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THE PROBLEM OF STATICS OF THE THEORY OF ELASTIC MIXTURE OF
DEFINING A HOLE OF UNIFORM STRENGTH IN A POLYGONAL PLATE

Svanadze K.

Abstract. In the present work we consider the problem of statics of the linear theory of
elastic mixture of finding a hole with a uniformly strong boundary in a finite isotropic plate,
shaped as a convex polygon. It is assumed that projection of the displacement vector on the
normal on each side of the polygon has a constant value, and projection of the stress vector
on the tangent is equal to zero on the boundary hole. Assume also that a normal pressing
concentrated force is applied to the middle of each side, further note that the boundary of the
unknown hole is free from external stresses. The goal of the problem is to find an unknown
contour under the condition that tangential normal stress takes constant value at every point
of the contour.
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1. Introduction

The problem of the plane theory of elasticity for infinite domains weakened by equally
strong holes have been studied by many authors, particularly in [1], [9] the same problem for
simple and doubly - connected domains with partially unknown boundaries are investigated
in [2]. The mixed boundary value problems of the plane theory of elasticity for domain with
partially unknown boundaries have been studied by R. Bantsuri [3]. Analogous problem in
the case of the plane theory of elastic mixtures has been studied in [12].

In the work of R. Bantsuri and G. Kapanadze [4] the problem of statics of the plane theory
of elasticity of finding a full-strength contour inside the polygon are considered. Analogous
problem in the case of the plane theory of elastic mixtures has been studied in [13].

The problem of the plane theory of elasticity of finding a hole with a uniformly strong
boundary in a finite plane have been studied by R. Bantsuri ([5], 4.2).

In the present paper in the case of the plane theory of elastic mixture we study the
problem analogous to that solved in ([5], 4.2) For the solution of the problem the use will be
made of the generalized Kolosov - Muskhelishvili formula [12] and the method developed in
([5], 4.2).

2. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixtures in a complex form
looks as follows [8]

∂2U

∂z∂z̄
+K

∂2Ū

∂z2
= 0, (2.1)

where z = x1 + ix2; z = x1 − ix2,
∂
∂z = 1

2

(
∂

∂x1
− i ∂

∂x2

)
, ∂

∂z = 1
2

(
∂

∂x1
+ i ∂

∂x2

)
, U =

(u1 + iu2, u3 + iut)
T , u′ = (u1, u2)

T and u′′ = (u3, u4)
T are partial displacements.
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K = −1

2
lm−1 l =

[
l4 l5
l5 l6

]
, m−1 =

1

∆0

[
m3 −m2

−m2 m1

]
,

∆0 = m1m3 −m2
2, mk = lk +

1

2
l3+k, k = 1, 2, 3;

l1 =
a2
d2
, l2 = − c

d2
; l3 =

a1
d2
, a1 = µ1 − λ5, a2 = µ2 − λ5,

c = µ3 + λ5, d2 = a1a2 − c2, l1 + l4 =
b

d1
, l2 + l5 = − c0

d1
,

l3 + l6 =
a

d1
, d1 = ab− c20, a = a1 + b1, b = a2 + b2, c0 = c+ d

b1 = µ1 + λ1 + λ5 − α2
ρ2
ρ
, b2 = µ2 + λ2 + λ5 + α2

ρ1
ρ
, ρ = ρ1 + ρ2,

α2 = λ3 − λ4, d = µ2 + λ3 − λ5 − α2
ρ1
ρ

≡ µ3 + λ4 − λ5 + α2
ρ2
ρ
.

Here µ1, µ2, µ3 and λp, p = 1, 5 are elastic modules characterizing mechan-
ical properties of the mixture, ρ1 and ρ2 are particular densities. The elastic constants
µ1, µ2, µ3 and λp, p = 1, 5 and particular densities ρ1 and ρ2 will be assumed to satisfy
the conditions of inequality [6].

In [7] M. Basheleishvili obtained the following representations (Kolosov-Muskhelishvili
type formulas)

2µU = 2µ(u1 + iu2, u3 + iu4)
T = Aφ(z) +Bzφ′(z) + 2µψ(z), (2.2)

TU = ((Tu)2 − i(Tu)1, (Tu)4 − i(Tu)3))
T

=
∂

∂S(x)
[(A− 2E)φ(z) +Bzφ′(z) + 2µψ(z)], (2.3)

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions,

A = 2µm, µ =

[
µ1 µ3
µ3 µ2

]
, B = µl,m =

[
m1 m2

m2 m3

]
, E =

[
1 0
0 1

]
,

∂

S(x)
= −n2

∂

∂x1
+ n1

∂

∂x2
,

∂

∂n(x)
= n1

∂

∂x1
+ n2

∂

∂x2
,

n = (n1, n2)
T is the unit vector of the outer normal, (TU)p, p = 1, 4, the stress components

[6],

(TU)1 = r′11n1 + r′21n2, (TU)2 = r′12n1 + r′22n2,

(TU)3 = r′′11n1 + r′′21n2, (TU)4 = r′′12n1 + r′′22n2.

Consider the following vectors [13]:
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τ (1) =

(
r
′
11

r
′′
11

)
=

[
a c0
c0 b

](
Θ′

Θ′′

)
− 2

∂

∂x2
µ

(
u2
u4

)
,

(2.4)

τ (2) =

(
r
′
22

r
′′
22

)
=

[
a c0
c0 b

](
Θ′

Θ′′

)
− 2

∂

∂x1
µ

(
u1
u3

)
,

η(1) =

(
r
′
21

r
′′
21

)
= −

[
a1 c
c a2

](
ω′

ω′′

)
+ 2

∂

∂x1
µ

(
u2
u4

)
,

(2.5)

η(2) =

(
r
′
12

r
′′
12

)
=

[
a1 c
c a2

](
ω′

ω′′

)
+ 2

∂

∂x2
µ

(
u1
u3

)
.

Θ′ = divu′, Θ′′ = divu′′, ω′ = rotu′, ω′′ = rotu′′.

Let (n, s) be the right rectangular system where s and n are respectively the tangent and
the normal of the curve L at the point t = t1 + it2.

Assume that n = (n1, n2)
T = (cosα, sinα)T and S0 = (−n2, n1)T = (− sinα, cosα)T ,

where α is the angle of inclination of the normal n to the Ox1-axis.
Let us introduce the vectors:

Un =

(
u1n1 + u2n2
u3n1 + u4n2

)
, Us =

(
u2n1 − u1n2
u4n1 − u3n2

)
, (2.6)

σn =

(
(Tu)1n1 + (Tu)2n2
(Tu)3n1 + (Tu)4n2

)
, σs =

(
(Tu)2n1 − (Tu)1n2
(Tu)4n1 − (Tu)3n2

)
. (2.7)

σt =

(
[r′21n1 − r′11n2, r′22n1 − r′12n2]

T S0

[r′′21n1 − r′′11n2, r′′22n1 − r′′12n2]
T S0

)
. (2.8)

Let us call the vector (2.8) outer normal of the tangential normal stress in the linear
theory of elastic mixture.

After elementary calculation we obtain:

σn = τ (1) cos2 α+ τ (2) sin2 α+ η sinα cosα,

σt = τ (1) sin2 α+ τ (2) cos2 α− η sinα cosα,

σs =
1

2

[
(τ (2) − τ (1)) sin 2α+ η cos 2α− ε∗

]
,

where η = η(1) + η(2), ε∗ = η(1) − η(2).
Direct calculations allow us to check on L [12]

σn + σt = τ (1) + τ (2) = 2(2E −A−B)Reφ′(t), (2.9)

σn + 2µ

(
∂US

∂S
+
Un

ρ0

)
+ i

[
σs − 2µ

(
∂Un

∂S
− US

ρ0

)]
= 2φ′(t), (2.10)

[
(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)

]
L
= −i

∫
L
eiα(σn + iσs)ds, (2.11)
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where det(2E − A− B) > 0 , 1
ρ0

is the curvature of L at the point t = t1 + it2. Everywhere
in the sequel it will be assumed that the components Un and Us are bounded [8].

Formulas (2.2), (2.3) (2.9) and (2.10) are analogous in the linear theory of elastic mixtures
to those of Kolosov-Muskhelishvili [12].

3. Statement of the problem and the method of its solving

In the present work we consider the problem of statics of the linear theory of elastic
mixture of finding a hole with a uniformly strong boundary in a finite plate.

let us consider an isotropic plate shaped as a convex polygon weakened by a curvilinear
hole. Assume that the vector Un (see (2.6)) on each side of the polygon has a constant value,
the vector σS (see (2.7)) on the external boundary of the plate is equal to zero, while the
internal boundary is under the action of the constant normal force and the tangent stress is
equal to zero. We consider two cases where 1) the values of the constant Un are given, and
2) the values of the principal vector are given on either side of the external boundary of the
plate.

The mechanical meaning of the first case consists in the following: an elastic washer
is inserted into the hole of polygonal configuration made in a fixed rigid body. Prior to
deformation the shape of the washer contour differs but little from the shape of the hole. In
the second case it is assumed that the dies with rectilinear bases adjoin the sides of the plate.

We pose the following problem; find a stressed state of the body and the boundary of the
hole assuming that the boundary of the hole is uniformly strong and the tangential normal
stress on it takes constant value σt = −K0, K0 = (K0

1 ,K
0
2 )

T = const.

Let on the plane of the complex variable z = x1 + ix2 the plate occupy the domain D0

bounded by the closed convex broken line A0
1, A

0
2, ..., A

2
n which we denote by L1 and by the

smooth closed contour L2 lying inside L1. To simplify the notation, the affixes of the points
A0

k, k = 1, n, which are the vertices of the broken line are denoted by the same symbols.

It is also assumed that the point z = 0 lies within the sought contour L2.

Relying on the analogous Kolosov-Mushelisvhili formulas (2.9)-(2.11) the above posed
problem is reduced to finding two analytic vector-functions φ(z) and ψ(z) in the domain D0

by, the following conditions on L = L1
∪
L2 :

Reφ′(t) = H, t ∈ L2, H = −1

2
(2E −A−B)−1K0, (3.1)

Imφ′(t) = 0, t ∈ L1, (3.2)

(A− 2E)φ(t) +Btφ′(t) + 2µψ(t) = ν = ν(1) + iν(2), t ∈ L2, (3.3)

where ν(1) = (ν
(1)
1 , ν

(1)
2 )T and ν(2) = (ν

(2)
1 , ν

(2)
2 )T are arbitrary real constants vectors.

Moreover if t ∈ L1 we can write

Re
[
e−iα(t)(Aφ(t) +Btφ′(t) + 2µψ(t))

]
= 2µUn, (3.4)

Re
[
e−iα(t)((A− 2E)φ(t) +Btφ′(t) + 2µψ(t))

]
= C(t), (3.5)

where α(t) is the angle formed by the normal to L1 at the point with the ox1 - axis.



50 Svanadze K.

C(t) = Re{−i
∫ S

0
σn(t0) exp i[α(t0)− α(t)]dS0}, (3.6)

σn(t) is the normal stress (see (2.7)) to L1 at the point t, S is the arc abscissa at the
point t counted from the point A0

1 in the positive direction.
Taking into account that α(t) is a piecewise-constant function we obtain

C(t) =

K∑
j=1

sin(αj − αk)

∫ Sj+1

Sj

σn(t0)dS0

for t ∈ A0
1A

0
k+1, k = 1, n; A0

n+1 = A0
1, where αk, sj are the values of the function α(t) on

A0
kA

0
k+1, k = 1, n, Sj is the arc abscissa of the point A0

j , i.e. the length of the broken line

A0
1, A

0
2...A

0
j . It is obvious that C(t) is also a piecewise-constant vector-function.

Since in the first case Un is a given piecewise-constant vector-function, by virtue of for-
mulas (3.4) and (3.5) both cases reduce to identical problems of the analytic function theory.

We will consider the second case where the values of the principal vector of external stress
are given on the segments A0

kA
0
k+1

P (k) = −
∫ Sk+1

Sk

σn(S)dS, k = 1, n.

From the equilibrium condition we have

n∑
k=1

P (k)eiαk = 0. (3.7)

Now note that the condition (3.1) and (3.2) is Keldysh-Sedov problem having a solution
[10]

φ(z) = Hz = −1

2
(2E −A−B)−1K0z, z ∈ D0,

(an arbitrary constat is assumed to be equal to zero).
Thus the boundary conditions (3.3) and (3.5) take the form

1

2
K0t+ 2µψ(t) = ν, on L2, (3.8)

Re

[
e−iα(t)

(
1

2
K0t+ 2µψ(t)

)]
= C(t), on L1, (3.9)

If t ∈ A0
kA

0
k+1, then

(t−A0
k) = ir0eiαk , r0 = |t−A0

k|,

whence

Re(te−iα(t)) = Re(A0(t)e−iα(t)), t ∈ L1, (3.10)

where A0(t) = A0
k for t ∈ A0

kA
0
k+1, k = 1, n.

Let the function z = ω(ζ) conformally map the circular ring 1 < |ζ| < R onto the domain
D0, where R is the unknown number to be determined.
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Assume that the circumference |ζ| = R is mapped onto L1. Assume that to the vertices
A0

1, A
0
2, A

0
3...A

0
n there correspond the points a01, a

0
2, a

0
3, ..., a

0
n from the circumference |ζ| = R.

Let a0k = Reiδk , k = 1, n, where δk are unknown numbers. Assume that 0 = δ1 < δ2 <
... < δn = 2π. From conditions (3.8)- (3.10) we have

Re

[
e−iα(ξ)

(
1

2
K0ω(ξ) + ψ0(ξ)

)]
= C(ξ), |ξ| = R, (3.11)

1

2
K0ω(ξ) + ψ0(ξ) = ν, |ξ| = 1, (3.12)

Re
[
e−iα(ξ)ω(ξ)

]
= Re

[
e−iα(ξ)A0(ξ)

]
, |ξ| = R, (3.13)

where ψ0(ζ) = 2µψ[ω(ζ)], 1 < |ζ| < R. For the sake of simplicity we write α(ξ), A0(ξ), C(ξ)
instead of α[ω(ξ)], A0[ω(ξ)], C[ω(ξ)]] respectively. These functions are defined all over the
plane by the qualities

α(rξ) = α(ξ), A0(rξ) = A0(ξ), C(rξ) = C(ξ), 0 < r <∞, |ξ| = 1.

Let W (ζ) be the vector-function defined by the equalities

W (ζ) =


1
2K

0ω( ζ
R), for R < |ζ| < R2,

(3.14)

ν − ψ0(
R
ζ
), for 1 < |ζ| < R.

It is obvious that W (ζ) is a holomorphic vector-function in domains 1 < |ζ| < R and
R < |ζ| < R2. By virtue of condition (3.12) on the circumference W (ζ) the boundary values
of |ζ| = R are equal to each other from the inside and outside. ThereforeW (ζ) is holomorphic
in the ring 1 < |ζ| < R2.

From (3.14) we have

1

2
K0ω(Rξ) =W (R2ξ), for |ξ| = 1,

ψ0(Rξ) = ν −W (ξ), for |ξ| = 1.

The substitution of the values into conditions (3.11), (3.13) gives

Re
[
e−iα(ξ)W (ξ)

]
= f(ξ), ξ ∈ Γ, (3.15)

where W = (W1,W2)
T , f = (f1; f2)

T ,

Γ = Γ1

∪
Γ2, Γ1 = {ξ : |ξ| = R2}, Γ2 = {ξ : |ξ| = 1},

f(ξ) =


1
2K

0Re[e−iα(ξ)A0(ξ)], ξ ∈ Γ1,
(3.16)

Reνe−iα(ξ) − C(ξ) + 1
2K

0Re[e−iα(ξ)A0(ξ)], ξ ∈ Γ2.
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We have thus reduced the posed problem to the Riemann-Hilbert problem for the circular
ring with piecewise-constant coefficients. All discontinuity points are nonsingular ( [11], p.
256).

Since the vector-function W (ζ) must be bounded on the domain boundary, a solution of
problem (3.15) should be sought in the class of functions bounded on the boundary i.e. in
the class h2n ( [11], p. 256).

The coefficient index of problem (3.15) corresponding to this class is equal to 2−n on Γ1

and to - 2 on Γ2.

Therefore the index of the Riemann-Hilbert problem (3.15) corresponding to the class
h2n is equal to −n.

Let us represent the boundary condition (3.15) in the form

W (ξ) + e2iα(ξ)W (ξ) = 2f (1)(ξ)eiα(ξ), on Γ1,

(3.17)

W (ξ) + e2iα(ξ)W (ξ) = 2f (2)(ξ)eiα(ξ), on Γ2,

where f (1)(ξ) and f (2)(ξ) are the values of the vector-functions f(ξ) on Γ1 and Γ2 respectively.

Taking into account the results cited in ([5],4.2; (4.2.50)) we obtain

W (z) =
ℵ(z)X(R

2z
ξ )

πi

∫
Γ

Kλ(
R4z
ξ )f(ξ)eiα(ξ)dξ

ξℵ(ξ)X(R2ξ)
, 1 < |z| < R2, (3.18)

where f is the given vector-function defined by (3.16), and ([5], 4.2),

Kλ(z) =
R4

R4 − z
+

1

λ

1

1− z
+ λ

∑
n≥1

1

R4n − λ

( z

R4

)n

+
1

λ

∑
n≤−1

R4zn

R4n − λ
+

{
λ

1−λ , for λ ̸= 1,

0, for λ = 1,
(3.19)

ℵ(z) = z exp

(
iβ +

∫
Γ2

ln ξ2e−2iα(ξ)

ξ − z
dξ

)
, |z| > 1, (3.20)

β = − 1

4π

∫ 2π

0
arg(ξ2e2iα(ξ))dℑ ℑ = arg ξ,

X(z) = Tn(z) exp

(
1

2πi

∫
Γ2

K1

(
z

ξ

)
ln
G(ξ)Tn(ξ)

λTn(R4ξ)

)
dξ

ξ
. (3.21)

G(ξ) = λ
X(R4ξ)

X(ξ)
, |ξ| = 1, (3.22)

Tn(z) =
n∏

k=1

(z −R2zk)
−1z[

n
2
]e

iℑ0n
2 , (3.23)

zk = exp

(
iℑ0 +

2π(k − 1)

n
i

)
, k = 1, n,

is a fixed number 0 ≤ ℑ0 ≤ 2π,
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λ = exp

(
1

2π

∫
Γ2

1

ξ
ln
G(ξ)Tn(ξ)

Tn(R4ξ)
dξ

)
, (3.24)

|λ| =

{
1, for even n

R2, for odd n.

Now note that, since X(R2z) (see (3.20 - (3.24)) has simple poles at the points z = zk
for the vector-function W (z) to be bounded it is necessary and sufficient that the conditions
([5], 4.2; (4.2.51)) ∫

Γ
Kλ

(
R4z

ξ

)
f(ξ)eiα(ξ)

ξℵ(ξ)X(R2ξ)
dξ = 0, k = 1, n (3.25)

be fulfilled.
Let us write the function Kλ

(
R4z
ξ

)
in the form

Kλ

(
R4z

ξ

)
=

ξ

ξ − z
+K0

λ

(
R4z

ξ

)
, 1 < |z| < R2.

then by virtue of (3. 18) we have

W (z) =
ℵ(z)X(R2z)

πi

[ ∫
Γ

f(ξ)eiα(ξ)dξ

ξX(R2ξ)ℵ(ξ)(ξ − z)

+

∫
Γ

f(ξ)K0
λ

(
R4Z
ξ

)
eiα(ξ)dξ

ξX(R2ξ)ℵ(ξ)
dξ
]
. (3.26)

The second summand in the right -hand part of equality (3.26) is a holomorphic vector-
function in the ring D∗(1 < |z| < R2) and continuous one in the closed ring D∗. The first
summand is a Cauchy type integral whose density is a Holder-continuous vector-function on
each open arc (Ra0k, Ra

0
k+1), (R

−1a0k, R
−1a0k+1), k = 1, n. Therefore according to the Plemelj

- Privalov theorem (see e. g. [11]) the vector-function W (z) is continuously extendable on
these open arcs and its boundary value satisfies the Holder condition on them. Applying now
the results of N.I. Muskhelishvili’s monograph [11, §26], we see that W (z) is a continuous
extension on Γ and its boundary value is a Holder-continuous vector-function on Γ.

Now note that (3.25) is a vectorial system of n equations with respect to n + 3 real

unknowns K0 = (K0
1 ,K

0
2 )

T , ν(1) = (ν
(1)
1 , ν

(1)
2 )T , ν(2) = (ν

(2)
1 , ν

(2)
(2))

T , R, δk k = 2, n, 0 <

δk < 2π. To each solution of system (3.25) if it is solvable we can assign by formula (3.18) the
unique solution of the Riemann-Hilbert problem (3.15). Hence solutions by formula (3.14)
are defined by the function ω and vector-function ψ0

ω(ζ) =
2

|K0|2
K0W (Rζ), 1 < |ζ| < R (3.27)

ψ0(ζ) = ν −W

(
R

ζ

)
, 1 < |ζ| < R. (3.28)

Since ω′(ζ) is shown to be different from zero in the domain of its definition z = ω(ζ)
conformally maps a circular ring 1 < |ζ| < R onto the domain D0 and t = ω(ξ) whereas

ω(ξ) = 2K0

|K0|2W (Rξ) is the equation of the sought contour.
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To show one important application we will prove that the system of algebraic equations
(3.25) is always solvable and find the solution in an explicit form.

Let L1 be the boundary of a regular polygon. Assume that the die with rectilinear base
adjoins each side of the polygon.

Assume that a normal pressing concentrated force , −P ; (P = (P1, P2)
T ) is applied to the

middle of each die. The origin is supposed to lie at the centre of the polygon A0
1, A

0
2...A

0
n and

the ox1 axis to be directed normally to the side A0
1, A

0
2. Then

A0
k = r0 exp

(π
n
(2k − 3)

)
, αk =

2π

n
(k − 1), k = 1, n.

By the symmetry property it can be assumed that

a0k = Re
2π
n
(k−1)i, k = 1, n.

This assumption is justified if system (3.25) is solvable with respect to the unknowns
K0, ν(1), ν(2), R.

Let us show that if one of conditions (3.25) is fulfilled then all other conditions are fulfilled
too.

First we give some equalities whose validity is easy to verify ([5], 4.2)

Tn(ze
2πi
n ) =

 −Tn(z) if n is even,

e−
πi
n Tn(z) if n is odd,

α(ξe
2πi
n ) =

 α(ξ) + 2π
n if n is even, ξ ∈ a0ka

0
k+1, 1 ≤ k ≤ n− 1,

e−
πi
n Tn(z) if n is odd, ξ ∈ a0na

0
1,

ln(e−2iα(ξ0)ξ20)|ξ0=ξe
2πi
n

= ln(e−2iα(ξ)ξ2),

X(ze
2πi
n ) = e

2πi
n ℵ(z), G(ξe

2πi
n ) = G(ξ), A0(ξe

2πi
n ) = e

2πi
n A0(ξ).

By means of these equalities we easily conclude that the function X(z) satisfies the
condition

X(ze
2πi
n ) =

 −X(z), if n is even,

e−
πi
n Tn(z) if n is odd.

In the case f (1)(ξ) is a constants vector

f (1)(ξ) =
1

2
K0r0 cos

π

n
.

Let us now show that the constant vectors ν(1) = (ν
(1)
1 ; ν

(1)
2 )T and ν(2) = (ν

(2)
1 ; ν

(2)
2 )T can

be chosen so that the vector-function f (2) would also be a constant

In the considered case: ([5], 4.2)

C(ξ) = P
k−1∑
q=1

sin
2π

n
q =

P

2 sin π
n

(
cos

π

n
− cos(2k − 1)

π

n

)
,
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ξ ∈ ak0a
0
k+1, k = 1, n.

By virtue of (3.16)

f (2)(ξ) = ν(1) cosα+ ν(2) sinα− C(ξ) + f (1)(ξ),

ξ ∈ a0ka
0
k+1, k = 1, n.

Therefore if ξ ∈ a0ka
0
k+1, then

f (2)(ξ) = ν(1) cos
2π

n
(k − 1) + ν(2) sin

2π

n
(k − 1)− 1

2
Pctg

π

n
+

1

2
P cos

2π

n
(k − 1)ctg

π

n

−1

2
P sin

2π

n
(k − 1) + f (1)(ξ).

If we now take

ν(1) = −1

2
Pctg

π

n
, ν(2) =

1

2
P.

Then we obtain

f (2)(ξ) =
1

2

(
K0r0 cos

π

n
− Pctg

π

n

)
.

Thus f (2)(ξ) is a constants.
If we introduce the notation

D(ζ) =

∫
|ξ|=1

Kλ

(
R2ζ

ξ

)
f (1)(ξ)eiα(ξ)dξ

ξX(R4ξ)ℵ(R2ξ)

−
∫
|ξ|=1

Kλ

(
R4ζ

ξ

)
f (2)(ξ)eiα(ξ)dξ

ξX(R2ξ)ℵ(ξ)
,

then condition (3.25) take the form

D(ζk) = 0, k = 1, n. (3.29)

By virtue of the above equalities we readily obtain

D(ζe
2πi
n ) =


−D(ζ) if n is even,

−e
πi
n D(ζ) if n is odd.

Hence it follows that D(ζ1) = 0, then D(ζk) = 0, k = 2, n.
Therefore system (3.29) reduces to one equation with two unknowns

K0r0
∫
|ξ|=1

Kλ

(
R2ζ1
ξ

)
eiα(ξ)dξ

ξX(R4ξ)ℵ(R2ξ)

=

(
K0r0 +

P

sin π
n

)∫
|ξ|=1

Kλ

(
R2ζ1
ξ

)
eiα(ξ)dξ

ξX(R2ξ)ℵ(ξ)
.
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Hence we obtain

K0 = − Pγ(R)

r0[δ(R)− γ(R)] sin π
n

,

where 
δ(R) =

∫
|ξ|=1Kλ

(
R2eiℑ0

ξ

)
eiα(ξ)dξ

ξX(R4ξ)ℵ(R2ξ)
,

γ(R) =
∫
|ξ|=1Kλ

(
R4eiℑ0

ξ

)
eiα(ξ)dξ

ξX(R2ξ)ℵ(ξ) .

(3.30)

Using formula (3.30) and assuming R to be given we define the tangential normal stress
value on the sought contour. Giving R various values we obtain a table of relationship between
K0 and R i. e. the position of a uniformly strong contour can be defined by the given values
of K0.
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