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ON A METHOD FOR SOLVING AN EQUATION OF VIBRATIONS OF A
VISCOUS-ELASTIC BEAM

Kurbanov N.T., Babajanova V.G., Aliyeva U.S.

Abstract. In the paper, a new solution of an integro-differential equation of vibrations of
linear visco-elasticity for arbitrary kernels at small viscosity was constructed in the form of a
series by the method of Laplace integral transformation and its convergence was proved.It was
shown that the first term of this series is an appropriate solution of the indicated equation
obtained by the well known averaging method. The originals of two terms of the series
were constructed and the influence of the second term on the solution for a specific kernel
was estimated.It was obtained that at low frequencies the influence of subsequent terms is
insignificant and they increase with increasing the frequency and the amplitude of all members
of the series decrease over time by exponential law, the phases are shifted.
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Introduction

Development of modern technology and industry requires a wide application of poly-
mer composite and other materials with pronounced rheological properties. The study of
physical and mechanical properties of these materials and analysis of their application in
industrial structures have shown the need to use the methods of theory of viscoelasticity
in strength analysis of appropriate constructions.Nonstationary dynamic problems that have
important practical applications in many fields of modern technology are especially difficult.
The problems on vibrations of viscoelastic systems and nonstationary wave problems should
be distinguished among dynamic problems of viscoelasticity. This fact led to the develop-
ment of numerical [1,2,3], approximate [4,5] , asymptotic [6,7] and other methods of solution.
One of these methods is the averaging method developed by A.A.Ilyushin and his staff [7,8]
in application to integro-differential equations [9,10,11]. İn the papers [9,10,12] the prob-
lems on vibrations of visco-elastic systems in which terminal solutions lead to the solution
of integro-differential equations and are implemented by the averaging method or by the
freezing method [10,11,13], and in the papers [13,14,15] by the continuation method.Hence
it is seen that the questions on studying the problems of vibrations of viscoelastic systems
remain insuficiently studied, therefore they are relevant and important problems for practical
application.

Statement of the problem

In the paper we consider a problem on lateral vibration of a viscoelastic beam of constant
cross section and whose ends are hingely fixed.

Assume that the axis OX is directed along the longitudinal symmetry axis of the beam at
rest and the vibrations of the beam can be described by the function w(x, t) that characterizes
at the moment of time t the lateral deviation of the point that has abscissa x in the equilibrium
position.
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Let the beam, starting from the moment of time t commits forced lateral vibrations in a
resistanceless sphere.

A mathematical problem on forced lateral vibrations of a viscoelastic beam in resistance-
less medium can be described by an integro-differential equation of the following form :

EJ

[
∂4w(x, t)

∂x4
−
∫ t

0
Γ(t− τ)

∂4w(x, t)

∂x4
dτ

]
+ ρF

∂2w(x, t)

∂t2
= q(x, t), (1)

where w(x, t) is the lateral displacement, ρ is the density of the material of the beam, F is the
beam’s cross-section considered to be constant, q(x, t) is a lateral load, J is the inertia moment
of the cross-section of the beam with respect to neutral axis of the section perpendicular to
the plane of vibrations, Γ(t) = −dR(t)

dt , R(t) is the relaxation function of the material of the
beam and contains a small parameter in its representation.

In order to determine a unique solution of the equation, at first two conditions should
be taken into account: the first to take into account the initial condition, the second to take
into account the nature of fastening the ends of the beam.

We take the initial conditions that cause vibrations in the form:

w(x, t) = u0;
∂w(x, t)

∂x
= v0 for t = 0, 0 < x < `. (2)

These conditions determine the deviation of the beam and speed at the initial moment of
time t = 0. Since the both end of the beam were hingely fixed, then the following boundary
conditions are fulfilled:

w(x, t) = 0 for x = 0 and x = `, (3)

∂2w(x, t)

∂x2
= 0, x = 0 and x = ` 0 ≤ t ≤ T. (4)

Condition (3) means that the ends of the viscoelastic beam have no displacements at any
moment of time t. Conditions (4) show that bending moments acting in the sections x = 0
and x = ` of the beam equal zero and we assume that boundary value problem (1)-(4) has a
solution.

We will look for the solution satisfying homogeneous boundary conditions (3) and (4) in
the form

w(x, t) =
∞∑
k=1

uk(x)zk(t). (5)

Having substituted the solution (6) in equation (1) and after some calculations we get
the following system of equations:

uIVk (x)− λ4
kuk(x) = 0, (6)

uk(0) = 0; u′′k(0) = 0 for x = 0,

uk(`) = 0; u′′k(`) = 0 for x = `.
(7)

The functions uk(x) determine the main forms of vibrations and we will consider them
orthogonal and somehow normalized. Since the boundary value problem (6) and (7) has
the eigenvalues λk = πk

` ; k = 1, 2 . . ., then their corresponding eigenfunctions uk(x) do not
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depend on the magnitude characterizing viscous resistance of the beam, and they will be
determined by the formula

uk(x) = sin
πk

`
x.

The functions zk(t) satisfy the integro-differential equation

z′′k(t) + εω2
kzk(t)− εω2

k

∫ t

0
Γ(t− ε)zk(τ)dτ = ω2

sqk(t) (8)

with the initial conditions

zk(0) = u
(k)
0 ; z′k(0) = v

(k)
0 , t = 0, (9)

where ω2
k = EJ

ρF λ
4
k, λ4

k forms a spectrum of fundamental number of the problem

qk(t) =
1

ω4
kρF

∫ `

0
q(x, t)uk(x)dx.

ε > 0 – is some small parameter.

If qk(t) is some periodic function of time t, then due to the linearity of the problem, it
is possible to individually look for the solution corresponding to each of Fourier-components
of this function and the sum of contributions made by each of the components is the desired
function zk(t).

Thus, the problem is reduced to solving integro-differential equation (8) under initial
conditions (9).

The solution of the integro-differential equation

Applying the Laplace transform to equation (8) allowing for (9) and omitting indices for
simplicity of notation we obtain:

z̄(p) =
pu0 + v0

p2 + ω2 − εω2Γ̄(p)
+

q̄(p)

p2 + ω2 − εω2Γ̄(p)
, (10)

where p is a Laplace transform operator, z̄(p) and Γ̄(p) are the Laplace images of the function
of the same name z(t) and Γ̄(t) respectively.

Here, in equation (10) the first summand corresponds to the free vibration and we denote
it by

ϕ̄(p) =
pu0 + v0

p2 + ω2 − εω2Γ̄(p)
. (11)

The second summand characterizes the forced vibration of the beam

ḡ(p) =
q̄(p)

p2 + ω2 − εω2Γ̄(p)
. (12)

At first we consider free vibrations of the beam, then q(t) = 0. Let us consider the
inequality ∣∣∣∣εω2Γ̄(p)

p2 + ω2

∣∣∣∣ < ε (13)

and determine the limits of its validity depending on the time change.
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Note that for small values of time t the parameter p is rather large and since we consider
the materials with instant elasticity, the image of the relaxation kernel Γ̄(p) with increasing
the parameter p tends to zero, therefore in this case inequality (13) remains valid for an
arbitrary ε. For other values of time we will use inequality [7]

0 ≤ ε
∫ t

0
Γ(τ)dτ << 1, εΓ(t) ≥ 0

established by A.A. Ilyushin, that is valid for any time t. It follows from the fact that rigid
polymers have little viscous resistance compared to the main one, elastic. Therefore, the
considered inequality will be valid for any time t.

Then we can expand formula (11) in an absolutely convergent series:

ϕ̄(p) =
pu0 + v0

p2 + ω2

∞∑
n=0

(
εω2Γ̄(p)

p2 + ω2

)n
. (14)

Applying the Laplace inverse transform to the expression εω2Γ̄(p)
p2+ω2 we find

L−1

{
ελ2Γ̄(p)

p2 + λ2

}
= ελ

∫ t

0
Γ (τ) sinλ (t− τ) dτ

= ελ sinλt

∫ t

0
Γ (τ) cosλτdτ − ελ cosλt

∫ t

0
Γ (τ) sinλτdτ

= ελ sinλt

∫ ∞
0

Γ (τ) cosλτdτ − ελ cosλt

∫ ∞
0

Γ (τ) sinλτdτ

−ελ sinλt

∫ ∞
t

Γ (τ) cosλτdτ − ελ cosλt

∫ ∞
t

Γ (τ) sinλτdτ

L−1

{
εω2Γ̄(p)

p2 + ω2

}
= εω Γc sinωt− εω Γs cosωt− εωM(t), (15)

where L−1 is Laplace’s inverse transform operator.

Γc =

∫ ∞
0

Γ(τ) cosωτdτ ; Γs =

∫ ∞
0

Γ(τ) sinωτ dτ,

M(t) =

∫ ∞
t

Γ(τ) sinω(t− τ)dτ.

Here the continuity of the function Γ(t) in the domain 0 ≤ t <∞ is taken into account.
Passing in the right hand side of formula (15) to the Laplace image, we find:

εω2Γ̄(p)

p2 + ω2
=
εω2Γc − εω pΓs − εω(p2 + ω2)M̄(p)

p2 + ω2

.
Taking into account the last formula in (14), we obtain

ϕ̄(p) =
pu0 + v0

ᾱ(p)− εω2β̄(p)
, (16)

where

ᾱ(p) =
(
p+

1

2
εω Γs

)2
+ ω2

(
1− 1

2
εΓc

)2
,
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β̄(p) = Γ̄(p) +
p

ω
Γs + Γc +

1

4
ε(Γ2

s + Γ2
c).

Here it is taken into account that the value
∣∣εω2β̄(p)

∣∣ will be as small as how small will
be |M(t)| for rather large values of time.

Similarly to the above, for the same values of time t and consequently of the parameter
p we can show the validity of the inequality∣∣∣∣εω2β̄(p)

ᾱ(p)

∣∣∣∣ < 1.

Taking this inequality into account, we expand formula (16) in the following absolutely
convergent series:

ϕ̄(p) =
pu0 + v0

ᾱ(p)

[
1 + εω2 β̄(p)

ᾱ(p)
+ ε2ω4 β̄

2(p)

ᾱ2(p)
+ ...

]
. (17)

Thus, we proved that formula (14) is equivalent to the formula (17), is equivalent to
the formula in more convenient in the sense of conversion and application. Note that if in
the denominator (16) or (17) we neglect the term εω2β̄(p), then we obtain the image of the
solution of equation (8) with appropriate initial conditions that is obtained by the averaging
method.

The original of the first term of the series (17) is of the form:

ϕ1(t) = exp
(
− 1

2εωΓst
)

[u0 cosω
(

1− 1
2εΓc

)
t

+
v0 − 1

2εΓsω

ω(1− 1
2εΓc)

· sinω(1− 1

2
εΓc)t].

(18)

This is the well-known solution to the problem (8)-(9) obtained by the averaging method
[10, 11, 12].

To find the original of the second approximation we represent it in the form:

ϕ2(t) = εω2ϕ1(t) ∗ L−1

{
β̄(p)

ᾱ(p)

}
. (19)

Here the asterisk means the convolution of functions

f(t) ∗ ψ(t) =

∫ t

0
f(t− τ)ψ(τ)dτ.

To restore the function L−1
{
β̄(p)
ᾱ(p)

}
we represent the ratio β̄(p)

ᾱ(p) in the following form

β̄(p)

ᾱ(p)
=

Γ̄(p)

ᾱ(p)
+

Γs
ω

p+m

ᾱ(p)
,

where

m =
Γc
Γs
ω +

εω

4Γs
(Γ2
s + Γ2

c)

then denoting

ψ̄(p) =
β̄(p)

ᾱ(p)
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hence we find

ψ(t) = Γ(t) ∗ exp
(
− 1

2
εω Γst

) 1

ω
(

1− 1

2
εE
) · sinω(1− 1

2
εΓc

)
t

+A exp
(
− 1

2
εω Γst

)
sin
[
ω
(

1− 1

2
εΓc

)
t+ θ

]
,

where

θ = arctg
ω
(

1− 1

2
εΓc

)
d− 1

2
εω Γs

,

A =
Γs
ω

√√√√√√1 +

(
m− 1

2
εωΓs

)2

ω2
(

1− 1

2
εΓc

)2 .

In this case the second approximation is found in the form:

ϕ2(t) = εω2ϕ1(t) ∗ ψ(t) (20)

Restoration of originals of the next approximations of series (17) is not difficult.

Equation (10) shows that at forced vibrations there appears the term ḡ(t), determined by
equation (12). The original of these expression is obtained by convoluting the function q(t)
with the expression [p2 + ω2 − εω Γ̄(p)]−1.

Represent the denominator of equation (12) in the form of the series

1

p2 + ω2 − εωΓ̄(p)
=
∞∑
m=0

(εωΓ̄(p))m

(p2 + ω2)m+1
. (21)

and introduce the following notation

L−1

[
Γ̄(p)

p2 + ω2

]
= 1

ω

∫ t
0 Γ(t− τ) sinωτdτ = F0(t),

L−1

[
ω2Γ̄(p)

(p2 + ω2)2

]
= ω

∫ t
0 F0(t− τ) sinωτdτ = F1(t),

..........................................................................

L−1

[
(ω2Γ̄(p))m

(p2 + ω2)m+1

]
= ω

∫ t
0 Fm−1(t− τ) sinωτdτ = Fm(t).

This time expression (21) corresponds to the original

L−1

[
1

p2 + ω2 − εωΓ̄(p)

]
=

1

ω
sinωt+ εF1(t) + ε2F1(t) + ...+ εmFm(t).

Then the original of the function ḡ(p) is determined by the expression

g(t) =
1

ω

∫ t

0
sinω(t− τ)q(τ)dτ + ε

∫ t

0
F1(t− τ)q(τ)dτ + ...+ εm

∫ t

0
Fm(t− τ)q(τ)dτ. (22)
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Thus, at first approximation for the forced vibrations, the function z1(t) is obtained by
summing the last expression with (18). It we take into account the second approximation,
then we find the function z2(t) by summing the expression (18), (20) and (22).

Analysis of the obtained solutions for a specific kernel

To estimate the influence of the second term ϕ2(t) of series (17) on the solution

z1(t) = ϕ1(t) + ϕ2(t)

we consider the Rzhanitsin kernel represented in the form

Γ(t) = εtα−1e−βt,

where 0 < α < 1, β is a constant, ε > 0 is some small parameter, and the values of the
functions ϕ1(t) and ϕ2(t) are calculated for the following values of the parameters α, β, ε, λ, u0

and v0. α = 0, 12, β = 0, 07, ε = 0, 9, λ = 10, λ = 100, u0 = 1, v0 = 0.
As a result, it was obtained that accounting of subsequent terms of series (17) improves

the accuracy of the solution. Since for small values of the frequency the error is small, with
increasing the frequency it increases. For λ = 100the amplitude of the second term of the
series for some values of time constitutes 15-20% of the amplitude of the first term and the
amplitudes of all terms of the series decrease exponentially over time and the phases are
shifted.

Conclusions

The solution of an integro-differential equation of vibrations of viscoelastic systems is
constructed in the form of a series. It is shown that the first term of this series is the solution
of the indicated equation obtained by the averaging method, and the subsequent terms give
clarification to this solution.

The solution obtained by the averaging method corresponds to the fact that in formula
(15) the term εωM(t) is neglected and this is valid for rather large values of time. Conse-
quently, for small values of time, the averaging method gives big errors.

Numerical calculation shows that for lower frequencies the error is insignificant, but with
increasing frequency it increases.
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