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ON THE INVESTIGATION OF AN ANALYTICAL SOLUTION OF A CERTAIN
DIRICHLET GENERALIZED HARMONIC PROBLEM

Zakradze M., Kublashvili M., Tabagari Z.

Abstract. The present paper is devoted to the analysis of an explicit analytic solution of
the Dirichlet generalized harmonic problem for a finite right circular axisymmetric cylindrical
ring. We intend to use it for testing. For construction of the mentioned solution, the following
methods are applied: separation of variables, particular solutions and heuristic method. Since
the heuristic method does not guarantee finding the best solution, because of this, properties
of the noted solution were investigated. It is shown that the above-mentioned problem can
be used in the role of a test with the help of the given analytic solution.
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1. Introduction

It is known (see e. g., [1-4]) that in practical stationary problems (connected with electric,
thermal and other static fields) there are cases when it is necessary to consider the Dirichlet
generalized harmonic problem.

Problem A. Function g(y) is given on the boundary S of the finite domain D and is
continuous everywhere, except a finite number of curves l1, l2, ..., ln, which represent dis-
continuity curves of the first kind for the function g(y). It is required to find a function

u(x) ≡ u(x1, x2, x3) ∈ C2(D)
∩
C(D\

n∪
k=1

lk) satisfying the conditions:

∆u(x) = 0, x ∈ D ⊂ R3, (1.1)

u(y) = g(y), y ∈ S, y ∈ lk ⊂ S (k = 1, n), (1.2)

|u(y)| < c, y ∈ D, (1.3)

where ∆ =
3∑

i=1

∂2

∂x2
i
is the Laplace operator, c is a real constant, and S is a closed piecewise

smooth surface .
It is known (see [5, 6]) that Problem (1.1),(1.2),(1.3) has a unique solution, depending

continuously on the data, and for a generalized solution u(x) the generalized extremum
principal is valid:

min
x∈S

u(x) < u(x)
x∈D

< max
x∈S

u(x),

where for x ∈ S it is assumed that x∈lk(k = 1, n).
On the basis of (1.3), in general, the values of u(y) are not defined on the curves lk. For

example, if Problem A concerns the determination of the thermal(or the electric) field,then
u(y) = 0 when y ∈ lk, respectively. In this case, in the physical sense the curves lk are
non-conductors (or dielectrics).

Remark 1. If there is an emptiness inside the surface S then we have the generalized
problem with respect to the closed shell.
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In general it is known (see e.g.,[1, 5, 7]) that the methods used to obtain an approximate
solution to ordinary boundary problems are less suitable(or not suitable at all) for solving
generalized boundary problems of type A. In particular, the convergence of the approximate
process is very slow in the neighborhood of boundary singularities and, consequently, the
accuracy of the approximate solution of the generalized problem is very low.

In the literature, simplified, or so called “solvable” generalized problems (problems “whose”
solutions can be constructed by series, whose terms are represented by special functions)
are considered and some methods, namely, separation of variables, particular solutions and
heuristic method are mainly applied for their solving, therefore the accuracy of the solutions
is rather low. In the mentioned problems, the boundary conditions are mainly constants, and
in the general case, the analytic form of the “exact” solution is so difficult in the sense of
numerical implementation, that it only has theoretical significance. Therefore, construction
of high accuracy and effectively realizable computational schemes for approximate solution
of 3D Dirichlet generalized harmonic problems(whose application is possible to a wide class
of domains) have both theoretical and practical importance.

2. The investigation of an analytical solution of a certain Dirichlet generalized
harmonic problem

Let the domain D be a right circular axisymmetric cylindrical ring D(a < r < b, o < x3 <
h), where h is its height, r =

√
(x12 + x22), and a, b are the internal and external radii of the

ring, respectively.

In ([4], p 82, p.415) for ring D a simplified case of Problem A is considered, in particular,
when the boundary function g(y) = g(y1, y2, y3) = v, for y ∈ {y ∈ S|r = b, 0 < y3 < h}
and g(y) = 0 on the remaining part of S. In the considered case the external circles of the
bases of the ring are discontinuity curves. In the mentioned conditions the exact analytical
solution to Problem A has the following form (in cylindrical coordinates)

u(r, x3) =
4v

π

∞∑
m=0

I0(cmr)K0(cma)− I0(cma)K0(cmr)

I0(cmb)K0(cma)− I0(cma)K0(cmb)

×sin(cmx3)

2m+ 1
≡ 4v

π

∞∑
m=0

um(r, x3), (2.1)

where a < r < b, 0 < x3 < h, cm = (2m + 1)π/h, I0 and K0 are first and second kind
Bessel’s functions of order zero with imaginary argument, respectively. For construction of
(2.1) methods noted in Section 1 are applied.

In (2.1)(see, e.g., [8]):

I0(t) ≡ J0(it) =
∞∑
k=0

(
t
2

)2k

(k!)2
, t ∈ R,

I0(0) = 1, I0(t) →
et√
2πt

for t → ∞;

K0(t) ≡ K0(it) = −
(
ln

t

2
+ C

)
I0(t) +

∞∑
k=0

Φ(k)
( t2)

2k

(k!)2
, t > 0,
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where

Φ(k) =
k∑

j=1

1

j
, k ≥ 1, Φ(0) = 0,

K0(t) →
√

π

2t
e−t for t → ∞, and C = 0.577215664901532

is the Euler-Mascheroni constant.

Besides in [8], it is known that I0(t) and K0(t) are linearly independent solutions of the
following ordinary differential equation

y′′ +
1

t
y′ − y = 0, where y = y(t), t ∈ (0,∞). (2.2).

I. Firstly we demonstrate that the general term um(r, x3) of (2.1) is harmonic in D. For
this, as is obvious from (2.1), it is sufficient to show the harmonicity of functions

f1 = I0(cmr) sin(cmx3), f2 = K0(cmr) sin(cmx3).

On account of identity of these two processes we investigate only the function f1.

Since, the boundary conditions are independent of the cylindrical coordinate φ,

∆f1 =
∂2f1
∂r2

+
1

r

∂f1
∂r

+
∂2f1
∂x23

.

It is easy to see, that

∆f1 = c2m sin(cmx3)
[
I ′′0 (cmr) +

1

cmr
I ′0(cmr)− I0(cmr)

]
,

then on the basis of (2.2) we have ∆f1 = ∆f2 = 0 or ∆um = 0 in D (Q.E.D.).

II. Now, we investigate the question about character of convergence of the series (2.1).
For a fixed value of r from interval (a, b) majorizing series of (2.1) when 0 < x3 < h is a
positive numerical series

∞∑
m=0

am(r), (2.3)

where

am(r) =
I0(cmr)K0(cma)− I0(cma)K0(cmr)

I0(cmb)K0(cma)− I0(cma)K0(cmb)
.

On the basis of the asymptotical formulas of functions I0(t) and K0(t), it is not difficult
to show that am(r) > 0 (m = 0, 1, 2, ...) for a < r < b. In order to determine convergence of
series (2.3), in this case, it is more convenient to use D’Alembert’s limit test. Namely, if

lim
m→∞

am+1(r)

am(r)
= q (0 < q < 1),

then the series (2.3) is convergent.

It is easy to see that in our case

q = exp
(2(r − b)π

h

)
(a < r < b) or 0 < q < 1,
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respectively, on the basis of Weierstrass test the series (2.1) is uniformly convergent in D
(Q.E.D.).

Concerning the convergence rate of series (2.1). It is very high for all points x =
(x1, x2, x3) ∈ D. In particular, the asymptotical behaviour of the general term of (2.1)
is

um(r, x3) →
1

2m+ 1
exp(cm(r − b)) for m → ∞ and a < r < b.

Besides, it is easy to see that sin(cm(h/2 + t)) = sin(cm(h/2 − t)) for 0 ≤ t ≤ h/2,
therefore, u(r, h/2+ t) = u(r, h/2− t) for a ≤ r ≤ b, and this fact is in exact accordance with
the real physical picture.

For illustration we calculated the partial sum Sp(r, x3) of the series (2.1) for m = 0, p at
several interesting points. In numerical experiments a = 1, b = 2, h = 2, v = 1 are taken.
Because of convergence rate of (2.1) when (r, x3) ∈ D, the calculations have shown that for
p = 20, 50 practically: Sp(1.2, 1) = 0.221517; Sp(1.5, 1) = 0.519826; Sp(1.8, 1) = 0.846086;
Sp(1.5, 1.5) = 0.424747;Sp(1.5, 0.5) = 0.425002; Sp(1.5, 1.8) = 0.217324;Sp(1.5, 0.2) = 0.217581;
Sp(1.8, 1.5) = 0.750919; Sp(1, 8, 1.8) = 0.516492;

Since boundary conditions are symmetric with respect to the plane x3 = 1, therefore, for
control the partial sum Sp(r, x3) is calculated also at the points which are symmetric to the
same plane, the results are in a good accordance with the real physical picture of the field.

III. It is easy to see that for the solution u(r, x3), when r = b and 0 < y3 < h,we have

u(b, y3) =
4v

π

∞∑
m=0

1

2m+ 1
sin(cmy3), (2.4)

and it is zero on the remaining part of the surface. In order that (2.4) is equal to v, the
equality

∞∑
m=0

1

2m+ 1
sin(cmy3) =

π

4
. (2.5)

should be befulfilled when 0 < y3 < h.
It is not difficult to show that (2.5) is valid. Indeed, it is known (see e.g., [9]) that if the

function f(t) is the integrable in the interval [0,h], then its Fourier-series expansion only with
respect to sines has the following form

f(t) =

∞∑
m=1

bm sin
(mπt

h

)
, (2.6)

where bm = 2
h

h∫
0

f(t) sin mπt
h dt (m = 1, 2, 3, ...).

It should be noted that at points t = 0 and t = h the sum of the series (2.6) is zero.
Therefore, this can give us values f(0) and f(h), evidently, only in the case when these values
are equal to zero.

In particular, if f(t) = π/4, then bm = 1/(2m+ 1) (m = 0, 1, 2, ...). Thus, on the basis of
(2.6) equality (2.5) is valid.

We demonstrate that series (2.4) is uniformly convergent in the interval (0, h). For this,
in the first place, we represent (2.4) in the following form

4v

π

∞∑
m=0

1

2m+ 1
sin

(2m+ 1)πy3
h

=

∞∑
m=0

ambm(t) (2.7)
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where am = 4v/(π(2m+ 1)), bm(t) = sin((2m+ 1)t), and t = πy3/h (0 < y3 < h).
We show that the series (2.7) satisfies Dirichlet test for the uniform convergence: 1).

{am} is a positive numbers sequence, which monotonically tends to zero; 2). Let Bn(t) =

b0(t) + b1(t) + ... + bn(t) (n = 0, 1, ...) be partial sums of a series
∞∑

m=0
bm(t), they must be

bounded.
It is obvious that lim

m→∞
am = 0. Now we show that |Bn(t)| ≤ M for any 0 < t < π and n.

We have

Bn(t) =
n∑

m=0

sin[(2m+ 1)t] =
1

2 sin t

n∑
m=0

2 sin[(2m+ 1)t] sin t

=
1

2 sin t

n∑
m=0

[cos((2m+ 1)t− t)− cos((2m+ 1)t+ t)] =
cos 0− cos[(2n+ 1) + 1]t

2 sin t
.

It is evident that |Bn(t)| ≤ 1/ sin t| ≤ M , since t = πy3/h ̸= kπ (k = 0, 1, 2, ...). Thus, series
(2.4) is uniformly convergent, when 0 < y3 < h (Q.E.D.).

It is clear that if a point y(y1, y2, y3) ≡ (b, y3) and tends to the discontinuity curve
lk(k = 1, 2), then all the terms of series (2.4) tend to zero. Consequently, series (2.4) converges
very slowly, therefore, the accuracy of the satisfaction of the boundary condition is very low.

In Table 1 the values of partial sum Sp(b, x3) of (2.4) are given at several points (b, y3)
for p = 100, 500, 1000 and the same parameters a, b, h, v.

Table 1: Results for partial sum of (2.4)

i (b, y3 S100 S500 S1000

1 (2, 1) 1.00315 1.00064 1.00032
2 (2, 1.5) 0.99842 0.99968 0.99984
3 (2, 1.8) 0.99166 0.99833 0.99917
4 (2, 1, 9) 0.98068 0.99613 0.99807
5 (2, 1.95) 0.90301 0.90798 0.98989
6 (2, 1.995 0.87899 0.89175 0.97978
7 (2, 1.999) 0.20087 0.87393 0.92922
8 (2, 1.9999) 0.01986 0.019910 0.02002

From Table 1 it is clear that the accuracy of the satisfaction of the boundary condition
is very low in the neighborhood of the discontinuity carves, as expected (see Section 1).

Performed calculations showed that the analytic solution (2.1) has the accuracy, which
is enough for a wide group of practical problems. In addition, the results of calculations
for inner control points are in a good accordance with the real physical picture of the field.
Finally, we note from our viewpoint that the problem considered can be used in the role of
a test with the help of the above-mentioned analytic solution.

Remark 2. If we consider such simple case, when boundary function g(y) = const on the
lower base of the noted cylindrical ring, and g(y) = 0 on the rest surface, then the analytic
form of the solution of the Problem A is so difficult in the sense of numerical implementation,
that it has only theoretical significance (see [4], p.82, 416-417pp).
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