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ON THE ACCURACY OF THE DIFFERENCE SCHEME FOR A NONLINEAR
MODEL OF THE DYNAMIC BEAM

Kalichava Z., Peradze J., Tsiklauri Z.

Abstract. The initial boundary value problem is posed for a nonlinear integro-differential
inhomogeneous equation that describes the dynamic behaviour of the beam. To approximate
the solution with respect to a time variable the Crank—Nicolson type difference scheme is
used, the error of which is estimated.
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1. Statement of the problem

Let us consider the beam oscillation problem
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where h is a non-negative and A\ a positive constant, u®, u'(x) and f(x,t) are the given
sufficiently smooth functions and u(x,t) is the unknown function.

Equation (1.1), the general form of which was written by Henriques de Brito [5], describes
the oscillation of a beam. For the case where f(z,t) =0, A =0, equation (1.1) is derived by
Menzala and Zuazua [8] as a limit of one-dimensional Karman model. Numerical methods
for the integro-differential beam equations with the same nonlinearity as that of (1.1) are
investigated in [1, 2, 3, 4, 9, 10].

2. Algorithm

Let us approximate the solution of problem (1.1), (1.2) with respect to the variable x. For
this we use the Galerkin method [6]. The solution is represented as a finite series

E Ui (t s1n

where the coefficients u,;(t) are defined from the following system of nonlinear differential
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To solve problem (2.1), (2.2) we use the difference method. For this, on the time interval

[0,T] we put the grid with step 7 = %, 0 < 7 <1, and nodes t,, = m7, m =0,1,..., M.
On the layer m, e.g. for t = t,,, the approximate value of u;(t;,) is denoted by u™. Let us

n
apply the Crank—Nicolson type scheme
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The approximate solution of (2.3), (2.4) at the node t,, is defined by the sum
- 1L
up'(z) = ; up sin - -

Note that in [7], the approximate solution of system (2.3), (2.4) is obtained by Newton’s
iteration method, the error of which is estimated.

3. Difference scheme error

Under the error of difference scheme (2.3), (2.4) we understand the difference between the
functions ul'(z) and uy(x, t,,)

Aupt(x) = up'(x) — up(z, ty).
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Denote by || - || the norm in the space L2(0, L). Let us formulate the main result.
Theorem. Suppose that for functions un(t), i =1,2,...,n, the condition

uni(t) € C’4[0,T]
18 fulfilled and the grid step T satisfies the restriction

9 1 _
0<7< 590<1_5>(90+90)’

where ¥p > 1. Then the error of difference scheme (2.3),(2.4) is estimated by the inequality

|Au™(z)|| < CT%, m=2,3,..., M.

The definition formulas of «, 0y, 8y and C are given in the Appendix.

Appendix
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