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1. Statement of the problem, basic notation and formulations of the
basic results

Let [a, b] ⊂ R be a finite and closed interval non-degenerate in the point.
Consider the modified initial problem for linear system of generalized ordinary differential

equations with singularities

dx = dA(t) · x + df(t) for t ∈ [a, b[ (1.1)

lim
t→b−

(Φ−1(t) x(t)) = 0, (1.2)

where A = (aik)n
i,k=1 is an n×n-matrix valued function and f = (fk)n

k=1 is an n-vector valued
function, both of them have a locally bounded variation on [a, b[; Φ = diag(ϕ1, . . . , ϕn) is a
diagonal n × n-matrix valued function is defined on [a, b[ and having an inverse Φ−1(t) for
each t ∈ [a, b[.

Along with system (1.1) consider the perturbed singular systems

dx = dAm(t) · x + dfm(t) for t ∈ [a, b[ (1.3)

(m = 1, 2, . . . ) under the conditions (1.2), where Am is an n× n-matrix valued function and
fm is an n-vector valued function, both of them have a locally bounded variation on [a, b[.

We are interested to established the necessary and sufficient conditions whether the unique
solvability of problem (1.1), (1.2) guarantees the unique solvability of problem (1.3), (1.2) and
nearness of its solution in the definite sense if matrix-functions Am and A and vector-functions
fm and f are nearly among themselves.

We assume

A(a) = Am(a) = On×n and f(a) = fm(a) = 0n

(m = 1, 2, . . . ) without loss of generality.
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The same and related problems for ordinary differential systems with singularities

dx

dt
= P (t) x + q(t) for t ∈ [a, b], (1.4)

where P ∈ Lloc([a, b[, Rn×n), q ∈ Lloc([a, b[, Rn), have been investigated in [11], [14] (see also
references therein).

The singularity of system (1.4) is considered in the sense that the matrix P and vector
q functions, in general, are not integrable at the point b. In general, the solution of problem
(1.4), (1.2) is not continuous at the point b and, therefore, it can not be a solution in the
classical sense. But its restriction on every interval from [a, b[ is solution of system (1.4). In
connection with this we remind the following example from [14].

Let α > 0 and ε ∈]0, α[. Then x(t) = |t|ε−α sgn t is the unique solution of the problem

dx

dt
= −α x

t
+ ε|t|ε−1−α, lim

t→0
(tαx(t)) = 0.

The function x is not solution of the equation on the set I = R, however x is a solution to
the above equation only on R \ {0}.

The singularity of system (1.1) consists in the fact that both A and f need not have
bounded variations on any interval containing the point b.

The solvability question of generalized differential problem (1.1), (1.2) has been investi-
gated in [9]. The well-posedness of problem (1.1), (1.2) with singularity has been considered in
[10]. To our knowledge, the necessary and sufficient conditions for well-posedness of problem
(1.1), (1.2) with singularity has not been investigated up to now.

Some singular boundary problems for generalized differential system (1.1) are investigated
in [3] – [5].

To a considerable extent, the interest to the theory of generalized ordinary differential
equations has also been stimulated by the fact that this theory enables one to investigate
ordinary differential, impulsive and difference equations from a unified point of view (see
[1]–[7],[12], [13], [15], [16] and references therein).

In the paper, we give necessary and sufficient conditions for the so called strongly Φ-well-
posedness of problem (1.1), (1.2).

Throughout the paper we use the following notation and definitions.
R =]−∞,+∞[.
Rn×m is the space of all real n × m matrices X = (xik)

n,m
i,k=1 with the norm ‖X‖ =

max
k=1,...,m

n∑
i=1

|xik|.

If X = (xik)
n,m
i,k=1 ∈ Rn×m, then |X| = (|xik|)n,m

i,k=1,

[X]− =
1
2
(|X| −X), [X]+ =

1
2
(|X|+ X).

Rn = Rn×1 is the space of all column n-vectors x = (xi)n
i=1.

On×m (or O) is the zero n×m-matrix, 0n (or 0) is the zero n-vector.
In is identity n× n-matrix.
If X ∈ Rn×n, then X−1, detX and r(X) are, respectively, the matrix inverse to X, the

determinant of X and the spectral radius of X.
The inequalities between the matrices are understood componentwise.
A matrix-function is said to be continuous, integrable, nondecreasing, etc., if each of its

components is such.
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If X : R → Rn×m is a matrix-function, then
b
V
a
(X) is the sum of total variations on [a, b]

of its components xik (i = 1, . . . , n; k = 1, . . . ,m);
b−
V
a

(X) = lim
t→b−

t
V
a
(X); if a > b, then we

assume
b
V
a
(X) = −

a
V
b
(X);

X(t−) and X(t+) are, respectively, the left and the right limits of the matrix-function
X : [a, b] → Rn×m at the point t (X(a−) = X(a), X(b+) = X(b)); d1X(t) = X(t) −
X(t−), d2X(t) = X(t+)−X(t);

BV([c, d], Rn×m) is the set of all bounded variation matrix-functions X : [c, d] → Rn×m

(i.e., such that
d
V
c
(X) < ∞).

Let I = [a, b[.
BVloc(I;D), where D ⊂ Rn×m, is the set of all X : I → D for which the restriction on

[a, c] belong to BV([a, c];D) for every c ∈ I;
L([a, c]; Rn×m) is the set of all integrable matrix-functions on [a, c].
Lloc(I; Rn×m) is the set of all matrix-functions X : I → D for which the restriction on

[a, c] belong to L([a, c]; Rn×m) for every a, c ∈ I.
If X = (xik)

n,m
i,k=1 ∈ BVloc([a, b[; Rn×m), then V (X)(t) = (v(xik)(t))

n,m
i,k=1, where v(xik)(t) ≡

t
V
a
(xik).

[X(t)]v− ≡
1
2
(V (X)(t)−X(t)), [X(t)]v+ ≡ 1

2
(V (X)(t) + X(t)).

s1, s2, sc : BV loc([a, b[; R) → BV loc([a, b[; R) are the operators defined, respectively, by

s1(x)(a) = s2(x)(a) = 0, sc(x)(a) = x(a);

s1(x)(t) = s1(x)(a) +
∑

a<τ≤t

d1x(τ), s2(x)(t) = s2(x)(a) +
∑

a≤τ<t

d2x(τ)

sc(x)(t) = sc(x)(a) + x(t)− x(a)−
2∑

j=1

sj(x)(t) for a < t < b.

If g : [a, b] → R is a nondecreasing function and x : [a, b] → R, then∫ t

s
x(τ) dg(τ) =

∫
]s,t[

x(τ) dsc(g)(τ) +
∑

s<τ≤t

x(τ)d1g(τ)

+
∑

s≤τ<t

x(τ)d2g(τ) for s < t; s, t ∈ [a, b],

where
∫
]s,t[ x(τ) dsc(g)(τ) is the Lebesgue–Stieltjes integral over the open interval ]s, t[ with

respect to the measure corresponding to the function sc(g). So
∫ t
s x(τ) dg(τ) is the Kurzweil

integral ([15], [16]).
If a = b, then

∫ b
a x(t) dg(t) = 0; if a > b, then

∫ b
a x(t) dg(t) = −

∫ a
b x(t) dg(t).

Moreover, we put ∫ t−

s
x(τ) dg(τ) = lim

δ→0+

∫ t−δ

s
x(τ) dg(τ).



On the Criterion of the Well-Posedness of the Modified Initial Problem for ... 23

If g(t) ≡ g1(t)− g2(t), where g1 and g2 are nondecreasing functions, then∫ t

a
x(τ) dg(τ) ≡

∫ t

a
x(τ) dg1(τ)−

∫ t

a
x(τ) dg2(τ).

If G = (gik)
l,n
i,k=1 : [a, b] → Rl×n is a bounded variation matrix-function and X =

(xkj)
n,m
k,j=1 : [a, b] → Rn×m, then∫ t

a
dG(τ) ·X(τ) ≡

( n∑
k=1

∫ t

a
xkj(τ)dgik(τ)

)l,m

i,j=1

,

Sj(G)(t) ≡
(
sj(gik)(t)

)l,n
i,k=1

(j = 1, 2), Sc(G)(t) ≡
(
sc(gik)(t)

)l,n
i,k=1

.

Somewhere we use the following designation
∫ ·
a dG(s)·X(s) for the integral

∫ t
a dG(s)·X(s)

as the vector-function to variable t.
We introduce the operators A(X, Y ), B(X, Y ) and I(X, Y ) in the following way:
a) if X ∈ BVloc(I; Rn×n), det(In + (−1)jdjX(t)) 6= 0 for t ∈ I (j = 1, 2), and Y ∈

BVloc(I; Rn×m), then

A(X, Y )(a) = On×m,

A(X, Y )(t) ≡ Y (t)− Y (a) +
∑

a<τ≤t

d1X(τ) · (In − d1X(τ))−1 d1Y (τ)

−
∑

a≤τ<t

d2X(τ) · (In + d2X(τ))−1 d2Y (τ);

b) if X ∈ BVloc(I; Rn×n) and Y : I → Rn×m, then

B(X, Y )(a) = On×m,

B(X, Y )(t) ≡ X(t)Y (t)−X(a)Y (a)−
∫ t

a
dX(τ) · Y (τ);

c) if X ∈ BVloc(I; Rn×n), det(X(t)) 6= 0, and Y : I → Rn×n, then

I(X, Y )(a) = On×m,

I(X, Y )(t) ≡
∫ t

a
d
(
X(τ) + B(X, Y )(τ)

)
·X−1(τ).

The operators B(X, Y ) and I(X, Y ) have the following properties (see, Lemma 1.2.1 from
[6]):

B(X,B(Y, Z))(t) ≡ B(XY, Z)(t), (1.5)

B
(

X,

∫ ·

a
dY (s) · Z(s)

)
≡
∫ t

a
B(X, Y )(s) · Z(s), (1.6)

I(X, I(Y, Z))(t) ≡ I(XY,Z)(t). (1.7)

In addition, let Vj(Φ, A∗, ·) : BVloc(I; Rn×l) → R (j = 1, 2) be operators defined, respec-
tively, by

V1(Φ, A∗, F )(t, τ) =
∫ τ

t
Φ−1(s) d V(A(A∗, F ))(s) · Φ(s) and

V2(Φ, A∗, F )(t, τ) =
∫ τ

t
Φ−1(s) d V(A(A∗, A∗))(s) · |F (s)| for a ≤ t < τ < b.
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Here the use will be made of the following formulas from [16]:∫ b

a
f(t) dg(t) =

∫ b

a
f(t) dg(t−) + f(b)d1g(b) =

∫ b

a
f(t) dg(t+) + f(a)d2g(a), (1.8)∫ b

a
f(t) d

(∫ t

a
h(s)dg(s)

)
=
∫ b

a
f(t)h(t)dg(t) (substitution formula);∫ b

a
f(t)dsj(g)(t) =

∑
a≤t≤b

f(t)djg(t) (j = 1, 2), (1.9)

∫ b

a
f(t)dg(t) +

∫ b

a
f(t)dg(t) = f(b)g(b)− f(a)g(a) +

∑
a<t≤b

d1f(t) · d1g(t)

−
∑

a≤t<b

d2f(t) · d2g(t) (integration-by-parts formula). (1.10)

where f, g and h ∈ BV([a, b], R). Further, we use these formulas without special indication.
A vector-function x : I → Rn is said to be a solution of system (1.1) if x ∈ BVloc(I, Rn)

and

x(t) = x(a) +
∫ t

a
dA(τ) · x(τ) + f(t)− f(a) for t ∈ I.

We assume that

det(In + (−1)jdjA(t)) 6= 0 for t ∈ I (j = 1, 2).

The above inequalities guarantee the unique solvability of the Cauchy problem for the
corresponding nonsingular systems (see, [15], [16] and the references therein), i.e., for the case
when A ∈ BV([a, c]; Rn×n) and f ∈ BV([a, c]; Rn) for every c ∈ I.

Let a matrix-function A∗ = (a∗ik)n
i,k=1 ∈ BVloc(I; Rn×n) be such that

det(In + (−1)jdjA∗(t)) 6= 0 for t ∈ I (j = 1, 2). (1.11)

Then a matrix-function C∗ : I × I → Rn×n is said to be the Cauchy matrix of the
homogeneous system

dx = dA∗(t) · x, (1.12)

if, for each interval J ⊂ I and τ ∈ J , the restriction of the matrix-function C∗(., τ) : I → Rn×n

on J is the fundamental matrix of system (1.12), satisfying the condition

C∗(τ, τ) = In.

Therefore, C∗ is the Cauchy matrix of system (1.12) if and only if the restriction of C∗ on
J × J is the Cauchy matrix of the system in the regular case. Let X∗(τ) ≡ C∗(., τ).

Definition 1.1. Problem (1.1), (1.2) is said to be weakly Φ-well-posed with respect to
the matrix-function A∗ if it has the unique solution x0 and for every sequences of matrix-and
vector-functions Am and fm (m = 1, 2, . . . ) such that

det(In + (−1)jdjAm(t)) 6= 0 for t ∈ I (j = 1, 2), (1.13)
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for each sufficiently large m, and conditions

lim
m→+∞

‖V1(Φ, A∗, Am −A)(t, b−)‖ = 0, (1.14)

lim
m→+∞

‖V2(Φ, A∗, fm − f)(t, b−)‖ = 0 (1.15)

and

lim
m→+∞

‖Φ−1(t)(fm(t)− f(t))− Φ−1(b−)(fm(b−)− f(b−))‖ = 0 (1.16)

hold uniformly on I, problem (1.3),(1.2) has the unique solution xm for each sufficiently large
m and the condition

lim
m→+∞

‖Φ−1(t) (xm(t)− x0(t))‖ = 0 (1.17)

holds uniformly on I.
Definition 1.2. Problem (1.1), (1.2) is said to be strongly Φ-well-posed with respect to

the matrix-function A∗ if it has the unique solution x0 and for every sequences of matrix-
and vector-functions Am and fm (m = 1, 2, . . . ) such that condition (1.13) holds for every
sufficiently large m and the conditions (1.15) and

lim
m→+∞

‖V1(Φ, A∗, fm − f)(t, b−)‖ = 0

hold uniformly on I, problem (1.3),(1.2) has the unique solution xm for each sufficiently large
m and condition (1.17) holds uniformly on I.

Remark 1.1. By Lemma 2.3 (see, below) if problem (1.1), (1.2) is strongly well-posed,
then it is weakly well-posed, as well, because

‖V1(Φ, A∗, fm − f)(t, τ)‖ ≤ ‖Φ−1(t)(fm(t)− f(t))− Φ−1(τ)(fm(τ)− f(τ))‖
+‖V2(Φ, A∗, fm − f)(t, τ)‖ for a ≤ t < τ < b.

Definition 1.3. We say that the sequence (Am, fm) (m = 1, 2, . . . ) belongs to the set
SA∗(A, f ; Φ, b), i.e., (

(Am, fm)
)+∞
m=1

∈ SA∗(A, f ; Φ), (1.18)

if problem (1.3),(1.2) has the unique solution xm for each sufficiently large m and condition
(1.17) holds uniformly on I.

Let I(δ) = [b− δ, b[ for every δ > 0.
Theorem 1.1. Let there exist a matrix-function A∗ ∈ BVloc([a, b[, Rn×n) and constant

matrices B0 and B from Rn×n
+ such that conditions (1.11) and

r(B) < 1 (1.19)

hold, and the estimates

|C∗(t, τ)| ≤ Φ(t) B0 Φ−1(τ) for b− δ ≤ t ≤ τ < b (1.20)

and ∣∣∣∣∣
∫ b−

t
|C∗(t, s)|d V(A(A∗, A−A∗))(s) · Φ(s)

∣∣∣∣∣ ≤ H(t) B for t ∈ I(δ) (1.21)
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fulfilled for some δ > 0, where C∗ is the Cauchy matrix of system (1.12). Let, moreover,

lim
t→b−

∥∥∥∥∫ b−

t
Φ−1(t) C∗(t, τ)dA(A∗, f)(τ)

∥∥∥∥ = 0. (1.22)

Then problem (1.1), (1.2) is weakly Φ-well-posed with respect to the matrix-function A∗.
Theorem 1.2. Let there exist a constant matrix B = (bik)n

i,k=1 ∈ Rn×n
+ such that condi-

tions (1.19) and

[(−1)jdjaii(t)]+ > −1 for t ∈ I (j = 1, 2; i = 1, . . . , n) (1.23)

hold, and the estimates

ci(t, τ) ≤ b0
hi(t)
hi(τ)

for b− δ ≤ t ≤ τ < b (i = 1, . . . , n); (1.24)∣∣∣∣ ∫ b−

t
ci(t, τ)hi(τ)d[aii(τ)]v−

∣∣∣∣ ≤ bii hi(t) for t ∈ I(δ) (i = 1, . . . , n) (1.25)

and∣∣∣∣ ∫ b−

t
ci(t, τ)hk(τ)d V(A(a∗ii, aik))(τ)

∣∣∣∣ ≤ bik hi(t) for t ∈ I(δ) (i 6= k; i, k = 1, . . . , n)

are fulfilled for some b0 > 0 and δ > 0. Let, moreover,

lim
t→b−

∫ b−

t

ci(t, τ)
hi(t)

d V(A(a∗ii, fi))(τ) = 0 (i = 1, . . . , n), (1.26)

where a∗ii(t) ≡ [aii(t)]v+ (i = 1, . . . , n), and ci is the Cauchy function of the equation

dx = x da∗ii(t).

Then problem (1.1), (1.2) is weakly Φ-well-posed with respect to the matrix-function A∗(t) ≡
diag(a∗11(t), . . . , a∗nn(t)).

Remark 1.2. The Cauchy functions ci(t, τ), ci(t, t) = 1 (i = 1, . . . , n), mentioned in the
theorem, have the form (see, [12])

ci(t, τ) =



exp(sc(a0ii)(t)− sc(a0ii)(τ))
∏

τ<s≤t
(1− d1a0ii(s))−1×∏

τ≤s<t
(1 + d2a0ii(s)) for t > τ,

exp(sc(a0ii(t)− sc(a0ii(τ)))
∏

t<s≤τ
(1− d1a0ii(s))×∏

t≤s<τ
(1 + d2a0ii(s))−1 for t < τ.

for t, τ ∈ I.
Theorem 1.3. Let conditions of Theorem (1.1) be fulfilled and let there exist a sequence

of the non-degenerated matrix-functions Hm ∈ BVloc([a, b[; Rn×n) (m = 1, 2, . . . ) such that

lim
m→+∞

‖Φ−1(t)H−1
m (t)Φ(t)− In‖ = 0, (1.27)

lim
m→+∞

‖V1(Φ, A∗, A
∗
m −A)(t, b−)‖ = 0, (1.28)
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lim
m→+∞

‖V2(Φ, A∗, f
∗
m − f)(t, b−)‖ = 0 (1.29)

and

lim
m→+∞

‖Φ−1(t)(f∗m(t)− f(t))− Φ−1(b−)(f∗m(b−)− f(b−))‖ = 0 (1.30)

hold uniformly on I, where A∗
m(t) ≡ I(Hm, Am)(t) and f∗m(t) ≡ B(Hm, fm)(t). Then the

inclusion (
(A∗

m, f∗m)
)+∞
m=1

∈ SA∗(A, f ; Φ) (1.31)

holds.
Theorem 1.3 has the following form if we assume that Hm(t) ≡ In (m = 1, 2, . . . ) therein.
Corollary 1.1. Let conditions of Theorem 1.1 be fulfilled and conditions (1.14)–(1.16)

hold uniformly on I. Then inclusion (1.18) holds.
Theorem 1.4. Let conditions of Theorem 1.1 be fulfilled and let, moreover,

‖B0‖ ‖(In −B)−1‖ < 1 (1.32)

and

lim sup
t→b−

∥∥∥∥Φ−1(t)
∫ b−

t
dV (A)(s) · Φ(s)

∥∥∥∥ < +∞. (1.33)

Then inclusion (1.18) holds if and only if there exists the sequence of matrix functions Hm ∈
BVloc(I; Rn×n) (m = 1, 2, . . . ) such that

lim sup
t→b−

∥∥∥∥∫ b−

t
Φ−1(s) d V(A(A∗, A∗))(s) · Φ(s)

∥∥∥∥ < +∞ for a ≤ t < τ < b,

lim sup
t→b−

(
‖Φ−1(t)(f∗m(t)− f(t))‖

+
∥∥∥∥Φ−1(t)

∫ b−

t
d V(A)(s) · |f∗m(s)− f(s)|

∥∥∥∥
)

= 0 (1.34)

and the conditions (1.27)–(1.30) hold uniformly on I, where the matrix-and vector functions
A∗

m and f∗m (m = 1, 2, . . . ) are defined as in Theorem 1.3.
Theorem 1.4′. Let conditions of Theorem 1.4 be fulfilled. Then inclusion (1.18) holds

if and only if the conditions (1.29), (1.30) and

lim
m→+∞

‖Φ−1(t)(Xm(t)−X0(t))‖ = 0

hold uniformly on I, where X0 and Xm are the fundamental matrices of systems (1.1) and
(1.3), respectively, and f∗m(t) ≡ B(X0X

−1
m , fm)(t) (m = 1, 2, . . . ).

Remark 1.3. As to the forms of the fundamental matrixes X0 and Xm (m = 1, 2, . . . ),
one can find, for example, in [6], [7], [13].

Remark 1.4. In Theorem 1.4, condition (1.32) is essential and it cannot be neglected,
i.e., if the condition is violated, then the conclusion of the the theorem is not true, in general.
Below we present an example.
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Let I = [0, 1], n = 1, b = 1, B = 0, B0 = 1, Φ(t) ≡ 1− t;

A(t) = Am(t) = A∗(t) ≡ ln(1− t) (m = 1, 2, . . . );

f(t) ≡ 0, fm(t) ≡ − 1
m

∫ t

0
cos

ln(1− t)
m

(m = 1, 2, . . . ).

Then

C∗(t, τ) ≡ 1− t

1− τ
, x0(t) ≡ 0, xm(t) ≡ (1− t) sin

ln(1− t)
m

(m = 1, 2, . . . ).

So, all conditions of Theorem 1.4 are fulfilled, except of (1.32), but condition (1.17) is not
fulfilled uniformly on I.

Remark 1.5. The results analogous to Theorems 1.1-1.4′, and Corollary 1.1 are proved
in [10] for the strongly well-posed case, as well. But, in the circumscribed paper, the necessary
and sufficient conditions for well-posed in the strongly case are not considered.

Remark 1.6. Some corollaries with effective conditions of solvability of problem (1.1), (1.2)
one can find in [9]. Moreover, in some additional conditions the solution of the problem, where
Φ(t) ≡ diag((b− t)µ1 , . . . , (b− t)µn), belongs to BV([a, b], Rn) (see, for example [9], as well).

2. Auxiliary propositions

We use new type of the Cauchy formula, differing from earlier one [16], for the represen-
tation of the solutions of the generalized systems and the lemma on the a priori estimate of
the solutions of system (1.1) (Lemmas 2.1, 2.2). These propositions are proved in [9].

Lemma 2.1 Let A∗ ∈ BVloc(I, Rn×n) be such that

det(In + (−1)jdjA∗(t)) 6= 0 for t ∈ I (j = 1, 2),

and f∗ ∈ BVloc(I, Rn). Then every solution x ∈ BVloc(I, Rn) of the system

dx = dA∗(t) · x + df∗(t) for t ∈ I (2.1)

admits the representation

x(t) = C∗(t, s)x(s) +
∫ t

s
C∗(t, τ)dA(A∗, f∗)(τ) for s, t ∈ I, (2.2)

where C∗ is the Cauchy matrix of system (2.1).
Lemma 2.2 Let the matrix-function A∗ ∈ BVloc(I, Rn×n) and constant matrices B0 and

B from Rn×n
+ be such that conditions (1.11), (1.19), (1.20) and (1.21) hold for some δ > 0,

where C∗ is the Cauchy matrix of system (1.12). Let, moreover,

γ(t) = sup

{∥∥∥∥∥
∫ b−

s
Φ−1(s)C∗(s, τ)dA(A∗, f)(τ)

∥∥∥∥∥ : t ≤ s < b

}
< +∞ for t ∈ I(δ).

Then each solution x ∈ BVloc(J, Rn) of system (1.1) admits the estimate

‖Φ−1(t)x(t)‖ ≤ ρ
(
‖B0‖ · ‖Φ−1(s0)x(s0)‖+ γ(t)

)
for t ∈ J, t ≤ s < b,

where ρ = ‖(In −B)−1‖, and J ⊂ I(δ) and s0 ∈ J are an arbitrary interval and point.
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Lemma 2.3 Let a matrix-function B ∈ BV([a, b], Rn×n) be such that

det(In + (−1)jdjB(t)) 6= 0 for t ∈ [a, b] (j = 1, 2)

and let X (X(a) = In) be the fundamental matrix of the system

dX = dB(t) ·X for t ∈ [a, b].

Then ∫ b

a
X−1(s)dA(B,F ) = X−1(s) F (s)

∣∣∣∣b
a

+
∫ b

a
X−1(s)dA(B,B)(s) · F (s) (2.3)

for every F ∈ BV([a, b], Rn×m).
Proof. Let

D1(t) ≡ d1B(t) (In − d1B(t))−1, D2(t) ≡ d2B(t) (In + d2B(t))−1

Due to definition of the operator A and integration-by-parts formula (1.10) we conclude

G ≡
∫ b

a
X−1(s)dA(B,F )(s) =

∫ b

a
X−1(s)dF (s)

+
∫ b

a
X−1(s)d

( ∑
a<τ≤s

D1(τ) d1F (τ)−
∑

a≤τ<s

D2(τ) d2F (τ)
)

= X−1(s) F (s)
∣∣∣∣b
a

+
∫ b

a
dX−1(s) · F (s) +

∑
a<s≤b

d1X
−1(s) · d1F (s)−

∑
a≤s<b

d2X
−1(s) · d2F (s)

+
∫ b

a
X−1(s)d

( ∑
a<τ≤s

D1(τ) d1F (τ)−
∑

a≤τ<s

D2(τ) d2F (τ)
)

.

Using now the equalities

dX−1(t) ≡ −X−1(t)dA(B,B)(t),

djX
−1(t) ≡ −X−1(t)djA(B,B)(t) (j = 1, 2)

and

djA(B,B)(t) ≡ djB(t)
(
In + (−1)jdjB(t)

)−1 (j = 1, 2) (2.4)

([6], see Proposition 1.1.4) we find

G ≡
∫ b

a
X−1(s)dA(B,F )(s) =

∫ b

a
X−1(s)dF (s)

+
∫ b

a
X−1(s)d

( ∑
a<τ≤s

D1(τ) d1F (τ)−
∑

a≤τ<s

D2(τ) d2F (τ)
)

= X−1(s) F (s)
∣∣∣∣b
a

+
∫ b

a
X−1(s)dA(B,B)(s) · F (s)

−
∑

a<s≤b

X−1(s) D1(s) d1F (s) +
∑

a≤s<b

X−1(s) D2(s) d2F (s)
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+
∫ b

a
X−1(s)d

( ∑
a<τ≤s

D1(τ) d1F (τ)−
∑

a≤τ<s

D2(τ) d2F (τ)
)

.

So that, thanks to (1.9) equality (2.3) is valid.

3. Proofs of results

Proof of Theorem 1.1. By conditions (1.19) – (1.22) problem (1.1), (1.2) has the unique
solution x ([9], see Theorem 1.1). On the other hand, because I is the finite interval there
exists ρ ∈ Rn

+ such that

|x(t)| ≤ Φ(t)ρ for t ∈ I. (3.1)

It is clear that

ρ1 = sup{ρ1(δ) : δ ∈]0, b− a]} < +∞, (3.2)

where

ρ1(δ) = ‖V1(Φ, A∗, A−A∗)(a, b− δ)‖.

Let B1 be the n × n-matrix whose every element equals to 1 and let B̃ = B + η0B0 B1.
Then due to (1.19) there exists η0 ∈]0, 1[ such that

r(B̃) < 1. (3.3)

Let ε > 0 be an arbitrary fixed number. Then, taking into account (3.2), we get that
there there exists η ∈]0, η0[ such that

ρ0

[
1 + (1− η)−1‖B0‖ exp

(
(1− η)−1(η + ρ1)‖B0‖

)]
< ε, (3.4)

where
ρ0 = η (1 + ‖ρ‖)(1 + ‖(In − B̃)−1‖ ‖B0‖).

Let Am ∈ BVloc(I; Rn×n) and fm ∈ BVloc(I; Rn) (m = 1, 2, . . . ) be an arbitrary matrix-
and vector-functions satisfying conditions (1.13), (1.14) and (1.15). In first, we have to show
that the matrix-and vector-functions Am and fm (m = 1, 2, . . . ) satisfy conditions (1.21) and
(1.22).

By (1.20) and (1.21) we find that, without loss of generality, for every natural m∣∣∣∣∣
∫ τ

t
|C∗(t, s)|d V(A(A∗, Am −A∗))(s) · Φ(s)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ τ

t
|C∗(t, s)|d V(A(A∗, A−A∗))(s) · Φ(s)

∣∣∣∣∣
+

∣∣∣∣∣
∫ τ

t
|C∗(t, s)|d V(A(A∗, Am −A))(s) · Φ(s)

∣∣∣∣∣
≤ Φ(t)B + Φ(t)B0|V1(Φ, A∗, Am −A)(t, τ)|

≤ Φ(t)B̃ for a ≤ t < τ < b.
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Therefore, the matrix-function B̃ satisfies condition (1.21).
In addition, due to (1.14) – (1.16) we can assume without loss of generality that, for every

m > m0,

‖V1(Φ, A∗, Am −A)(t, b−)‖ < η for t ∈ I, (3.5)

and

‖Φ−1(t)(fm(t)− f(t))− Φ−1(b−)(fm(b−)− f(b−))‖
+‖V2(Φ, A∗, fm − f)(t, b−)‖ < η for t ∈ I. (3.6)

Below, we assume that m > m0 is an arbitrary fixed natural number.
Now, using (1.20) and (2.3) we show that∣∣∣∣∣

∫ τ

t
Φ−1(t) C∗(t, s)dA(A∗, fm)(s)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ τ

t
Φ−1(t) C∗(t, s)dA(A∗, f)(s)

∣∣∣∣∣
+ Φ−1(t)

∣∣∣∣∣
∫ τ

t
C∗(t, s)dA(A∗, fm − f)(s)

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

τ
Φ−1(t)C∗(t, s)dA(A∗, f)(s)

∣∣∣∣∣
+ Φ−1(t)

∣∣∣∣∣X∗(t)
∫ t

τ
X−1
∗ (s)dA(A∗, fm − f)(s)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ τ

t
Φ−1(t)C∗(t, s)dA(A∗, f)(s)

∣∣∣∣∣+ B0

∣∣∣∣(Φ−1(s)(fm(s)− f(s))
)∣∣∣τ

t

∣∣∣∣
+ B0|V2(Φ, A∗, fm − f)(t, τ)| for a ≤ t < τ < b.

From this, in view of the conditions (1.15), (1.16) and (1.22) it follows that the vector-function
fm satisfies condition (1.22), as well.

Hence, according to Theorem 1.1 from [9], the last two conditions together with condition
(1.13) guarantee the unique solvability of problem (1.3), (1.2).

Let xm be the solution of problem (1.3), (1.2) and let

z(t) ≡ x(t)− xm(t) and u(t) ≡ ‖Φ−1(t)z(t)‖.

Then z will be a solution of the system

dz = dAm(t) · z + dϕm(t)

under the condition

lim
s0→b−

(Φ−1(s0) z(s0)) = 0,

where

ϕm(t) = gm(t) + f(t)− fm(t), gm(t) =
∫ t

a
d(A(τ)−Am(τ)) · x(τ).
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In view of Lemma 2.2, conditions (3.3) and (3.12) guarantee the estimate

u(t) ≤ ‖(In − B̃)−1‖ γ(t) for t ∈ I(δ), (3.7)

where

γ(t) = sup

{∥∥∥∥∥
∫ b−

s
Φ−1(s)C∗(s, τ)dA(A∗, f∗)(τ)

∥∥∥∥∥ : t ≤ s < b

}
for t ∈ I(δ).

It is not difficult to verify that∫ s0

s
Φ−1(s)C∗(s, τ)dA(A∗, gm)(τ)

=
∫ s0

s
Φ−1(s)C∗(s, τ)dA(A∗, A−Am)(τ) · x(τ) for b− δ ≤ s < s0 < b.

From this we conclude that∣∣∣∣∣
∫ s0

s
Φ−1(s)C∗(s, τ)dA(A∗, f)(τ)

∣∣∣∣∣ =
∣∣∣∣∣
∫ s0

s
Φ−1(s)C∗(s, τ)dA(A∗, gm)(τ)

+
∫ s0

s
Φ−1(s)C∗(s, τ)dA(A∗, f − gm)(τ)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ s0

s
Φ−1(s)|C∗(s, τ)|d V(A(A∗, A−Am))(τ) · |f(τ)− gm(τ)|

∣∣∣∣∣
+ B0

∣∣∣∣(Φ−1(s)(f(s)− gm(s))
)∣∣∣τ

t

∣∣∣∣+ B0|V2(Φ, A∗, fm − f)(t, τ)|

for b− δ ≤ s < s0 < b

and, therefore, due to (1.20), (3.5), (3.6) and (3.7) we find

γ(t) ≤ η (1 + ‖ρ‖)‖B0‖

and

u(t) ≤ η (1 + ‖ρ‖) ‖(In − B̃)−1‖ ‖B0‖ < ρ0 for t ∈ I(δ). (3.8)

Let b− δ > a. Consider the case where t ∈ [a, b− δ].
Due to (3.12) the vector-function z(t) satisfies the system

dz = dA∗(t) · z + d(Am(t)−A∗(t)) · z + dϕm(t).

Therefore, according to Lemma 2.1 (see, (2.2)) we find

Φ−1(t)z(t) = Φ−1(t)C∗(t, b− δ)z(b− δ)

+
∫ b−δ

t
Φ−1(t)C∗(t, τ)dA(A∗, Am −A∗)(τ) · z(τ)

+
∫ b−δ

t
Φ−1(t)C∗(t, τ)dA(A∗, A−Am)(τ) · x(τ)
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+
∫ b−δ

t
Φ−1(t)C∗(t, τ)dA(A∗, f − fm)(τ) for t ∈ [a, b− δ].

Further, using (2.3) we have∥∥∥∥∥
∫ b−δ

t
Φ−1(t)C∗(t, τ)dA(A∗, f − fm)(τ)

∥∥∥∥∥
=

∥∥∥∥∥Φ−1(t)X∗(t)
∫ b−δ

t
X−1
∗ (τ)dA(A∗, f − fm)(τ)

∥∥∥∥∥
=

∥∥∥∥∥Φ−1(t)X∗(t)

{(
X−1
∗ (τ) (f(τ)− fm(τ))

)∣∣∣b−δ

t

+
∫ b−δ

t
X−1
∗ (τ)dA(A∗, A∗) · (f(τ)− fm(τ))

}∥∥∥∥∥
≤

∥∥∥∥∥Φ−1(t)C∗(t, τ) (f(τ)− fm(τ))
)∣∣∣b−δ

t

∥∥∥∥∥
+

∥∥∥∥∥
∫ b−δ

t
Φ−1(t)C∗(t, τ)dA(A∗, A∗) · (f(τ)− fm(τ))

∥∥∥∥∥ for t ∈ [a, b− δ].

From this due to (1.20), if we take consideration that by (1.20) and (3.1)

‖Φ−1(t)z(t)‖ ≤ ‖B0‖‖Φ−1(t) ∗ b− δ‖

+ ‖B0‖

∥∥∥∥∥
∫ b−δ

t
Φ−1(τ) d V(A(A∗, Am −A∗))(τ) · Φ(τ) |Φ−1(τ)z(τ)|

∥∥∥∥∥
+ ‖B0‖

∥∥∥∥∥
∫ b−δ

t
Φ−1(τ)d V(A(A∗, A−Am))(τ) · |x(τ)|

∥∥∥∥∥
+

∥∥∥∥∥
∫ b−δ

t
Φ−1(t)C∗(t, τ)dA(A∗, f − fm)(τ)

∥∥∥∥∥ for t ∈ [a, b− δ],

we conclude

‖Φ−1(t)z(t)‖ ≤ ‖B0‖‖Φ−1(b− δ)z(b− δ)‖

+ ‖B0‖

∥∥∥∥∥
∫ b−δ

t
dWm(τ) · |Φ−1(τ)z(τ)|

∥∥∥∥∥
+ ‖B0‖

∥∥∥∥∥
∫ b−δ

t
Φ−1(τ)d V(A(A∗, A−Am))(τ) · |x(τ)|

∥∥∥∥∥
+ ‖B0‖

∥∥∥Φ−1(τ) (f(τ)− fm(τ))
∣∣∣b−δ

t

∥∥∥
+ ‖B0‖ ‖V2(Φ, A∗, f − fm)(b− δ, t)‖ for t ∈ [a, b− δ],

where

Wm(t) ≡
∫ t

a
Φ−1(τ) d V(A(A∗, Am −A∗))(τ) · Φ(τ).
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Let wm(t) ≡ ‖Wm(t)‖. Due to (3.1), (3.5), (3.6) and (3.8), we find

u(t) ≤ ρ0‖B0‖+ ‖B0‖
∫ b−δ

t
u(τ)dwm(τ) for t ∈ [a, b− δ]. (3.9)

Moreover, by (3.5) we have

|djwm(t)| ≤ η < 1 for t ∈ I (j = 1, 2). (3.10)

Let now

w+
m(t) = wm(t+) for t ∈ [a, b− δ[ and w+

m(b− δ) = wm(b− δ).

Then due to (3.10) and the equality∫ b−δ

t
u(τ)dwm(τ) =

∫ b−δ

t
u(τ)dw+

m(τ) + u(t)d2wm(t) for t ∈ [a, b− δ]

(see, (1.8)), from (3.9) it follows

u(t) ≤ (1− η)−1‖B0‖

(
ρ0 +

∫ b−δ

t
u(τ)dw+

m(τ)

)
for t ∈ [a, b− δ].

Therefore, according to Gronwalls inequality (see, [16], Theorem I.4.30) the estimate holds

u(t) ≤ ρ0(1− η)−1‖B0‖ exp
(
(1− η)−1‖B0‖(w+

m(b− δ)− w+
m(t))

)
for t ∈ [a, b− δ]. (3.11)

It is evident that the function w is nondecreasing. Using these and (3.5) we get

w+
m(b− δ)− w+

m(t) ≤

∥∥∥∥∥
∫ b−δ

a
Φ−1(τ) d V(A(A∗, Am −A))(τ) · Φ(τ)

∥∥∥∥∥
+

∥∥∥∥∥
∫ b−δ

a
Φ−1(τ) d V(A(A∗, A−A∗))(τ) · Φ(τ)

∥∥∥∥∥ < η + ρ1 for t ∈ [a, b− δ].

So, thanks to (3.11)

u(t) ≤ ρ0(1− η)−1‖B0‖ exp
(
(η + ρ1)(1− η)−1‖B0‖

)
for t ∈ [a, b− δ].

By this and (3.8), thanks to (3.4), we have

‖Φ−1(t)z(t)‖ < ε for t ∈ [a, b].

Therefore, estimate (1.17) holds uniformly on I.
Proof of Theorem 1.2. Let us assume

A(A∗, A−A∗)(t) ≡ (ãik(t))n
i,k=1.

By the definition of the operator A we find

ãik(t) = A(a∗ik, aik − a∗ik)(t) = aik(t)− a∗ik(t)
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+
∑

0<τ≤t

d1a∗ii(τ) · (1− d1a∗ii(τ))−1d1(aii(τ)− a∗ik(τ))

−
∑

0≤τ<t

d2a∗ii(τ) · (1 + d2a∗ii(τ))−1d2(aii(τ)− a∗ik(τ))

for t ∈ I (i, k = 1, . . . , n), (3.12)

where a∗ik(t) = 0 if i 6= k (i, k = 1, . . . , n).
Consider the case where i = k (i = 1, . . . , n). It is evident that

aii(t)− a∗ii(t) = −[aii(t)]v− for t ∈ I (i = 1, . . . , n).

Therefore,

dja0ii(t) = [djaii(t)]+ and dj(aii(t)− a0ii(t)) = −[djaii(t)]−
for t ∈ I (j = 1, 2; i = 1, . . . , n). (3.13)

So that, due to (3.13)

dja0ii(t) · dj(aii(t)− a0ii(t)) = 0 for t ∈ It0(δ) (j = 1, 2; i = 1, . . . , n).

Thus from (3.12) we have

ãii(t) = −[aii(t)]v− for t ∈ I (i = 1, . . . , n).

On the other hand, it is evident that

ãik(t) ≡ A(a0ii, aik)(t) for i 6= k (i, k = 1, . . . , n).

The Cauchy matrix of system (1.12) has the form

C(t, τ) ≡ diag(c1(t, τ), . . . , cn(t, τ)).

In addition, due to (1.23), (3.13) and (3.7), conditions (1.11) and

ci(t, τ) > 0 for (t− t0)(τ − t0) > 0 (i = 1, . . . , n)

hold. By this results, (1.24), (1.25) and (1.26) we conclude that conditions (1.20), (1.21) and
(1.22) of Theorem 1.1 are valid. Hence the theorem immediately follows from Theorem 1.1.

Proof of Theorem 1.3. For each natural m, consider the system

dy = dA∗
m(t) · y + f∗m(t) for t ∈ [a, b[. (3.14)

Due to (1.19) there exists η0 ∈]0, 1[ such that r(B̃) < 1, where B̃ = B + η0B0 In×n.
Let us show that, for each sufficiently large m, the matrix-function A∗

m and the vector-
function f∗m satisfy, respectively, conditions (1.14) and (1.15) for constant matrix B̃, where
C∗ is the Cauchy matrix of system (1.12).

Indeed, due to (1.14) we have∥∥∥∥∥
∫ b−

t
Φ−1(s) d V(A(A∗, A

∗
m −A))(s) · Φ(s)

∥∥∥∥∥ < η0 for t ∈ [b− δ, b[

for each sufficiently large m.
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On the other hand, in view of (1.20) and (1.21) we have∥∥∥∥∥
∫ b−

t
|C∗(t, s)|Φ−1(s) d V(A(A∗, A

∗
m −A∗))(s) · Φ(s)

∥∥∥∥∥
≤

∥∥∥∥∥
∫ b−

t
|C∗(t, s)|Φ−1(s) d V(A(A∗, A

∗
m −A))(s) · Φ(s)

∥∥∥∥∥
+

∥∥∥∥∥
∫ b−

t
|C∗(t, s)|Φ−1(s) d V(A(A∗, A−A∗))(s) · Φ(s)

∥∥∥∥∥
≤ Φ(t) B

∥∥∥∥∥
∫ b−

t
Φ−1(s) d V(A(A∗, A

∗
m −A))(s) · Φ(s)

∥∥∥∥∥+ Φ(t)B

for each sufficiently large m and, therefore, we conclude that, without loss of generality, for
every natural m,∥∥∥∥∥

∫ b−

t
|C∗(t, s)|Φ−1(s) d V(A(A∗, A

∗
m −A∗))(s) · Φ(s)

∥∥∥∥∥ ≤ Φ(t)B̃

for t ∈ [b− δ, b[.

Similarly, we show that

lim
t→b−

∥∥∥∥∫ b−

t
H−1(t) C∗(t, τ)dA(A∗, f

∗
m)(τ)

∥∥∥∥ = 0.

for each natural m.
In addition, by (1.13) and the equality

In + (−1)jdjA
∗
m(t) ≡

(
Φ(t) + (−1)jdjΦ(t)

)
(In + (−1)jdjA

∗
m(t))Φ(t)

(j = 1, 2; m = 1, 2, . . . ),

we conclude that matrix-functions A∗
m (m = 1, 2, . . . ) satisfy condition (1.13), as well. So,

according to Theorem 1.1, system (3.14), under condition

lim
t→b−

(Φ−1(t) y(t)) = 0,

has the unique solution ym for every m and

lim
m→+∞

‖Φ−1(t) (ym(t)− x0(t))‖ = 0 (3.15)

uniformly on I (here the value of the left hand equals 0 at the point b).
On the other hand, it is not difficult to verify that xm is a solution of system (1.3) if and

only if the vector-function ym(t) = Hm(t)xm(t) is a solution of system (3.14) for each natural
m. In addition, by (1.27) and the equality

Φ−1(t)xm(t) = (Φ−1(t)H−1
m (t)Φ(t))Φ−1(t)ym(t)

(m = 1, 2, . . . ), the vector-function xm satisfy condition (1.2) if and only if the vector-function
ym satisfy the same condition.
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So that, the vector-functions xm(t) = H−1
m (t) ym(t) (m = 1, 2, . . . ) will be solutions of

problems (1.1), (1.2), respectively.
Let us show that that condition (1.17) holds uniformly on I.
We have

Φ−1(t) (xm(t)− x0(t)) = Φ−1(t)
(
H−1

m (t)ym(t)− x0(t)
)

= Φ−1(t)
(
H−1

m (t)Φ(t) Φ−1(t)ym(t)− Φ(t) Φ−1(t)x0(t)
)

+ Φ−1(t)
(
H−1

m (t)Φ(t) Φ−1(t)x0(t)− Φ(t) Φ−1(t)x0(t)
)

= Φ−1(t)H−1
m (t)Φ(t)

(
Φ−1(t)ym(t)− Φ−1(t)x0(t)

)
+
(
Φ−1(t)(H−1

m (t)− In)Φ(t)
)
Φ−1(t)x0(t) for t ∈ [a, b[

and, therefore,

‖Φ−1(t) (xm(t)− x0(t))‖ ≤ ‖Φ−1(t)H−1
m (t)Φ(t)‖ ‖Φ−1(t)(ym(t)− x0(t))‖

+ ‖Φ−1(t)(H−1
m (t)− In)Φ(t)‖ ‖Φ−1(t)x0(t)‖ for t ∈ I,

because the left side of the inequality equals to 0 for t = b (by definition).
From the estimate, due to (1.27) and (3.15), we conclude that (1.17) holds uniformly on

I. Hence inclusion (1.31) holds.
Proof of Theorem 1.4. The sufficiency follows from Theorem 1.3.
Let us show the necessity.
Let δ > 0 be such that conditions of Lemma 2.2 are fulfilled.
For each m ∈ {0, 1, . . . }, let Xm (Xm(a) = In) with columns xmj (j = 1, . . . , n) be a

fundamental matrix of system (1.3) (if m = 0, then under the system we understand system
(1.1) on the interval [a, b[).

Due to Lemma 2.2 we have the estimates

‖Φ−1(t)xmj(t)‖ ≤ ρ‖B0‖ ‖Φ−1(s0)xmj(s0)‖ for b− δ ≤ t < s0 < b

(j = 1, . . . , n; m = 0, 1, . . . ), (3.16)

where ρ = ‖(In −B)−1‖.
Passing to the limit when s0 → b− in the right hand of (3.16), we obtain

‖Φ−1(t)xmj(t)‖ ≤ ρ‖B0‖ lim sup
s0→b−

‖Φ−1(s0)xmj(s0)‖

for b− δ ≤ t < b (j = 1, . . . , n; m = 0, 1, . . . ).

Therefore,

lim sup
t→b−

‖Φ−1(t)xmj(t)‖ ≤ ρ‖B0‖ lim sup
s0→b−

‖Φ−1(s0)xmj(s0)‖

(j = 1, . . . , n; m = 0, 1, . . . ).

From this, in view of (1.32), we have

lim sup
t→b−

‖Φ−1(t)xmj(t)‖ = 0 (j = 1, . . . , n; m = 0, 1, . . . ).

Hence

lim
t→b−

‖Φ−1(t)xmj(t)‖ = 0 (j = 1, . . . , n; m = 0, 1, . . . ). (3.17)



38 Ashordia M.

Let Hm(t) ≡ X0(t) X−1
m (t) (m = 0, 1, . . . ). It is evident that Hm ∈ BVloc([a, b[; Rn×n)

(m = 0, 1, . . . ).
Let us verify conditions (1.28) and (1.29).
In view of equality (1.5) and the equalities

X−1
m (t) ≡ In − B(X−1

m , Am)(t) (m = 0, 1, . . . )

(see, Proposition 1.1.4 from [6]), we have

Hm(t) + B(Hm, Am)(t) = X0(t)X−1
m (t) + B(X0,B(X−1

m , Am))(t)

= X0(t)X−1
m (t) + B(X0, In −X−1

m )(t) = In + B(X0, In)(t) +
∫ t

a
dX0(s) ·X−1

m (s)

= In +
∫ t

a
dA(s) ·X0(s) ·X−1

m (s) = In +
∫ t

a
dA(s) ·Hm(s)

for t ∈ [a, b[ (m = 1, 2, . . . ). (3.18)

Consequently, due to (1.7), we find

A∗
m(t) = I(Hm, Am)(t) =

∫ t

a
dA(s) ·Hm(s)H−1

m (s) ≡ A(t) (m = 0, 1, . . . ).

So that, condition (1.28) is valid uniformly on I.
It is clearly, conditions of Corollary 1.1 are fulfilled for the homogeneous systems corre-

sponding to systems (1.1) and (1.3) (m = 1, 2, . . . ), i.e., when f(t) ≡ 0n and fm(t) ≡ 0n

(m = 1, 2, . . . ).
Now, if we take account (3.17), thanks to Corollary 1.1 we get

lim
m→+∞

(
Φ−1(t)Xm(t)− Φ−1(t)X0(t)

)
= On×n (3.19)

uniformly on I. So condition (1.27) holds.
Moreover, due (3.19) we have

lim
m→+∞

‖Φ−1(t)H−1
m (t)Φ(t)− In‖ = lim

m→+∞
‖Φ−1(t)Xm(t)X−1

0 (t)Φ(t)− In‖ = 0 (3.20)

uniformly on I.
Consider now condition (1.29).
Let xm (m = 0, 1, . . . ) be the unique solution of problem (1.3), (1.2). Let ym(t) ≡

Hm(t)xm(t) (m = 0, 1, . . . ), as in the proof of Theorem 1.3, be the solution of system (3.14).
Due to (1.17) we have

lim
m→+∞

(
Φ−1(t)xm(t)− Φ−1(t)x0(t)

)
= 0n (3.21)

uniformly on I.
Besides, due to (3.20), we have

lim
m→+∞

‖Φ−1(t)Hm(t)Φ(t)− In‖ = 0

uniformly on I. From this and (3.21), by equalities

ym(t) ≡ Φ(t)
(
Φ−1(t)Hm(t)Φ(t)

) (
Φ−1(t)xm(t)

)
(m = 1, 2, . . . ),
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we conclude that the function ym satisfies condition (1.2) if and only if the function xm

satisfies the same one and, moreover,

lim
m→+∞

‖Φ−1(t)ym(t)− Φ−1(t)x0(t)‖ = 0

and

lim
m→+∞

‖Φ−1(t)zm(t)‖ = 0 (3.22)

uniformly on I, where zm(t) ≡ ym(t)− x0(t).
Further, using (1.6), we conclude

f∗m(t) =B(Hm, fm)(t) = B
(

Hm, xm −
∫ ·

a
dAm(s) · xm(s)

)
(t)

= B(Hm, xm)(t)− B
(

Hm,

∫ ·

a
dAm(s) · xm(s)

)
(t)

= B(Hm, xm)(t)− B(Hm, xm)(a)−
∫ t

a
dB(Hm, Am)(s) · xm(s)

for t ∈ [a, b[ (m = 1, 2, . . . ).

Hence, due to (3.18),

f∗m(t) ≡ Hm(t)xm(t)−Hm(a)xm(a)−
∫ t

a
dA(s) ·Hm(s) xm(s).

So that,

f∗m(t)− f(t) ≡ zm(t)−
∫ t

a
dA(s) · zm(s)) (m = 1, 2, . . . )

and

Φ−1(t)(f∗m(t)− f(t)) ≡ Φ−1(t)zm(t)− Φ−1(t)
∫ t

a
dA(s) · Φ(s)(Φ−1(s)zm(s))

(m = 1, 2, . . . ).

By this and (1.33), there exists a positive r0 such that

‖Φ−1(t)(f∗m(t)− f(t))‖ ≤ ‖Φ−1(t)zm(t)‖+ r0‖Φ−1 zm‖∞ (m = 1, 2, . . . ).

Therefore, in view of (3.22), we conclude that

lim
m→+∞

‖Φ−1(t)(f∗m(t)− f(t))‖ = 0 (3.23)

uniformly on I. So, we get that condition (1.29) holds uniformly on I.
Moreover, by (1.34), there exists r1 > 0 such that

‖V2(Φ, A∗, f
∗
m − f)(t, b−)‖ ≤ r1‖Φ−1(t)(f∗m(t)− f(t))‖

for t ∈ [a, t[ (m = 1, 2, . . . ).



40 Ashordia M.

Consequently, due (3.23), cobdition (1.30) holds uniformly on I, as well.
The theorem is proved. 2

The Theorem 1.4′ immediately follows from the proof of the necessary of Theorem 1.4,
because we can choose Hm(t) ≡ X0(t)X−1

m (t) (m = 1, 2, . . . ).

R E F E R E N C E S

1. Ashordia M. Criteria of correctness of linear boundary value problems for systems of generalized
ordinary differential equations. Czechoslovak Math. J., 46 (121), 3 (1996), 385-404.

2. Ashordia M. On the general and multipoint boundary value problem for linear systems of
generalized ordinary differential equations, linear impulsive and linear difference systems. Mem. Dif-
ferential Equations Math. Phys., 36 (2005), 1-80.

3. Ashordia M. On boundary value problems for systems of linear generalized ordinary differential
equations with singularities (Russian). Differ. Uravn., 42, 3 (2006), 291-301; English transl.: Differ.
Equ. 42, 3 (2006), 307-319.

4. Ashordia M. On some boundary value problems for linear generalized differential systems with
singularities. (Russian) D iffer. Uravn., 46, 2 (2010), 163-177; English transl.: Differ. Equ., 46, 2
(2010), 167-181.

5. Ashordia M. On two-point singular boundary value problems for systems of linear generalized
ordinary differential equations. Mem. Differential Equations Math. Phys., 56 (2012), 9-35.

6. Ashordia M. The Initial Problem for Linear Systems of Generalized Ordinary Differential
Equations, Linear Impulsive and Ordinary Differential Systems. Numerical Solvability. Mem. Differ.
Equ. Math. Phys., 78 (2019), 1-162.

7. Ashordia M. The General boundary value Problems for Linear Systems of Generalized Ordinary
Differential Equations, Linear Impulsive differential and Ordinary Differential Systems. Numerical
Solvability. Mem. Differ. Equ. Math. Phys., 81 (2020), 1-184.

8. Ashordia M. and Kharshiladze N. The solvability of the modified Cauchy problem for linear
systems of impulsive differential equations with singularities. Miskolc Mathematical Notes, 21, 1
(2020), 69-79.

9. Ashordia M., Gabisonia G. and Talakhadze M. On the solvability of the Cauchy problem for
linear systems of generalized ordinary differential equations with singularities. Georgian Math. J.,
28, 1 (2021), 29-47.

10. Ashordia M. On the well-posedness of the Cauchy problem with weight for systems of linear
generalized ordinary differential equations with singularities. Georgian Math. J., 29, 5 (2022), 641-
659.

11. Chechik V. A. Investigation of systems of ordinary differential equations with a singularity
(Russian). Tr. Mosk. Mat. Obshch., 8 (1959), 155-198.

12. Groh J. A nonlinear Volterra-Stieltjes integral equation and a Gronwall inequality in one
dimension. Illinois J. Math., 24, 2 (1980), 244-263.

13. Hildebrandt T. H. On systems of linear differentio-Stieltjes-integral equations. Illinois J.
Math., 3 (1959), 352-373.

14. Kiguradze I. T. Some singular boundary value problems for ordinary differential equations
(Russian). Izdat. Tbilis. Univ., Tbilisi, 1975.

15. Kurzweil J. Generalized ordinary differential equations and continuous dependence on a
parameter. Czechoslovak Math. J., 7(82), 3 (1957), 418-449.
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