β

(
±chβ + e∓R

)
∓Rshβ

]
,

and for the flow rate and average velocity we will have:

θII =
V0e

−iατ

(M2 − iα) shβ
[β (chβ + chR) + RshR] ,

U II =
1

2

V0e
−iατ

(M2 − iα) shβ
[β (chβ + chR) + RshR] .

When the fluid pulsating flow is caused by the walls pulsating motion (the walls
pulsating motion is carried out by reverse direction of sign), then on the planar pipe’s
axis the friction force doesn’t reach the maximal value, and on the pipe walls don’t
make the same values as in the case of non-porous walls.

At pulsating motion of porous walls (I-II case) the transfer of pulsation occurs
throughout the whole liquid. As calculations show, the localization of the pulsating
fluid flow occurs in the walls adjacent to it. Thus the stabilization of pulsating flow
of liquid occurs very quickly. The fluid’s rate that describes the process of pulsating
stabilization, would be defined by the 9I and 9II formulae; the smaller is the distance
between the porous wall, the sooner will be stabilized the pulsating motion of fluid and,
conversely, the greater is the distance between the walls, the more time is required for
stabilization of fluid pulsating motion.

The stabilization of fluid pulsating flow occurs after the long time from fluid motion
start i.e. when τ →∞, then the values

U I
2 =

U0

2

∞∑
n=1

(−1)n−1µne
−

(
M2+

R2+µ2
n

4

)
τ

iα−M2 − R2+µ2
n

4

(
e

R(1−ξ)
2 sin

µn(1 + ξ)

2
+ e−

R(1+ξ)
2 sin

µn(1− ξ)

2

)
,
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U II
2 =

V0

2

∞∑
n=1

(−1)n−1µne
−

(
M2+

R2+µ2
n

4

)
τ

iα−M2 − R2+µ2
n

4

(
e

R(1−ξ)
2 sin

µn(1 + ξ)

2
e−

R(1+ξ)
2 sin

µn(1− ξ)

2

)
tends to zero, and fluid steady pulsating flow would be calculated by following formula:

U I(ξ, τ)

U0

=
e−iατ

shβ

(
e

R(1−ξ)
2 shβ(1 + ξ)/2 + e−

R(1+ξ)
2 shβ(1− ξ)/2

)
,

U II(ξ, τ)

V0

=
e−iατ

shβ

(
e

R(1−ξ)
2 shβ(1 + ξ)/2 e−

R(1+ξ)
2 shβ(1− ξ)/2

)
.

At the steady pulsating fluid flow (I-II case) after some time the temperature change
in fluid occurs in pulsating mode, i.e. when τ →∞, then the values

θ∗∗m (ξ, τ) =
1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[ (
θ

(m)
2 − q∗m(1)

)
e

PrR(1−ξ)
2 sin µn(1 + ξ)/2

+
(
θ

(m)
2 − q∗m(−1)

)
e−

PrR(1+ξ)
2 sin µn(1− ξ)/2,

]
θ∗∗m+2(ξ, τ) =

1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[ (
θ

(m)
2 − q∗m(1)

)
e

PrR(1−ξ)
2 sin µn(1 + ξ)/2

(
θ

(m)
2 − q∗m(−1)

)
e−

PrR(1+ξ)
2 sin µn(1− ξ)/2

]
tends to zero, and at steady pulsating motion of fluid (that is caused by the pulsating
motion of porous walls) the fluid temperature changes law will have the pulsating
character that would be calculated by the following formulae:

θ∗m(ξ, τ) =
[ (

θ
(m)
1 − qm(1)

)
e

PrR(1−ξ)
2 shγ(1 + ξ)/2

+
(
θ

(m)
1 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + +qm(ξ)shγ

]e−2iατ

shγ
,

θ∗m+2(ξ, τ) =
[ (

θ
(m)
2 − qm(1)

)
e

PrR(1−ξ)
2 shγ(1 + ξ)/2

−
(
θ

(m)
2 − qm(−1)

)
e−

PrR(1+ξ)
2 shγ(1− ξ)/2 + +qm(ξ)shγ

]e−2iατ

shγ
.

When the fluid motion is caused by the pulsating motion of porous walls, then
the friction heat impact on the weak conductive fluid will be more important than at
pulsating motion of non-porous walls, and the action of Joule heat action in both cases
is almost similar.

III. Let’s consider the pulsating flow of fluid that is caused only by pulsating drop
of pressure(D 6= 0). The pipe walls are motionless (A1 = A2 = 0).

Let’s imply that temperature change on the porous pipe walls isn’t occurring by
pulsating law (B

(1)
1 =B

(1)
2 =B

(2)
1 =B

(2)
2 = 0).
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If we consider the above mentioned, then for velocity and temperature from (9) and
(19) formulae we will obtain.

U III(ξ, τ)

D/ (M2 − iα)
=

e−iατ

shβ

[
shβ − e

R(1−ξ)
2 shβ(1 + ξ)/2 e−

R(1+ξ)
2 shβ(1− ξ)/2

]

+2
∞∑

n=1

(−1)n−1(M2 − iα)µne
−

(
M2+

R2+µ2
n

4

)
τ(

iα−M2 − R2+µ2
n

4

)
(R2 + µ2

n)

[
e

R(1−ξ)
2 + sin

µn(1 + ξ)

2

+e−
R(1+ξ)

2 sin
µn(1− ξ)

2

]
= U III

1 (ξ, τ) + U III
2 (ξ, τ), (9III)

θIII
m (ξ, τ) =

e−2iατ

shγ

[
qm(ξ, τ)shγ qm(1)e

PrR(1−ξ)
2 shγ(1 + ξ)/2

qm(−1)e−
PrR(1+ξ)

2 shγ(1− ξ)/2
]

−1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[
q∗m(1)e

PrR(1−ξ)
2 sin µn(1 + ξ)/2

+q∗m(−1)e−
PrR(1+ξ)

2 sin µn(1− ξ)/2
]

= θ∗m+4(ξ, τ) + θ∗∗m+4(ξ, τ), (19III)

where the qm(ξ) and q∗m(ξ) would be calculated from formulae (20).
Pulsating drop of pressure in fluid generates the pulsating flow and oscillating mo-

tion that will be expressed by formula (9III).
The stabilization of pulsating flow in liquid (that is caused by a pulsating drop of

pressure) occurs after a rather long time from fluid oscillating motion start, i.e. when
τ →∞.

Then

U III
2 (ξ, τ)

D/ (M2 − iα)
= 2

∞∑
n=1

(−1)n−1(M2 − iα)µne
−

(
M2+

R2+µ2
n

4

)
τ(

iα−M2 − R2+µ2
n

4

)
(R2 + µ2

n)

[
e

R(1−ξ)
2 + sin

µn(1 + ξ)

2

+e−
R(1+ξ)

2 sin
µn(1− ξ)

2

]
the sum trends to zero and steady pulsating flow will be the calculated by the following
formula:

U III(ξ, τ)

D/ (M2 − iα)
=

e−iατ

shβ

[
shβ − e

R(1−ξ)
2 shβ(1 + ξ)/2 e−

R(1+ξ)
2 shβ(1− ξ)/2

]
.

When in the porous pipe pulsating flow of liquid is stabilized the temperature
change still occurs by pulsating law, as well as by oscillating law, after a rather long
time, i.e. when τ →∞. The values

θ∗∗m+4(ξ, τ) = −1

2

∞∑
n=1

(−1)n−1µne
snτ

Pr(sn + 2iα)

[
q∗m(1)e

PrR(1−ξ)
2 sin µn(1 + ξ)/2



102 Tsutskiridze V., Tsutskiridze M.

+q∗m(−1)e−
PrR(1+ξ)

2 sin µn(1− ξ)/2
]

approaches zero, and the temperature change occurs by the pulsating law and will be
calculated by formula (19III).

If we calculate the friction force in fluid, on the pipe porous walls, we accordingly
obtain the following formula:

F III =
De−iατ

2(M2 − iα)shβ

[ (
Rsh

β(1 + ξ)

2
− βch

β(1 + ξ)

2

)
e

R(1−ξ)
2

+

(
Rsh

β(1− ξ)

2
+ βch

β(1− ξ)

2

)
e

R(1+ξ)
2

]
,

F III
1,2 =

De−iατ

2(M2 − iα)shβ

[
β

(
±e∓R ∓ chβ

)
+ Rshβ

]
,

and for the flow rate and average velocity we will have:

θIII =
2De−iατ

M2 − iα

[
1− β(chβ − chR)

2(M2 − iα)shβ

]
,

U III =
De−iατ

M2 − iα

[
1− β(chβ − chR)

2(M2 − iα)shβ

]
.

When the fluid pulsating flow is caused by the pulsating drop of pressure, the on
porous pipe axis (ξ = 0) the velocity and temperature can not reach the maximum
value, and the friction force is not equal to zero on the axis, as is the case, as it takes
place in the case of a non-porous pipe.

By the above mentioned formulae calculations show that the action of external
homogeneous magnetic field slows down fluid pulsating flow. At increasing of the
magnetic field the fluid flow rate on the planar pipe axis decreases, but at the walls is
increasing, while the value of average velocity in the planar pipe cross section is not
changed.

3. Conclusions

The velocity, temperature, friction and flow rate related to the time has periodic
properties.

Each period starts with a strong fluid flow in front direction after that occurs reverse
flow, and then we have motionless state and repeatedly weak counter flow.

1. When the fluid flow is caused by pulsating drop of pressure or walls pulsating
motion, the increasing of external homogeneous magnetic field and increasing of leakage

Reynolds
(
R =

U∗
0 L

ν

)
number causes the increasing of friction and reduction of flow

rate.
2. When the fluid pulsating flow is caused by the walls pulsating motion and pul-

sating drop of pressure, the increasing of leakage Reynolds number causes deceleration
of fluid pulsating flow stabilization, and the reduction of the leakage Reynolds num-
bers causes the acceleration of fluid pulsating flow stabilization, and the temperature
change in both cases is slightly different from each other.
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3. When the fluid flow is caused by the pulsating drop of pressure, then the increas-
ing of Hartman number causes reducing of temperature in porous pipes. This result
corresponds to obtained in the previous case results according of that the increasing of
Hartman causes the deceleration of fluid pulsating flow.

In general, we can make such conclusion:
a) The stabilization of fluid pulsating flow and temperature change by pulsating

law in non-porous pipes occurs faster than in porous pipes.
b) The impact of external magnetic field on fluid pulsating flow generally causes

increasing of temperature in the planar pipe.
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