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ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF n-th ORDER EMDEN-FOWLER
TYPE DIFFERENCE EQUATIONS WITH DEVIATING ARGUMENT

Koplatadze R.

Abstract. The following difference equation is considered

∆(n)u(k) + p(k)
∣∣u(σ(k))

∣∣λ signu(σ(k)) = 0,

where n ≥ 2, λ > 1, p : N → R, σ : N → N and lim
k→+∞

σ(k) = +∞. Here ∆(0)u(k) = u(k),

∆(1)u(k) = u(k + 1)− u(k), ∆(i) = ∆(1) ◦∆(i−1) (i = 1, . . . , n).

Sufficient conditions of new type are established for oscillation of solutions.
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1. Introduction

This work deals with oscillatory properties of solutions of Emden-Fowler type difference
equation

∆(n)u(k) + p(k)
∣∣u(σ(k))

∣∣λ signu(σ(k)) = 0, (1.1)

where n ≥ 2, p : N→ R, σ : N→ N and

λ > 1, lim
k→+∞

σ(k) =∞ for k ∈ N. (1.2)

Here ∆(0)u(k) = u(k), ∆(1)u(k) = u(k + 1)− u(k), ∆(i) = ∆(1) ◦∆(i−1) (i = 1, . . . , n). It
will always be assumed that the conditions

p(k) ≥ 0 for k ∈ N, (1.3)

or

p(k) ≤ 0 for k ∈ N (1.4)

are fulfilled.

The following notation will be used throughout the work:

Let k0 ∈ N. By N+
k0

(N−k0
) we denote the set of natural numbers N+

k0
= {k0,k0 +1, . . . }

(N−k0
= {1,2, . . . ,k0}).

Definition 1.1. Let k0 ∈ N and k∗ = inf{min(k, σ(k)) : k ∈ Nk0}. We will call a
function u : Nk∗ → R a proper solution of equation (1.1), if it satisfies (1.1) on N+

k0
and

sup
{
|u(i)| : i ∈ N+

k

}
> 0 for any k ∈ N+

k0
.

Definition 1.2. We say that a proper solution u : N+
k0
→ R of equation (1.1) is

oscillatory, if for any k ∈ N+
k0

there exist k1; k2 ∈ N+
k such that u(k1)u(k2) ≤ 0. Otherwise

the solution is called nonoscillatory.
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Definition 1.3. We say that equation (1.1) has Property A if any of its proper solutions
is oscillatory when n is even and either is oscillatory or satisfies∣∣∆(i)u(k)

∣∣ ↓ 0 as k ↑ +∞, k ∈ N (i = 0, . . . ,n− 1), (1.5)

when n is odd.

Definition 1.4. We say that equation (1.1) has Property B if any of its proper solutions
is either oscillatory or satisfies (1.5) or∣∣∆(i)u(k)

∣∣ ↑ +∞ as k ↑ +∞, k ∈ N (i = 0, . . . ,n− 1) (1.6)

when n is even and is either oscillatory or satisfies (1.6) when n is odd.

Sufficient conditions higher order Emden-Fowler type difference equation to have property
A and B, when 0 < λ < 1 and σ(k) ≥ k + 1, can be found in [13]. Some results analogous
to those of the paper are given without proofs in [12]. The problem of establishing sufficient
condition for the oscillation of all solutions to the second order linear and nonlinear differ-
ence equations is considered in [16–18]. Analogous results for linear ordinary and nonlinear
functional differential equations can be found in [1–13].

Lemma 1.1 ([13]). Let u : N→ R, m; s ∈ N. Then

∆(i)u(k) =
m−1∑
j=i

∆(j)u(s)

(j − i)!

j−i∏
r=1

(k − s− r + 1)

+
1

(m− i− 1)!

k∑
j=s

j−i−1∏
r=1

(k − j − r + 1)∆(m)u(j − 1), (1.7)

i = 0, . . . ,m− 1 for k ∈ N+
s ,

where

∆(m)u(s− 1) = 0,

0∏
r=1

(k − s− r + 1) = 1

and

∆(i)u(k) =
m−1∑
j=i

∆(j)u(s)

(j − i)!

j−i∏
r=1

(k − s− r + 1)

− 1

(m− i− 1)!

s∑
j=k

m−i−1∏
r=1

(k − j − r + 1)∆(m)u(j), (1.8)

i = 0, . . . ,m− 1 for k ∈ N−s ,

where

∆(m)u(s) = 0,
0∏
r=1

(k − s− r + 1) = 1.
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Lemma 1.2 ([13]). Let u : N→ R, m; s ∈ N. Then the equality

k∑
i=s

im−j−1∆(m)u(i)

=
m−1∑
i=j

(−1)m+i−1∆(i)u(k + 1)∆(m−i−1)(s+ i+ 1−m)m−j−1

−
m−1∑
i=j

(−1)m+i−1∆(i)u(s+ 1)∆(m−i−1)(s+ i+ 1−m)m−j−1 for k ∈ N+
s (1.9)

holds, where

∆(m)u(s) = 0, (1.10)

and

−
s∑
i=k

(i+ 1)m−j−1∆(m)u(i+ 1)

=

m−1∑
i=j

(−1)m+i−1∆(i)u(k + 1)∆(m−i−1)(k + i+ 1−m)m−j−1

−
m−1∑
i=j

(−1)m+i−1∆(i)u(s+ 1)∆(m−i−1)(s+ i+ 1−m)m−j−1 for k ∈ N−s , (1.11)

where ∆(m)u(s+ 1) = 0.

2. On some classes of nonoscillatory discrete functions

Lemma 2.1. Let n ≥ 2, k0 ∈ N, u : N+
k0
→ R and u(k) > 0, ∆(n)u(k) ≤ 0 (∆(n)u(k) ≥

0) for k ∈ N+
k0

, ∆(n)u(k) 6≡ 0 for any s ∈ N+
k0

and k ∈ N+
s .Then there exist k1 ∈ N+

k0
and

` ∈ {0, . . . , n} such that `+ n is odd (`+ n is even) and

∆(i)u(k) > 0 for k ∈ N+
k1

(i = 0, . . . , `),

(−1)i+`∆(1)u(k) > 0 for k ∈ N+
k1

(i = `, . . . ,n− 1), (2.1)

(−1)n−`∆(n)u(k) ≥ 0 for k ∈ N+
k1
.

The lemma follows immediately from the fact that, if u(k) > 0 and ∆(2)u(k) ≤ 0 for
k ∈ N+

k0
, then there exists k1 ∈ N+

k0
, such that ∆(1)u(k) > 0 for k ∈ N+

k1
.

Lemma 2.2 ([13]). Let u : N→ R, k0;n ∈ N and

(−1)i∆(i)u(k) > 0 (i = 0, . . . , n− 1),

(−1)n∆(n)u(k) ≥ 0 for k ∈ N+
k0
.

(2.2)
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Then

+∞∑
k=1

kn−1
∣∣∆(n)u(k)

∣∣ < +∞, (2.3)

∣∣∆(i)u(k)
∣∣ ≥ 1

(n− i− 1)!

+∞∑
j=k

n−i−1∏
r=1

(j − k − r − 1)
∣∣∆(n)u(j)

∣∣ (2.4)

for k ∈ N+
k0
, (i = 0, . . . ,n− 1).

Lemma 2.3. Let u : N → R and let for some k0 ∈ N and ` ∈ {1, . . . , n − 1}, (2.1) be
fulfilled. Then

+∞∑
k=1

kn−`−1
∣∣∆(n)u(k)

∣∣ < +∞ (2.5)

and there exists k1 ∈ N+
k0

such that

∣∣∆(i)u(k)
∣∣ ≥ 1

(n− i− 1)!

+∞∑
j=k

n−i−1∏
r=1

(j + r − k − 1)
∣∣∆(n)u(j)

∣∣ (2.6)

for k ∈ N+
k1
, (i = `, . . . ,n− 1),

∆(i)u(k) ≥ ∆(i)u(k1) +
1

(`−i−1)!(n−`−1)!

k−1∑
s=k1

`−i−1∏
r=1

(
k+r−(1+s)

)
×

+∞∑
j=k

n−`−1∏
r=1

(
j + r − (1 + s)

)
)
∣∣∆(n)u(j)

∣∣ (2.7)

for k ∈ N+
k1+1 (j = 0, . . . , `− 1).

If in addition
+∞∑
k=1

kn−`
∣∣∆(n)u(k)

∣∣ = +∞, (2.8)

then
∆(`−i)u(k)
i−1∏
r=0

(k − r)
↓ , ∆(`−i)u(k)

i−1∏
r=1

(k − r)
↑ (2.9)

for large k,

u(k) ≥ 1 + o(1)

`!
k`−1∆(`−1)u(k) (2.10)

and

∆(`−1)u(k) ≥ k

(n− `− 1)!

+∞∑
i=k

in−`−1
∣∣∆(n)u(k)

∣∣
+

1

(n− `− 1)!

k∑
i=k1

in−`
∣∣∆(n)u(i)

∣∣ for k ∈ N+
k1
. (2.11)
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The proof of Lemma 2.3 in a slightly different way when ∆(n)u(k) ≤ 0 (∆(n)u(k) ≥ 0) is
given in [13] ([14]).

So below we present the complete proof of Lemma 2.3.

Proof of Lemma 2.3. Let s; k ∈ N+
k1

and s < k. Assume that (1.10) is fulfilled. By vitrue
of (2.1), from equality (1.9) with j = ` and m = n we have

k∑
i=s

(−1)n+`in−`−1∆(n)u(i)

=
n−1∑
i=`

(−1)`+i∆(i)u(s+ 1)∆(n−i−1)(s+ i+ 1− n)n−`−1

−
n−1∑
i=`

(−1)`+i∆(i)u(k + 1)∆(n−i−1)(k + i+ 1− n)n−`−1.

Therefore

k∑
i=s

in−`−1
∣∣∆(n)u(i)

∣∣ ≤ n−1∑
i=`

∣∣∆(i)u(s+ 1)
∣∣∆(n−i−1)(s+ i+ 1− n)n−`−1

−
n−1∑
i=`

(−1)`+i∆(i)u(k + 1)∆(n−i−1)(k + i+ 1− n)n−`−1 for k ∈ N+
s .

From the last inequality, with k → +∞, we obtain (2.5). The equality (1.11) also implies the
inequality

n−1∑
i=`

∣∣∆(i)u(k + 1)
∣∣∆(n−i−1)(k + i+ 1− n)n−`−1

≥
+∞∑
i=k

in−`−1
∣∣∆(n)u(i+ 1)

∣∣ for k ∈ N+
k1
. (2.12)

On account of (2.1) and (2.5), from (1.7) we obtain (2.6).
Analogously, equality (1.7) with s = k, and m = `, gives

∆(i)u(k) ≥ ∆(i)u(k1) +
1

(`− i− 1)!

k∑
i=k1

`−i−1∏
r=1

(k−j+r−1)∆(`)u(j − 1)

(i = 0, . . . , `− 1) for k ∈ N+
k1
.

Hence, by (2.6) we obtain (2.7). Using (2.1), from (1.9) with j = `−1 and m = n, for s = k1,
we have

∆(`−1)u(k) ≥ 1

(n− `)!

k∑
i=k1

sn−`
∣∣∆(n)u(i)

∣∣
+

1

(n− `)!

n−1∑
i=`

∣∣∆(i)u(k + 1)
∣∣∆(n−i−1)(k + i+ 1− n)n−`

+
1

(n− `)!

n−1∑
i=`−1

(−1)n+i−1∆(i)u(k1 + 1)∆(n−i−1)(k1+i+1−n)n−`.
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Therefore, according to (2.8), there exist k∗ > k1 such that

∆(`−1)u(k + 1) ≥ 1

(n− `)!

k∑
i=k∗

in−`
∣∣∆(n)u(i)

∣∣
+

1

(n− `)!

n−1∑
i=`

∣∣∆(i)u(k + 1)
∣∣∆(n−i−1)(k + i+ 1− n)n−`

for k ∈ N+
k∗ .

From the last inequality by (2.8) we have

∆(`−1)u(k + 1)− (k + `− 1− n)∆(`)u(k + 1)→ +∞ for k → +∞, (2.13)

and by (2.12) the inequality (2.11) holds.

Let k0 ∈ N and for any k ∈ N+
k0

and i ∈ {1, . . . , `} put

ρi(k) = i∆(`−n)u(k)− (k + 1− i)∆(`−n+1)u(k), (2.14)

γi(k) = (k − i)∆(`−n+1)u(k)− (1− i)∆(`−i)u(k). (2.15)

Applying (2.13) and L’Hôpital’s rule, we have

lim
k→+∞

∆(`−i)u(k)
i−1∏
i=1

(k − j)
= +∞ (j = 1, . . . , `). (2.16)

(Here it is meant that
0∏
j=1

(k − j) = 1).

Since

∆(1)

(
∆(`−i)u(k)
i−1∏
i=1

(k − j)

)
=

γi(k)
i−1∏
j=0

(k − j − 1)

,

by (2.16) there exist k` > · · · > k1 such that γi(ki) > 0 (i = 1, . . . , `). Therefore, by
(2.13) ρi(k) → +∞ as k → +∞, ∆(1)ρi+1(k) = ρi(k), ∆(1)γi+1(k) = γi(k) and γ1(k) =
(k − 1)∆(`)u(k) > 0 for k ∈ N+

k`
, we find that ρi(k) → +∞ as k → +∞ and γi(k) > 0 for

k ∈ N+
ki

(i = 1, . . . , `). This fact along with (2.13)–(2.16) proves (2.9).

On the other hand, since ρi(k)→ +∞ (i = 1, . . . , `), by (2.14), for large k we have

i∆(`−i)u(k) > (k + 1− i)∆(`−i+1)u(k) (i = 1, . . . , `),

which implies (2.10).

3. Necessary conditions for the existence of solutions of type (2.1)

The results of this section play an important role in establishing sufficient conditions for
equations (1.1) to have Properties A and B.

Let k0 ∈ N and ` ∈ {1, . . . , n− 1}. By U`,k0 we denote the set of all solutions of equation
(1.1) satisfying condition (2.1).
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Theorem 3.1. Let conditions (1.2), (1.3) ((1.4)) be fulfilled, ` ∈ {1, . . . , n−1} with `+n
odd (`+ n even) and

+∞∑
k=1

kn−`
(
σ(k)

)λ(`−1)∣∣p(k)
∣∣ = +∞. (3.1)

If, moreover, for some k0 ∈ N, U`,k0 6= ∅, then for any ε ∈ (0, λ] we have

+∞∑
k=1

kn−`
(
σ(k)

)λ(`−1)( σ̃(k)

k

)1+ε∣∣p(k)
∣∣ < +∞, (3.2)

where

σ̃(k) =

{
σ(k), σ(k) ≤ k,
k, σ(k) > k.

(3.3)

Proof. Let k0 ∈ N, ` ∈ {1, . . . , n − 1}, ` + n be odd (` + n be even) and U`,k0 6= ∅.
By definition of the set U`,k0 , equation (1.1) has a proper solution u ∈ U`,k0 satisfying the
condition (2.1). By (1.1), (2.1) and (3.1) it is clear that condition (2.8) holds. Thus, by
Lemma 2.3, (2.5)–(2.11) are fulfilled and by (1.1) and (2.10), from (2.11) we get

∆(`−1)u(k) ≥ k

2`!(`− 1)!

+∞∑
i=k

in−`−1
(
σ(i)

)λ(`−1)(
∆(`−1)u

(
σ(i)

))λ∣∣p(i)∣∣
+

1

2`!(n− `)!

k∑
i=k∗

in−`
(
σ(i)

)λ(`−1)(
∆(`−1)(σ(i)

))λ∣∣p(i)∣∣ (3.4)

for k ∈ N+
k∗
,

where k∗ is a sufficiently large natural number. Therefore, from (3.4) we have

∆(`−1)u(k) ≥ 1

2`!(n− `)!

k∑
i=k∗

in−`
(
σ(i)

)λ(`−1)(
∆(`−1)(u(σ̃(i))

))1+ε∣∣p(i)∣∣
=

1

2`!(n− `)!

k∑
i=k∗

in−`
(
σ(i)

)λ(`−1)(
σ̃(i)

)1+ε
×
(∆(`−1)u(σ̃(i))

σ̃(i)

)1+ε
|p(i)|, where ε ∈ (0, λ). (3.5)

Since
∆(`−1)u(k)

k
↓, from (3.5) we get

∆(`−1)u(k) ≥ 1

2`!(n− `)!

k∑
i=k∗

in−`
(
σ(i)

)λ(`−1)( σ̃(i)

i

)1+ε
|p(i)|

×
(
∆(`−1)k(i)

)1+ε
for k ∈ N+

k∗
. (3.6)

By (3.1), there exists k1 ∈ N+
kn

such that

k1∑
i=k∗

in−`
∣∣p(i)∣∣(σ(i)

)λ(`−1)( σ̃(i)

i

)1+ε(
∆(`−1)u(i)

)1+ε
> 0.
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Therefore, from (3.6) we get

∆(`−1)u(k)
k∑

i=k∗

in−`
∣∣p(i)∣∣(σ(i)

)λ(`−1)( σ̃(i)

i

)1+ε(
∆

(`−1)
u(ε)

)1+ε ≥ 1

2`!(n− `)!

for k ∈ N+
k1
.

From the last inequality we have(
∆(`−1)u(k)

)1+ε( k∑
i=k∗

in−`
∣∣p(i)∣∣(σ(i)

)λ(`−1)( σ̃(i)

i

)1+ε(
∆(`−1)u(ε)

)1+ε)1+ε ≥ 1(
2`!(n− `)!

)1+ε
for k ∈ N+

k1
.

Therefore

k∑
s=k1

(
∆(`−1)u(s)

)1+ε
sn−`

∣∣p(s)∣∣(σ(s)
)λ(`−1)( σ̃(s)

s

)1+ε
( s∑
i=k∗

in−`
∣∣p(i)∣∣(σ(i)

)λ(`−1)( σ̃(i)

i

)1+ε(
∆(`−1)u(i)

)1+ε)1+ε
≥ 1

(2`!(n− `)!)1+ε
k∑

s=k1

sn−`
∣∣p(s)∣∣(σ(s)

)λ(`−1)( σ̃(s)

s

)1+ε
, (3.7)

for k ∈ N+
k1
.

Denote

as =
s∑

i=k∗

in−`
∣∣p(i)∣∣(σ(i)

)λ(`−1)(σ(i)

i

)1+ε(
∆(`−1)u(i)

)1+ε
.

From (3.7) we get

k∑
s=k1

as − as−1
(as)1+ε

≥ 1(
2`!(n− `)!

)1+ε k∑
s=k1

sn−`
∣∣p(s)∣∣(σ(s)

)λ(`−1)( σ̃(s)

s

)1+ε
(3.8)

for k ∈ N+
k1
.

Since

k∑
s=k1

(as)
−1−ε(as − as−1) =

k∑
s=k1

(as)
−1−ε

∫ as

as−1

dt

≤
k∑

s=k1

∫ as

as−1

t−1−εdt =

∫ ak

as−1

t−1−εdt =
aεk1−1
ε
−
a−εk
ε
≤ 1

εak1−1
, k ∈ N+

k1
,

from (3.8) we get

k∑
s=k1

sn−`
∣∣p(s)∣∣(σ(s)

)λ(`−1)( σ̃(s)

s

)1+ε
≤ (2`!(n− `)!)1+ε

εak1−1
, k ∈ N+

k1
.
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Thus from the last inequality

+∞∑
s=k1

sn−`
∣∣p(s)∣∣(σ(s)

)λ(`−1)( σ̃(s)

s

)1+ε
< +∞,

which proves the validity of the theorem.

4. Sufficient conditions of nonexistence of solutions of type (2.1)

Theorem 4.1. Let conditions (1.2), (1.3) ((1.4)) be fulfilled, ` ∈ {1, . . . , n− 1} `+ n by
odd (`+ n by even) and (3.1) hold. If, moreover, for some ε ∈ (0, λ]

+∞∑
k=1

kn−`
(
σ(k)

)λ(`−1)( σ̃(k)

k

)1+ε∣∣p(k)
∣∣ = +∞, (4.1)

then for any k0 ∈ N, U`,k0 = ∅, where σ̃ is defined by (3.3).

Proof. Assume the contrary. Let there exist k0 ∈ N such that U`,k0 6= ∅. Thus equation
(1.1) has a proper solution u : N+

k0
→ (0,+∞), satisfying (2.1).

Since conditions of Theorem 3.1 are fulfilled, (3.2) holds for any ε ∈ (0, λ], which contra-
dicts (4.1). The obtained contradiction proves the validity of the theorem.

From this theorem if σ(k) ≤ k, immediately follow

Corollary 4.1. Let conditions (1.2), (1.3) ((1.4)) be fulfilled, ` ∈ {1, . . . , n − 1}, ` + n
be odd (`+ n be even) and (3.1) hold. Then for any k0 ∈ N, U`,k0 = ∅.

5. Difference equations with Property A

Theorem 5.1 Let conditions (1.2), (1.3) be fulfilled and for any ` ∈ {1, . . . , n− 1} with
`+ n be odd, let for some ε ∈ (0, λ) (4.1) hold as well and when n is odd

+∞∑
k=1

kn−1p(k) = +∞. (5.1)

Then equation (1.1) has Property A.

Proof. Let equation (1.1) have a proper nonoscillatory solution u : N+
k0
→ (0,+∞)

(the case u(k) < 0 is similar). Then by (1.1), (1.3) and Lemma 2.1 there exists
` ∈ {0, . . . , n− 1} such that `+ n odd and condition (2.1) holds. Since the conditions
of the Theorem 4.1 are fulfilled, for any ` ∈ {1, . . . , n− 1} with ` + n is odd, we have
` 6∈ {1, . . . , n − 1}. Therefore n is odd and ` = 0. Then we will show that condition
(1.5) hold.

If that is not the case, there exist c > 0 such that u(k) ≥ c for sufficiently large k.
According to (2.1), with ` = 0, from (1.1) we have

k∑
i=k0

in−1∆(n)u(i) + cλ
k∑

i=k0

in−1p(i) ≤ 0, for k ∈ N+
k0
, (5.2)

where k0 ∈ N is a sufficiently large natural number.
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On the other hand, by the identity

k∑
i=k0

in−1∆(n)u(i) = kn−1∆(n−1)u(k + 1)− (k0 − 1)n−1∆(n−1)u(k0)

−
k∑

i=k0

∆(n−1)u(i)∆(i− 1)n−1

it is easy to show that

k∑
i=k0

in−1∆(n)u(i) =
n−1∑
i=0

(−1)i∆(i)(k − j)n−1∆(n−i−1)u(k + 1)

−
n−1∑
i=0

(−1)i(k0 − i− 1)n−i−1∆(n−i−1)u(k0).

Since (−1)i∆(i)u(k) ≥ 0, from (5.2) we have

cλ
k∑

i=k0

in−1p(i) ≤
n−1∑
i=0

(k0 − i− 1)n−i−1
∣∣∆(n−i−1)u(k0)

∣∣.
Therefore

+∞∑
i=1

in−1p(i) < +∞,

which contradicts condition (5.1). Therefore, equation (1.1) has Property A.
Theorem 5.2. Let conditions (1.2), (1.3) be fulfilled and

lim inf
k→+∞

σλ(k)

k
> 0. (5.3)

Then for some ε ∈ (0, λ) the condition

+∞∑
k=1

kn−2−ε
(
σ̃(k)

)1+ε
p(k) = +∞, (5.4)

for even n and the condition (5.1) and

+∞∑
k=1

kn−3−εσλ(k)
(
σ̃(k)

)1+ε
p(k) = +∞, (5.5)

for odd n is sufficient for equation (1.1) to have Property A.
Proof. It is obvious that, according to (5.1)–(5.4) for any ` ∈ {1, . . . , n−1}, where

`+n is odd, all conditions of Theorem 5.1 are fulfilled, which proves the validity of the
theorem.
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Theorem 5.3. Let conditions (1.2), (1.3) be fulfilled and

lim sup
k→+∞

σλ(k)

k
< +∞. (5.6)

Then for equation (1.1) to have Property A it is sufficient that for some ε ∈ (0, λ)

+∞∑
k=1

k−ε
(
σ(k)

)λ(n−2)(
σ̃(k)

)1+ε
p(k) = +∞. (5.7)

Proof. It is obvious that by (5.5) and (5.6) all conditions of Theorem 5.1 are
fulfilled, which proves the validity of the theorem.

6. Difference equations with Property B

Theorem 6.1. Let conditions (1.2), (1.4) be fulfilled for any ` ∈ {1, . . . , n − 2}
with `+ n even, let as well as for some ε ∈ (0, λ), (4.1) hold and

+∞∑
k=1

(
σ(k)

)λ(n−1)∣∣p(k)
∣∣ = +∞. (6.1)

If moreover, for even n
+∞∑
k=1

kn−1
∣∣p(k)

∣∣ = +∞, (6.2)

then equation (1.1) has Property B.
Proof. Let equation (1.1) have a proper nonoscillatory solution u : Nk0 →

(0,+∞). By (1.1), (1.2) and Lemma 2.1, there exists ` ∈ {0, . . . , n} such that `+ n is
even and condition (2.1) holds. Since the conditions of Theorem 4.1 are fulfilled, for
any ` ∈ {1, . . . , n− 2} with `+ n is even, we have ` 6∈ {1, . . . , n− 2}. Therefore ` = n,
or ` = 0 and n is even.

Assume that ` = n. To complete the proof, it suffices to show that (1.4) is valid.

From (2.1) with ` = n, we have u
(
σ(k)

)
≥ c
(
σ(k)

)n−1
for k ∈ N+

k1
, where c > 0 and

k1 ∈ N+
k0

is a sufficiently large natural number. Therefore, by (1.2), (6.1) and (2.1),
when p = n, from (1.1) we get

∆(n−1)u(k) ≥ ∆(n−1)(k1) + cλ
k∑
i=1

∣∣p(i)∣∣(σ(i)
)λ(n−1) → +∞

for k → +∞.

Now assume that n is even and ` = 0. In is case, analogously of Theorem 5.1, we
show that conditions (1.3) hold. Therefore, equation (1.1) has Property B.

Theorem 6.2. Let conditions (1.2), (1.4), (5.2) be fulfilled and for some ε ∈ (0, λ)
condition (5.3) for odd n and (5.4) for even n are fulfilled. If, moreover (6.1) is fulfilled,
then equation (1.1) has Property B.
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Proof. It is obvious that by (5.3) and (5.4) all conditions of Theorem 6.1 are
fulfilled which proves the validity of the theorem.

Theorem 6.3. Let conditions (1.2), (1.4), (6.1) and for even n (6.2) be fulfilled.
If moreover (5.5) and for some ε ∈ (0, λ)

+∞∑
k=1

kn−1
(
σ(k)

)n−3(
σ̃(k)

)1+ε
= +∞. (6.3)

are fulfilled, then equation (1.1) has Property B.
Proof. According to (5.5) and (6.3) it obvious that for any ` ∈ {1, . . . , n− 2}, for

some ε ∈ (0, λ) conditions (4.1) are fulfilled. That is, all conditions of Theorem 6.1 are
fulfilled, which proves the validity of the theorem.
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