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1. Introduction

Let f be a 2m-periodic locally integrable function and let
n
a .
Sn(x, f) = 50 + ;ak cos kx + by sin kx

be the particular sums of Fourier series of f with respect to the trigonometric system (see
[2]). If f is a continuous function on [a, b] then

w(d, f) = sup{[f(x1) — f(@2)] : |21 — 22| <6, 21,22 € [a,b]}

is called the modulus of continuity of f. For a modulus of continuity w denote by H,[a, b] the
class of functions f with property |f(x)— f(2')| < w (Jz — 2'|) ,x, 2’ € [a,b]. N. P. Korneichuk
[3] proved the statement, which in the sequel was named as Korneichuk-Stechkin lemma. In
particular N. P. Korneichuk received the estimation of the following value

b
£ sup | / () dt| (1.1)

f€HL[a,b

where 9 is an integrable function with the average mean 0 on [a,b]. In addition, sign of v
on (a,c) and (¢, b), a < ¢ < b, maintains almost everywhere (in this case we write 1) € V¢,).
The estimation of (1.1) for a convex modulus of continuity w is exact and explicitly is givén.
In this work we use Lemma Korneichuk-Stechkin in the following form.

Lemma 1.1 (Korneichuk-Stechkin) Let w be any modulus of continuity, (t) € V;,

c= 2 and (t) = —p(2c — t), then

c b
(1) S/W(t)lw(?(c—t)) dt:/lw(t)w@(t—C)) dt. (1.2)

If modulus of continuity w is convex, then the equality in (1.2) is achieved for the function
from H,la,b] like K £+ fi(x), where K is a constant and

—%w(2(c—m)),l’ € [a,c],
fi(z) =

sw(2(c—2)),z € [c,b].
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Based on the above Korneichuk-Stechkin lemma, A. I. Stepanets proved many statements.
We present one of them.

Proposition 1.2 (Stepanets) For any w modulus of continuity we have an asymptotic
inequality

b
2 2t
sup |ap| = sup |b,| < = /w () sin(t) dt| . (1.3)
feH, feH, ™ n
a

In the case when w is a convex continuous function (1.3) becomes the equality.
In 1974 Taberski [4] considered the following quantities:

l

l
kmt 1 kmt
afk:l/f(t)cos;rdt, bfc:l/f(t)sin;rdt,
i

-l

n
ao .
Sz, f) = 3 + Z al cos kx + bl sin kz,
k=1
where f is a locally integrable function on = € (—00,00), [ > 0, and n = 1,2, 3, ... . The last
sum can be represented by Dirichlets integrals as follows

l

Si(e. ) =7 / £(u) DL (u — ) du,

-l

where .
1 krt  sin(2n + 1)wt/21
DL(t) = = L

nlt) =35+ 2% 9 sint/2l

If f is a locally integrable periodic function with period 27 then the last equality for [ = 7
coincides with the partial sums of the trigonometric Fourier series.

2. An asymptotic estimation for generalized Fourier coefficients

Definition 2.1 Let f be an uniform continuous function on R. We say f € H,, if for any
t1,t9 € R
[f(t1) = Ft2)] < w(lty —t2])

where w is a modulus of continuity.
Theorem 2.2 For any modulus of continuity w = w(t) we have:

2 21
sup |a,| < /sintw <t> dt. (2.1)
feHw T 9 ™

Besides, if w is bounded then

%
2 2 1
sup |by| < — /sintw <lt> dt+ O <> . (2.2)
FEH., ™) ™m n



On the Asymptotic Estimations for Generalized Fourier Coefficients 61

In the case where w is a convex continuous function, inequalities (2.1) and (2.2) become equal-
ties.

Proof. Let
l

/f(t) cos nTﬂtdt .

1

feHy, feH

The function f can be represented as a sum of an even and odd functions: f(x) = fi(z)+ fa(x)
where fi(z) = L&D g () = JOZSCD 1p p(2) € H,, then fi(z) € H, and fo(z) € H,.
If we take into account that al (f2) = 0, we get

l

/f(t) cos ndet =€,
0

sup |a,| = sup
feH, fE€Hu,r

~| DN

where H,,, is a subset of H,, which contains only even functions. We have

(i+1 %
2 / 2 '« o)
- sup f(t) cos —dt = -
l Zz;feer 4 ! z; l
For thg estimations of e,fi)l we use Lemma 1.1 in the case ¢ (t) = cos "Tm a; = % , b = (itll)l,
¢ = (215;1” . (t) = =1 (2¢; — t). Indeed,
21+ 1)1 t
-1 (2¢; — t) = — cos [n;T (2(2;;1) — t>] = CO0S %
Thus,
(2i+1) 5=
) nmt 20+ 1
enZJ < / COST <2 ( o -t dt

L 0
2n
Therefore,
: :
2 | 2t 2 2t
GLS* /smtw (> dt:/smtw () dt
[ “~nrw nmw nmw
=00 0
Thus,
2 ; 21t
sup |al| =€l <= /sintw <) dt
FeH, T nmw
0
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Now let us show that in the case of a convex modulus of continuity, the last inequality
can be replaced by the equality. For each fixed ¢ consider the following function on [

—3w 2 (B =) v e (550

o (z) = A o
3w (2 (x = %5H)) o e (2550 S5

It easy to see that

For the first term we have

l
P
1 nm 21 +1
“w(2 il
/Qw(t)cos 7 (t—i— 5 l)dt
0

Hence,

= /;w (2t) (cos [g (2i+1) — nTﬂt} — o8 [g (204+1) + nlltD dt
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i.e.

Let f*(a) = (~1)

positive, for each i = 0, .

Similarly as we derived for al,,

w (2t) sin —tdt

o\

L
/ (2t) smTtsm— (2 4+ 1) dt| =
0

B}

ngoi( ), where z € [%£ £l
,n—1. So

INIE]

n—1 2
2 2 2 2
= ,L /w <lt> sintdt = — /sintw (lt> dt
l ; n T nmw
0 0

and f* (x) € H,. Therefore, for a convex modulus of continuity w

1|-2 [ (%)

feH,
Now consider the coefficients bl,. We have
l
1 t
sup |bl| = sup = /f(t) sin gt
feH. rers b)) !

we can write:

t d
s / £ @ysin ™t Y sup (1(7),
fEHu,odd

fEHuJ,odd

JeH,

where H,, ,qq is a subset of H, which contains only odd functions. Let

sln"“t te [2n7l ﬁ],

Thus,
l

(2.3)
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l
2 t 2 t
l/ {ysin "t 12 / 7 (tysin "M
0

1(2n—1)
2n

Since f is an odd function and w(t) is bounded, we can estimate the last two terms as follows:

0
€
2 f 1 (1 1
<= t) — dt<-wl—)=0(=
<t furo-soles e (5)=0(5)
0
and
l
2 .
7 f (t) sin —dt
1(2n—1)
2n
l
2 1
<t [ rw-rolas wn=o0(-
1(2n—1)
2n
Thus,
) l
=71 [10s@aio(;)
0
Therefore,
) !
sup |I(f)|= sup /f dt—i—O( >
JF€Hy 0dd J€Hy 0dd ! 9 n
y =2 (2i+3) 5 ,
<= sup / f (t)sin —dt +O< >
l i= OfEHuJ odd n
2i+1) 2n
Let’s define
(2i+3) 2
i t
ui)l = sup / ft smﬂdt
’ fEHw odd
21—|—1)2n
it = 0,...,n — 1. For the estimations of ug’) we use Lemma 1.1 in the case ¢ () = sin 27
, —(21+1)2n,bi:(21+3)2n, ¢ =@+t i=0.,n-2 ¢() =—1(2—1).
Indeed,
t t
—(2¢; — t) = —sin [QW (i+1) - "” = sin”T”.
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Therefore,

So we have:

Thus,

Therefore,

Let

for:=0,...,

(i+1)L
) < nt) (2 (1)
i < / sin ; w< ((Z+ )n dt
(2i+1) -
(i+1) L
/ smnT w<2<(i+1)l ))dt
(2i+1) 5=

n—2

0

(21+3)

sup / f(t)sin —dt +O< >
l i=0 feHw odd l

2i+1) 5

3
< <1—1>2/Sintw<21t>dt—|—0< >
n)w nmw n
0

(2i+3) 5.

/

21—1—1) 5

3
< 2/sintw<2lt> dt+O< )
T nm n
0

—1u (2x), z € [0, ﬁ] ,

—yw (2(5H =), we [P 5],

@ (2(x = 5H)) @ e [5HL258]

[ Jw2(—2),z€e[l-,1],

n — 2. It easy to see that

3
l 20t
1#1 x) sin —dt = /sintw () dt.
nm nm
0
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Let f* (z) = (—1)" ' () , where z € [26EL] 20437) 5 = 0,..,n—2. f*(z)sin 7% is positive,

’ 2n

fori=0,..,n—2and f*(z) € H,. Hence, by definition of function s(¢) (see (2.3))

l
2 [,
=2 [ rwswaro(2)
0
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