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1. Introduction

The present paper considers the 3D linear thermoelastic diffusion theory with microtem-
peratures and microconcentrations. The theory of thermoelasticity with microtemperatures
is a good model to explain the thermal conduction in microelements. However, the research
confirmed that the field of diffusion in solids cannot be ignored. The processes of heat and
mass diffusion, also basic problems of thermoelastic theory, play an important role in many
engineering applications, such as satellite problems, aircraft landing on water or land, the
oil extraction, etc. Therefore, to study basic problems of thermoelasticity for materials with
diffusion, microtemperatures and microconcentrations have considerable attention.

Below, we will consider a few works, which give the main results and bibliographical data.
The theoretical works in the field of thermodiffusion theory, was establish by Nowacki [1] and
developed later by Sherief et.al. [2]. The linear theory of thermoelasticity for materials with
the classical displacement and temperature fields, possess microtemperatures, was established
by Grot [3]. He extended the thermodynamics of a continuum with microstructure so that
the point of generic microelements are assumed to have different temperatures. He supposed
that the inverse of the microelement temperature is a linear function of microcoordinates.
Ieşan and Quintanilla in [4] have developed the linear theory of thermoelastic materials with
microtemperatures,in which the particles are subjected to classical displacement, tempera-
ture fields and mass diffusion fields and whose microelements possess micro-temperatures and
micro-concentrations. The Clausius-Duhem inequality is modified to include microtempera-
tures. The first-order energy equations are added to the balance laws of a continuum with
microstructure, have formulated the boundary value problems and presented an uniqueness
result, by Bazarra et al. in [5] proposed dynamical problem for thermoelastic body with
diffusion whose microelements are assumed to possess microtemperatures and microconcen-
trations.In [6] by Aouadi et al. is considered with a nonlinear theory of thermodinamics for
elastic materials in which particles are subjected to classical displacement, temperature and
mass diffusion fields and whose microelements posses microtemperatures and microconcentra-
tions. The equations of the linear theory are also obtained. This work represents a first step
to provide a consistent theory of thermoelastic duffusion materials with microtemperatures
and microconcentrations. It is shown that there exist coupling between temperature, chem-
ical potential, microtemperatures and microconcentrations even for isotropic bodies. (see
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references therein). Many researchers have studied the problems of thermoelasticity theory
for isotropic elastic bodies with microstructures, by applying different methods such as an
analytical, numerical and the complex variable technique to investigate the two-dimensional
and three-dimensional boundary value problems of the theory of thermoelasticity (see for
example [7]-[30] and reference therein).

In the present paper an explicit solution of the Neumann type BVP for an isotropic
space with a spherical cavity with diffusion, microtemperatures and microconcentrations is
presented. The obtained solution of the considered BVP is represented as absolutely and
uniformly convergent series.

2. Basic equations and boundary value problem

Let x = (x1, x2, x3) be a point of the Euclidean 3D space E3. Let us assume that the
isotropic elastic ball D+ ∈ E3, with center at the origin, be bounded by the spherical surface
S of radius R.

Let us assume that the domain D+ is composed of isotropic thermoelastic materials with
diffusion, microtemperatures and microconcentrations.

The basic homogeneous system of equilibrium equations for isotropic and thermoelastic
body with diffusion, microtemperatures and microconcentrations may be written as [5],[6]:

µ∆u+ (λ+ µ) graddiv u− γ1grad θ − γ2 grad P = 0, (1)

k∗∆θ + k∗1div T = 0, (2)

h∗∆P + h1div C = 0, (3)

k6∆T+ (k4 + k5) grad div T− k3 grad θ − k2T = 0, (4)

h6∆h5) graddiv C− h3 grad P − h2C = 0, (5)

where u := (u1, u2, u3)
⊤ denotes the displacement vector in a solid, λ, µ, kj , hj , k

∗k∗1, rep-
resent material constants, T := (T1, T2, T3)

⊤ and C = (C1, C2, C3)
⊤. Tj and Cj are called

microtemperatures and microconcentrations, respectively. P is the particle chemical poten-
tial, ∆ is the 3D Laplace operator. Throughout this paper the superscript ⊤ stands for the
transpose operation.

We assume that the following conditions are fulfilled:

µ > 0, k∗ > 0, k4 + k5 > 0, k6 − k5 > 0,
4kk2
T0

−
(
k1
T0

+ k3

)2

> 0,

h∗ > 0, k6 > 0, h6 > 0, k2 > 0, h2 > 0, 4hh2 − (h1 + h3)
2 > 0,

3λ+ 2µ > 0, h4 + h5 > 0, 2k4 + k4 + k6 > 0, k6 + k5 > 0.

Definition. A vector-function U = (u, θ, P,T,C) defined in the domain D+ is called
regular if

U ∈ C2(D+) ∩ C1(D+)

For the equations (1)-(5) we consider the following BVP.



The Dirichlet BVP of Thermoelastic Diffusion Theory with ... 5

Problem 1. Find a regular solution U(x) to the equations (1)-(5) in D+, satisfying the
following boundary conditions on S :

u+ = f+(z), θ+ = f+4 (z), P+ = f+5 (z),

T+ = F+(z), C+ = Φ+(z), z ∈ S,

where the vector-functions f(f1, f2, f3), F(F1, F2, F3), Φ(Φ1,Φ2,Φ3) and the functions
f, fj (j = 4, 5), are given functions on S.

The following assertion holds .

Theorem 1. The Problem 1 has one regular solution in D+.

Theorem 1 can be proven similar to the uniqueness theorem in [12](see Appendix in [12]).

3. Preliminaries-auxiliary results

The following theorem holds:

Theorem 2. The regular solutions of equations (2),(4), admit in the domain D+ a
representation (for details see in [8])

T(x) = −grad

(
k3
k2
ϑ(x) +

k∗

k∗1
ϑ1(x)

)
+ c rotφ3(x),

θ(x) = ϑ(x) + ϑ1(x), x ∈ D−, x ∈ D−,

(6)

where 

∆ϑ = 0, (∆− s21)ϑ1 = 0, (∆− s22)φ
3 = 0, divφ3 = 0,

s21 =
kk2 − k1k3

kk7
> 0, s22 =

k2
k6

> 0, c = −k6
k2
, divT = −k

∗

k∗1
s21ϑ1,

φ3(x) = [x · ∇]φ3(x) + rot[x.∇]φ4(x), (∆− s22)φj = 0, j = 3, 4.

(7)

In addition, if ∫
S(0,a1)

φjds = 0, j = 3, 4,

where S(0, a1) ⊂ D+ is an arbitrary spherical surface with radius a1, between the vector (T, θ)
and the functions ϑ, ϑ1, φj , j = 3, 4, there exist one-to-one correspondence.

Remark. The solutions of Eqs. (2) and (4) can be rewritten in the following form
T(x) = −grad

(
k3
k2
ϑ(x) +

k∗

k∗1
ϑ1(x)

)
+ [x · ∇]φ4(x) + c rot[x · ∇]φ3(x),

θ(x) = ϑ(x) + ϑ1(x), x ∈ D+.

(8)

Quite similarly, it is not difficult to prove the following assertion:
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Theorem 3. The regular solutions of equations (3),(5), admit in the domain D+ a
representation

C(x) = −
(
h3
h2

gradp(x) +
h∗

h1
gradp1(x)

)
+ c1 rotφ

4(x)

= −
(
h3
h2

gradp(x) +
h∗

h1
gradp1(x)

)
+ [x · ∇]φ6(x) + c1 rot[x · ∇]φ5(x),

P (x) = p(x) + p1(x), x ∈ D+,

(9)

where

∆p = 0, (∆− υ21)p1 = 0, (∆− υ22)φ
4 = 0, divφ4 = 0,

υ21 =
h∗h2 − h1h3

h∗h7
> 0, υ22 =

h2
h6

> 0, c1 = −h6
h2
, divC = −h

∗

h1
ν21p1,

φ4(x) = [x · ∇]φ5(x) + rot[x.∇]φ6(x), (∆− ν22)φj = 0, j = 5, 6.

(10)

In addition, if ∫
S(0,a1)

φjds = 0, j = 5, 6,

where S(0, a1) ⊂ D+ is an arbitrary spherical surface with radius a1, between the vector
(C, P ) and the functions p, p1, φj , j = 5, 6, there exist one-to-one correspondence.

Theorem 4. The regular solution U = (u, θ, P,T,C) of equations (1)- (5) admits in the
domain of regularity a representation

u = Ψ+ grad

[
−λ+ µ

µ
ψ0 +

γ1
µ
ϑ0 +

γ2
µ
p0 +

γ1
µ0s21

ϑ1 +
γ2
µ0ν21

p1

]
,

T(x) = −grad

(
k3
k2
ϑ(x) +

k∗

k∗1
ϑ1(x)

)
+ [x · ∇]φ4(x) + c rot[x · ∇]φ3(x),

C(x) = −grad

(
h3
h2
p(x) + grad

h∗

h1
p1(x)

)
+ [x · ∇]φ6(x) + c1 rot[x · ∇]φ5(x),

θ(x) = ϑ(x) + ϑ1(x), P (x) = p(x) + p1(x).

(11)

where the functions ψ0, ϑ0 and p0 are chosen such that

∆ψ0 = ψ, ∆ϑ0 = ϑ, ∆p0 = p, ∆ψ = 0, µ0 = λ+ 2µ, .

Herein it is assumed that, the functions Ψ, divΨ, ψ, ϑ, p, ϑ1, p1 and divu are
interrelated by the following relations

∆Ψ = 0, divΨ =
µ0
µ
ψ − γ1

µ
ϑ− γ2

µ
p, divu = ψ +

γ1
µ0
ϑ1 +

γ2
µ0
p1.

It is obvious that the representation of a solution of u contains a harmonic, bi-harmonic,
and a meta-harmonic functions, while the representations of θ, P, T and C contain only
a harmonic and a meta-harmonic functions.
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Let us introduce the spherical coordinates equalities:

x1 = ρ sin ξ cos η, x2 = ρ sin ξ sin η, x3 = ρ cos ξ, x ∈ D+,

y1 = R sin ξ0 cos η0, y2 = R sin ξ0 sin η0, y3 = R cos ξ0, y ∈ S,

|x| = ρ =
√
x21 + x22 + x23, 0 ≤ ξ ≤ π, 0 ≤ η ≤ 2π.

The scalar product and the vector product of the two vectors g and q are denoted by

(g · q) =
3∑

k=0

gkqk and [g · q], respectively. The operator
∂

∂Sk(x)
is defined as follows:

[x · ∇]k =
∂

∂Sk(x)
, k = 1, 2, 3, ∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

The following identities are true

λdivu− γ1θ − γ2P = λψ − γ1ϑ− γ2p−
2µ

µ0
(γ1ϑ1 + γ2p1),

µ0divu− γ1θ − γ2P = µ0ψ − γ1ϑ− γ2p.

Below we use the following identities:[29]
(x · grad) = ρ

∂

∂ρ
,

∂

∂Sk

∂

∂xk
=

∂

∂xk

∂

∂Sk
,

3∑
k=1

∂

∂Sk

∂

∂xk
= 0,

(x · rotg) =
3∑

k=1

∂

∂Sk
gk,

3∑
k=1

∂

∂Sk
(rot[x · ∇]h)k = 0.

(12)

If gm is the spherical harmonic, then

3∑
k=0

∂2gm(x)

∂S2
k(x)

= −m(m+ 1)gm(x).

For convenience of writing down let us introduce the following functions:

(x · f)+ = q+1 , (divu)+ = q+2 , (
3∑

k=1

∂uk
∂Sk(z)

)+ = q+3 ,

(x · F)+ = q+4 , (divT)+k = q+5 ,
3∑

k=1

(
∂Tk

∂Sk(z)

)+

= q+6 ,

(x ·Φ)+ = q+7 , (divC)+k = q+8 ,
3∑

k=1

(
∂Ck

∂Sk(z)

)+

= q+9 .

(13)

Let us assume that the functions qk, k = 1, 2.., 9, be representable in the form of the series:

qk(y) =
∞∑
n=0

qkn(ξ0, η0),

where qkn k = 1, 2, .., 11 are the spherical harmonics of order n :

qkn =
2n+ 1

4πR2

∫∫
S

Pn(cos γ)qk(y)dSy,
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Pn is a Legender polynomial of the n-th order, γ is an angle formed by the radius-vectors Ox
and Oy,

cos γ =
1

|x||y|

3∑
k=1

xkyk.

4. Explicit solution of Problem 1

In this section are present a method of construction an explicit solution to the Problem
1 in details, which may be employed in the study of the other basic BVPs.

Taking into account the identity (x · grad) = ρ
∂

∂ρ
, from (11) we get

(x · u) = (x ·Ψ)+ +R
∂X

∂ρ
,

X = −λ+ µ

µ
ψ0 +

γ1
µ
ϑ0 +

γ2
µ
p0 +

γ1
µ0s21

ϑ1 +
γ2
µ0ν21

p1.

For the function (x ·Ψ) we shall have

∆(x ·Ψ) = 2divΨ = 2

(
µ0
µ
ψ − γ1

µ
ϑ− γ2

µ
p

)
,

the solution of which has the form

(x ·Ψ) = Ω + 2

(
µ0
µ
ψ0 −

γ1
µ
ϑ0 −

γ2
µ
p0

)
, (14)

where Ω is an arbitrary harmonic function ∆Ω = 0. Thus we obtain

(x · u) = Ω + 2

(
µ0
µ
ψ0 −

γ1
µ
ϑ0 −

γ2
µ
p0

)+

+R
∂X

∂ρ
,

(x ·T) = −ρ ∂
∂ρ

(
k3
k2
ϑ(x) +

k∗

k∗1
ϑ1(x)

)
+ c

3∑
k=1

∂2φ3

∂S2
k(x)

,

(x ·C) = −ρ ∂
∂ρ

(
h3
h2
p(x) +

h∗

h1
p1(x)

)
+ c1

3∑
k=1

∂2φ5

∂S2
k(x)

,

divu = ψ +
γ1
µ0
ϑ1 +

γ2
µ0
p1, divT = −k

∗

k∗1
s21ϑ1,

3∑
k=1

∂uk
∂Sk(z)

=
3∑

k=1

∂Ψk

∂Sk(z)
,

3∑
k=1

∂Tk
∂Sk(x)

=
3∑

k=1

∂2φ4

∂S2
k(x)

divC = −h
∗

h1
υ21p1,

3∑
k=1

∂Ck

∂Sk(x)
=

3∑
k=1

∂2φ6

∂S2
k(x)

,

θ = ϑ1 + ϑ, P = p+ p1.
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Passing to the limit as ρ → R, for determining the unknown values, we obtain the following
systems of algebraic equations



Ω+ + 2

(
µ0
µ
ψ0 −

γ1
µ
ϑ0 −

γ2
µ
p0

)+

+

(
R
∂X

∂ρ

)+

= q+1 ,

−R ∂

∂ρ

(
k3
k2
ϑ(x) +

k∗

k∗1
ϑ1(x)

)+

+ c

[
3∑

k=1

∂2φ3

∂S2
k(x)

]+

= q+4 ,

−R ∂

∂ρ

(
h3
h2
p(x) +

h∗

h1
p1(x)

)+

+ c1

[
3∑

k=1

∂2φ5

∂S2
k(x)

]+

= q+7 ,

(15)



ψ +
γ1
µ0
ϑ1 +

γ2
µ0
p1 = q+2 , −k

∗

k∗1
s21ϑ1 = q+5 ,

3∑
k=1

∂Ψk

∂Sk(z)
= q+3 ,

3∑
k=1

∂2φ4

∂S2
k(x)

= q+6 , −h
∗

h1
ν21p1 = q+8 ,

3∑
k=1

∂2φ6

∂S2
k(x)

= q+9 ,

ϑ1 + ϑ = f+4 , p+ p1 = f+5 , ρ = R.

(16)

Let the functions ϑ, p, φj(x), j = 3, 4, 5, 6, ϑ1, p1,
3∑

k=1

∂Ψk

∂Sk(z)
be sought in the form



ϑ =
∞∑

m=0

ρm

Rm
Ym, ϑ1 =

∞∑
m=0

ϕm(is1ρ)Y1m, p =
∞∑

m=0

ρm

Rm
Zm,

p1 =
∞∑

m=0
ϕm(iν1ρ)Z1m, Ω =

∞∑
m=0

ρm

Rm
Y2m, ψ =

∞∑
m=0

ρm

Rm
Y3m,

φj =
∞∑

m=0
ϕm(is2ρ)Zjm, j = 3, 4, φj =

∞∑
m=0

ϕm(iν2ρ)Zjm, j = 5, 6,

3∑
k=1

∂Ψk

∂Sk(z)
=

∞∑
m=0

ρm

Rm
Y4m,

(17)

where

ϕm(iskρ) =

√
RJm+ 1

2
(iskρ)

√
ρJm+ 1

2
(iskR)

, ϕm(iυkρ) =

√
RJm+ 1

2
(iυkρ)

√
ρJm+ 1

2
(iυkR)

, k = 1, 2,

Ym(θ, φ), Zm(θ, φ) , ... are the spherical harmonics of order m.

Taking into account (17), we can write the particular solutions of equations ∆ϑ0 =
ϑ, ∆ψ0 = ψ and ∆p0 = p in the following form
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

ψ0 =
ρ2

2

∞∑
m=0

ρm

Rm(3 + 2m)
Y3m,

ϑ0 =
ρ2

2

∞∑
m=0

ρm

Rm(3 + 2m)
Ym,

p0 =
ρ2

2

∞∑
m=0

ρm

Rm(3 + 2m)
Zm.

(18)

Remark. The conditions
∫

S(0,a1)

φjds = 0 j = 3, 4, 5, 6 in fact mean that

q90 = q60 = 0, G2n = 0, G3n = 0, Z30 = Z50 = 0.

Using (17) in (15) and (16), we obtain the system of equations

Y3n +
γ1
µ0
Y1n +

γ2
µ0
Z1n = q+2n, −k

∗

k∗1
s21Y1n = q+5n,

−h
∗

h1
υ21Z1n = q+8n, −n(n+ 1)Z4n = q+6n, Y4n = q+3n,

−n(n+ 1)Z6n = q+9n, Yn + Y1n = f+4n, Zn + Z1n = f+5n.

(19)



Ω+ = −2

(
µ0
µ
ψ0 −

γ1
µ
ϑ0 +

γ2
µ
p0

)+

−R
∂X

∂ρ
− q+1 = G1,

−c
[

3∑
k=1

∂2φ3

∂S2
k(x)

]+
= R

∂

∂ρ

(
k3
k2
ϑ(x) +

k∗

k∗1
ϑ1(x)

)+

+ q+4 = G2,

−c1
[

3∑
k=1

∂2φ5

∂S2
k(x)

]+
= R

∂

∂ρ

(
h3
h2
p(x) +

h∗

h1
p1(x)

)+

+ q+7 = G3.

(20)

Solving these systems, we get

Y1n = −q
+
5nk

∗
1

k∗s21
, Z1n = −q

+
8nh1
h∗ν21

, Y4n = q+3n.

Z4n = − q+6n
n(n+ 1)

, Z6n = − q+9n
n(n+ 1)

, Z3n =
G2n

cn(n+ 1)
,

Z5n =
G3n

c1n(n+ 1)
, Yn = f4n +

q+5nk
∗
1

k∗s21
, Zn = f5n +

q+8nh1
h∗ν21

,

Y3n = q+2n − γ1
µ0

q+5nk
∗
1

k∗s21
− γ2
µ0

q+8nh1
h∗ν21

, Y2n = G1n.

(21)
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Substituting in (17) the values (19),(20) and (21), we obtain



ϑ =
∞∑
n=0

ρn

Rn

(
f4n +

q+5nk
∗
1

k∗s21

)
, ϑ1 = − k∗1

k∗s21

∞∑
n=0

ϕn(is1ρ)q
+
5n,

p =
∞∑
n=0

ρn

Rn

(
f5n +

q+8mh1
h∗ν21

)
, p1 = − h1

h∗ν21

∞∑
n=0

ϕn(iν1ρ)q
+
8n,

Ω =
∞∑
n=0

ρn

Rn
G1n, ψ =

∞∑
n=0

ρn

Rn

(
q+2n − γ1

µ0

q+5nk
∗
1

k∗s21
− γ2
µ0

q+8nh1
h∗ν21

)
,

φ3 =
∞∑
n=1

ϕn(is2ρ)
G2n

cn(n+ 1)
, φ4 = −

∞∑
n=1

ϕn(is2ρ)
q+6n

n(n+ 1)
,

φ5 =
∞∑
n=1

ϕn(iν2ρ)
G3n

c1n(n+ 1)
, φ6 = −

∞∑
n=1

ϕm(iν2ρ)
q+9n

n(n+ 1)
,

3∑
k=1

∂Ψk

∂Sk(z)
=

∞∑
n=0

ρn

Rn
q+3n,

(22)

where Gjn, f4n, f5n are the spherical harmonics of order n.

Remark. The relations (22) may be written in the form



ϑ =
R

4π

π∫
0

2π∫
0

R2 − ρ2

r3

[
f+4 (η0, ξ0) +

k∗1
k∗s21

q+5 (η0, ξ0)

]
sin η0dη0dξ0,

p =
R

4π

π∫
0

2π∫
0

R2 − ρ2

r3

[
f+5 (η0, ξ0) +

h1
h∗ν21

q+8 (η0, ξ0)

]
sin η0dη0dξ0,

Ω =
R

4π

π∫
0

2π∫
0

R2 − ρ2

r3
G1(η0, ξ0) sin η0dη0dξ0,

ψ =
R

4π

π∫
0

2π∫
0

R2 − ρ2

r3

[
q+2 − γ − 1k∗1

µ0k∗s21
q+5 − γ2h1

µ0h∗ν21
q+8

]
sin η0dη0dξ0,

3∑
k=1

∂Ψk

∂Sk(z)
=

R

4π

π∫
0

2π∫
0

R2 − ρ2

r3
q+3 (η0, ξ0) sin η0dη0dξ0,

(23)
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

ϑ1 = − k∗1
k∗s21

∞∑
n=0

ϕn(is1ρ)q
+
5n, p1 = − h1

h∗ν21

∞∑
n=0

ϕm(iν1ρ)q
+
8n,

φ3 = −
∞∑
n=1

ϕn(is2ρ)
G2n

cn(n+ 1)
, φ5 =

∞∑
n=1

ϕn(iν2ρ)
G3n

c1n(n+ 1)
,

φ4 = −
∞∑
n=1

ϕm(is2ρ)
q+6n

n(n+ 1)
, φ6 =

∞∑
n=1

ϕm(iν2ρ)
q+9n

n(n+ 1)
,

(24)



ψ0 =
ρ2

2

∞∑
n=0

ρn

Rn(3 + 2n)

(
q+2n − γ1

µ0

q+5nk
∗
1

k∗s21
− γ2
µ0

q+8nh1
h∗ν21

)
,

ϑ0 =
ρ2

2

∞∑
n=0

ρn

Rn(3 + 2n)

(
f4n +

q+5nk
∗
1

k∗s21

)
,

p0 =
ρ2

2

∞∑
n=0

ρn

Rn(3 + 2n)

(
f5n +

q+8nh1
h∗ν21

)
.

(25)

r2 = ρ2 +R2 − 2Rρ cos γ, cos γ = sin ξ sin ξ0 cos(η − η0) + cos ξ cos ξ0.

Thus, the considered problem has been solved completely.

5. Conclusions

In this paper the linear theory of thermoelasticity for materials with diffusion, microtem-
peratures and microconcentrations is considered. The following results are obtained:

1. The Dirichlet type boundary value problems of thermoelastic diffusion theory with
microtemperatures and microconcentrations for a sphere is solved explicitly.

2. The explicit solution of the considered BVP is presented as absolutely and uniformly
convergent series.
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