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1. Introduction

Bernoulli numbers, together with Stirling numbers, are perhaps the most important ob-

jects of Number theory because they intervene in the most disparate fields and are also closely

related to Riemann’s zeta-function and even with Fermat’s last theorem. D.E. Smith [28],

noted that among all the number sequences “there is hardly a species so important and so

generally applicable as the Bernoulli numbers”. In fact, the literature concerning them is

extremely large, as can be seen in [8].

Several extensions of these mathematical entities appeared in the literature, see e.g. the

articles [2, 4, 9, 19, 21, 22, 23], where the main generalizations are recalled.

The most important are the articles by F.T. Howard [13], B. Kurt [15, 16], and M. Miloud

and M. Tiachachat [17, 18], the latter in relation to r-associated Stirling numbers [3, 6, 25].

All these extensions are obtained by replacing the denominator ex − 1 by the rth partial

sum the McLaurin expansion of the exponential, that is the truncated exponential ex−Tr(x),

where Tr(x) is a polynomial of degree r − 1.

A. Hassen and H.D. Nguyen [12], extended the definition of generalized Bernoulli poly-

nomials to non-integer values of r, (see also [1, 11, 14]), and H.L. Geleta and A. Hassen [10]

shown a connection with a fractional hypergeometric version of the Riemann zeta function.

More general extensions have been considered in [24], raising the denominator ex−Tr(x)

to the integer power k. The corresponding polynomials, denoted by B
[r−1, k]
n (t), and numbers

(which are their values at the origin) are naturally linked to the r-associated Stirling numbers

of the second kind S(n, k; r). Therefore the extension of the B
[r−1, k]
n (t) to non integer values

of r can be used to define the rational-type Stirling numbers. Some tables of these numbers

were reported in [24].
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In this article we first give a recursive method for computing the 2nd kind hypergeometric

Bernoulli numbers B
[r−1, 1]
n . This method avoids the definition of these numbers by using

partition of integers (as it is done in [24]), since the use of partitions is a computationally

more expensive method. Then, by using the Blissard problem, we derive a connection of

these Bernoulli-type numbers with the Bell polynomials.

A Table of the B
[r−1, 1]
n numbers, for rational values of r, derived by the second author

by using the Mathematica© computer algebra program, is reported in the Appendix.

2. The Bell polynomials and Blissard problem

Considering the composite function Φ(t) := f(g(t)) of (sufficiently smooth) component

functions x = g(t) and y = f(x), the nth derivative of Φ(t), putting

Φm := Dm
t Φ(t), fh := Dh

xf(x)|x=g(t), gk := Dk
t g(t) ,

is expressed by

Φn = Yn(f1, g1; f2, g2; . . . ; fn, gn),

where Yn denotes the nth Bell polynomial.

The first few Bell polynomials are:

Y1(f1, g1) = f1g1

Y2(f1, g1; f2, g2) = f1g2 + f2g
2
1

Y3(f1, g1; f2, g2; f3, g3) = f1g3 + f2(3g2g1) + f3g
3
1

. . .

(1)

More general values can be found in [25], p. 49.

The Bell polynomials [5] are given by:

Yn(f1, g1; f2, g2; . . . ; fn, gn) =
n∑

k=1

Bn,k(g1, g2, . . . , gn−k+1) fk . (2)

where the Bn,h are called Bell polynomials of the second kind and satisfy the recursion [5]:

Bn,k(g1, g2, . . . , gn−k+1) =
n−k∑
h=0

(
n− 1

h

)
Bn−h−1,k−1(g1, g2, . . . , gn−h−k+1) gh+1 . (3)

The Bn,k functions for any k = 1, 2, . . . , n are polynomials in the g1, g2, . . . , gn variables

homogeneous of degree k and isobaric of weight n (i.e. they are linear combinations of

monomials gk11 g
k2
2 · · · gknn whose weight is constantly given by k1 + 2k2 + . . .+ nkn = n).

Therefore they satisfy the equations

Bn,k(αβ g1, αβ
2g2, . . . , αβ

n−k+1gn−k+1) = αkβnBn,k(g1, g2, . . . , gn−k+1) , (4)
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and

Yn(f1, β g1; f2, β
2g2; . . . ; fn, β

ngn) = βn Yn(f1, g1; f2, g2; . . . ; fn, gn) . (5)

2.1 The Blissard problem

Consider the formal exponential

eat =
∞∑
k=0

aktk

k!
=
∞∑
k=0

akt
k

k!
. (6)

associated with the umbral sequence a = {ak}, where

ak := ak, ∀k ≥ 0, a0 := 1, (7)

According to Blissard [25], the solution b = {bn}, of the umbral equation

eatebt = 1 (8)

is expressed by the Bell polynomials Yn(f1, g1; f2, g2; . . . ; fn, gn) as follows b0 := 1,

bn = Yn(−1!, a1; 2!, a2;−3!, a3; . . . ; (−1)nn!, an), (∀n > 0) .
(9)

At present, the Blissard symbolic method is called the umbral calculus, a term coined by J.J.

Sylvester.

The modern version of the umbral calculus is due to G.C. Rota and S. Roman [26, 27].

An extensive bibliography of this subject can be found in [7].

3. Basic definitions

In what follows, dealing with hypergeometric functions, and for typographical conve-

nience, we use for the rising factorial the Pochhammer symbol according to the notation:

(x)n =

 x(x+ 1) · · · (x+ n− 1) =
Γ(x+ n)

Γ(x)
, n ≥ 1 ,

1 , n = 0 .

(10)

As we never use in this article the falling factorial, this will not be misleading.

The Stirling numbers of the second kind are defined by

S(n, k) =
1

k!

k∑
m=0

(−1)k−m
(
k

m

)
mn . (11)
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We put, for brevity:

Tr(x) :=
r−1∑
`=0

x`

`!
, (12)

that is the rth partial sum of the exponential series, which is a polynomial of degree r − 1.

Then, the r-associate Stirling numbers of the second kind S(n, k; r) are defined by( ∞∑
`=r

x`

`!

)k
= (ex − Tr(x))k = k!

∞∑
n=rk

S(n, k; r)
xn

n!
. (13)

Of course, S(n, k; 1) = S(n, k). Note that

ex − Tr(x) =
xr

r!
1F1(1, r + 1, x) =

∞∑
n=0

1

(r + 1)n
xn . (14)

4. Hypergeometric Bernoulli polynomials

In what follows we use the definition by Booth and Hassen [1] for the generalized Bernoulli

polynomials, which is different from that introduced by Kurt [1] and in a previous article by

Natalini and Bernardini [19].

The hypergeometric Bernoulli polynomials are defined by the generating function:

xr

r!
etx

ex − Tr(x)
=

etx

1F1(1, r + 1, x)
=
∞∑
n=0

B[r−1, 1]
n (t)

xn

n!
. (15)

Remark 1. Note that, denoting by B[r−1]n (t) the polynomials introduced in [19], (ac-

cording to our notation the variables x and t are interchanged), they are linked to those in

equation (7) by means of the equation

r!B[r−1, 1]
n (t) = B[r−1]n (t) (16)

and similarly, for the generalized Bernoulli polynomials considered in [15], which are denoted

here by B[r−1, k]n (t), we have the relation:

(r!)k B[r−1, k]
n (t) = B[r−1, k]n (t) . (17)

4.1 The exponential generating function

Since

ex − Tr(x) =
∞∑
n=r

xn

n!
= xr

∞∑
n=0

1

(n+ r)!
xn ,
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and

xr

r!
etx

ex − Tr(x)
=

etx

r!
∞∑
n=0

1

(n+ r)!
xn

, (18)

we have the exponential generating function of the hypergeometric Bernoulli polynomials

B
[r−1, 1]
n (t)

etx

Γ(r + 1)
∞∑
n=0

1

Γ(n+ r + 1)
xn

=
∞∑
n=0

B[r−1, 1]
n (t)

xn

n!
. (19)

Remark 2. In what follows we give a method to derive explicit expressions for the

hypergeometric Bernoulli numbers of the second kind B
[r−1, 1]
n . This method is different from

that reported in [24], where, for general k, the S(n+r, k; r) and the hypergeometric Bernoulli

numbers of the second kind B
[r−1, k]
n have been considered. In fact in [24], Theorems 1 and

2, the expression of these numbers are given in terms of partitions, as in the case of Faà di

Bruno Formula for Bell polynomials.

4.2 Recursive computation of the 2nd kind hypergeometric Bernoulli numbers

In (19), putting t = 0, gives the exponential generating function [29, 30] of the generalized

hypergeometric Bernoulli numbers B
[r−1, 1]
n := B

[r−1, 1]
n (0):

∞∑
n=0

B[r−1, 1]
n

xn

n!
=

1

Γ(r + 1)
∞∑
n=0

1

Γ(n+ r + 1)
xn

, (20)

which is valid even for non integer (in particular for fractional) values of the parameter r.

From equation (20) we find:

∞∑
n=0

n∑
h=0

(
n

h

)
B

[r−1, 1]
n−h

h! Γ(r + 1)

Γ(h+ r + 1)

xn

n!
= 1,

and therefore

B
[r−1, 1]
0 = 1 ,

and for n = 1, 2, 3, . . . we find the B
[r−1, 1]
n numbers solving by recursion the triangular system:

n∑
h=0

(
n

h

)
B

[r−1, 1]
n−h

h! Γ(r + 1)

Γ(h+ r + 1)
= 0 .
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5. Representation in terms of Bell polynomials

According to the Blissard problem [25], the reciprocal of a Taylor series can be expressed

in terms of Bell polynomials. In fact, consider the sequences a := {ak} = (1, a1, a2, a3, . . . ),

and b := {bk} = (b0, b1, b2, b3, . . . ), and the function:

1
∞∑
h=0

ah
xh

h!

(t ≥ 0) .
(21)

Using the umbral formalism (that is, letting ak ≡ ak and bk ≡ bk), the solution of the

equation,

1
∞∑
n=0

antn

n!

=

∞∑
n=0

bntn

n!
, i.e. exp[a t] exp[b t] = 1 ,

(22)

is given by 
b0 := 1,

bn = Yn(−1!, a1; 2!, a2;−3!, a3; . . . ; (−1)nn!, an), (∀n > 0),

(23)

where Yn is the nth Bell polynomial [25].

The Bell polynomials are usually written in the form (2). By using this equation, the function

(21) can be rewritten as

1
∞∑
n=0

ant
n

n!

= 1 +
∞∑
n=1

n∑
h=1

(−1)hh!Bn,h(a1, a2, . . . , an−h+1)
tn

n!
.

(24)

It is convenient to introduce the definition

Cn(a) :=

n∑
h=1

(−1)hh!Bn,h(a1, a2, . . . , an−h+1) , C0(a) := 1 , (25)

so that equation (24) becomes

1
∞∑
n=0

ant
n

n!

=

∞∑
n=0

Cn(a)
tn

n!
.

(26)

Applying this result to equation (20), with

an =
n! Γ(r + 1)

Γ(n+ r + 1)
,
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we find our the result

Theorem 1. The 2nd kind hypergeometric Bernoulli numbers B
[r−1, 1]
n are expressed in

terms of Bell polynomials by the equation

B[r−1, 1]
n = Cn

(
n! Γ(r + 1)

Γ(n+ r + 1)

)
,

that is

B
[r−1, 1]
n =

n∑
h=1

(−1)hh!Bn,h

(
Γ(r + 1)

Γ(r + 2)
,
2! Γ(r + 1)

Γ(r + 3)
, . . . ,

(n− h+ 1)! Γ(r + 1)

Γ(n− h+ r + 2)

)

=
n∑

h=1

(−1)hh!Bn,h

(
1

(r + 1)
,

2!

(r + 1)2
, . . . ,

(n− h+ 1)!

(r + 1)n−h+1

)
.

(27)

Many representation formulas in terms of Bell’s polynomials are reported in [20].

6. Conclusion

Starting from some recent generalizations of Bernoulli polynomials we have introduced

in [24] a generalized hypergeometric versions of these polynomials and of the corresponding

r-associated Stirling numbers.

In the same article we have introduced values of these mathematical entities for rational

values of r, thus expanding the original definitions. In this way the combinatorial meaning

was lost [5], but, as in the case of the Gamma function, a significant extension was obtained.

In this article we have computed the hypergeometric Bernoulli numbers of the second kind

B
[r−1, 1]
n by recursion, avoiding the general definition, introduced in [24], making use of par-

titions. Then, exploiting the Blissard problem and Bell’s polynomials, we have shown an

expression of these Bernoulli-type numbers in terms of Bell polynomials.
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APPENDIX

Examples of hypergeometric Bernoulli numbers of the second kind for fractional values

of r are reported in the following table.
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