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Abstract. In the present paper, using the perturbation algorithm, the purely implicit four-

level semidiscrete scheme of an abstract evolution equation with variable operator is reduced

to two-level schemes. Using the solutions of the latter two-level schemes an approximate

solution to the original problem is constructed. Using the associated polynomials, the ap-

proximate solution error is proved in the Hilbert space.
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1. Introduction

In the present paper, the purely implicit four-level semidiscrete scheme for an ap-
proximate solution of the Cauchy problem for an evolution equation with a variable
operator is considered in the Hilbert space. Using the perturbation algorithm, the
considered scheme is reduced to two-level schemes. The solutions of the latter schemes
are used to construct an approximate solution of the initial problem. We note that the
first two-layer scheme provides an approximate solution with an accuracy of first order,
while the solution of each subsequent split scheme is the refinement of the preceding
solution by one order.

Questions connected with the construction and investigation of approximate solu-
tion algorithms of evolution problems are considered for example in quite a lot of works,
e.g. by S. K. Godunov and V. S. Ryabenki [1], G. I. Marchuk [2], R. Richtmayer and
K. Morton [3], A. A. Samarski [4], N. N. Yanenko [5] and others.

The main difficulty which we encounter in the realization of multi-layer schemes
(especially for multidimensional problems), consists in the necessity to use of a large
operational access memory, which increases in proportion to the growth of dimensional
of problem. One of the ways to cope with this difficulty is the splitting of multi-layer
schemes. This is exactly the topic of the works [6], [7], [8], which are dedicated to
the investigation of the splitting of purely implicit three and four-level semidiscrete
schemes for an evolution equation with the constant operator. There, a purely implicit
semidiscrete scheme for an evolution equation is reduced to two-level schemes and
the explicit estimates are proved for an approximate solution, under quite general
assumptions, of problems in the Banach [7] and the Hilbert [8] space. In the present
paper, estimation of the approximate solution error, we applied the approach, proposed
in [9], were the stability of linear many-step methods is investigated by the properties
of the class of polynomials of many variables (which are called associated polynomials).
They are a natural generalization of classical Chebyshev polynomials of second kind.
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We would like to mention specially that the application of the perturbation al-
gorithm to difference schemes for differential equations was considered in [10]. The
perturbation algorithm is widely used for solving problems of mathematical physics
(e.g., see [11]).

2. Splitting of a purely implicit four-layer scheme for an evolution
problem into two-layer schemes

Let us consider the following evolutionary problem in the Hilbert space H:

du(t)

dt
+ A(t)u (t) = f(t), t ∈ ]0, T ] , (1)

u (0) = u0, (2)

where A(t) is the self-adjoint positive definite operator in H whose domain of definition
D(A) does not depend on t; f(t) is a continuously differentiable function having values
in H; u0 is a given vector from H; u(t) is the unknown function.

On [0, T ] we introduce the grid tk = kτ , k = 0, 1, . . . , n, with step τ = T/n.
Approximating the first derivative by the purely implicit four-level semidiscrete scheme,
we can write equation (1) at the point t = tk as

u(tk)− u(tk−1)

τ
+ Aku (tk) +

τ

2

∆2u(tk−2)

τ 2
+

τ 2

3

∆3u(tk−3)

τ 3

= f(tk)− τ 3Rk(τ, u), (3)

where k = 3, . . . , n, Ak = A(tk), ∆u(tk−1) = u(tk)− u(tk−1), Rk(τ, u) ∈ H.
Using the perturbation algorithm [10], from (3) we obtain the following system of

equations

u
(0)
k − u

(0)
k−1

τ
+ Aku

(0)
k = fk, fk = f(tk), u

(0)
0 = u0, k = 1, . . . , n, (4)

u
(1)
k − u

(1)
k−1

τ
+ Aku

(1)
k = −1

2

∆2u
(0)
k−2

τ 2
, k = 2, . . . , n, (5)

u
(2)
k − u

(2)
k−1

τ
+ Aku

(2)
k = −1

2

∆2u
(1)
k−2

τ 2
− 1

3

∆3u
(0)
k−3

τ 3
, k = 3, . . . , n. (6)

We introduce the notation

vk = u
(0)
k + τu

(1)
k + τ 2u

(2)
k , k = 3, . . . , n. (7)

Let the vector vk be an approximate value of the exact solution of problem (1), (2) for
t = tk, u(tk) ≈ vk.

Note that in scheme (5) the starting vector u
(1)
1 is defined from the equality v1 =

u
(0)
1 +τu

(1)
1 , where u

(0)
1 is defined by scheme (4), and v1 is an approximate value of u(t1)

with an accuracy of O(τ 3). In a similar way, the starting vector u
(2)
2 is defined by the
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equality v2 = u
(0)
2 + τu

(1)
2 + τ 2u

(2)
2 , where u

(0)
2 and u

(1)
2 are found by schemes (4) and

(5), respectively, and v2 is an approximate value of u(t2) with an accuracy of O(τ 3).
We can show that the constructed solution vk satisfies the equation

11
6
vk − 3vk−1 +

3
2
vk−2 − 1

3
vk−3

τ
+ Akvk = fk + R̃k(τ), k = 5, . . . , n, (8)

where for the residual R̃k(τ), the estimate∥∥∥R̃k(τ)
∥∥∥ ≤ cτ 3, c = const > 0, k = 5, . . . , n, (9)

holds true provided that the initial vector is smooth enough. The study of scheme
(4)–(7) is based on some facts concerning polynomials associated with a higher order
difference equation.

3. A priori estimate for the error of an approximate solution

For the error zk = u(tk)− vk we have

11
6
zk − 3zk−1 +

3
2
zk−2 − 1

3
zk−3

τ
+ Akzk = rk(τ), k = 5, . . . , n, (10)

where rk(τ) = −
(
τ 3Rk(τ, u) + R̃k(τ)

)
.

Taking (9) into account, we conclude that if the solution of problem (1), (2) is a
sufficiently smooth function, then ∥rk(τ)∥ = O(τ 3).

The following theorem is true.
Theorem 1. Let A(t) be a self-adjoint positive definite operator in H with the

domain of definition D(A) not depending on t, and for any t′, t′′ and s from [0, T ] the
following be fulfilled:

∥(A(t′)− A(t′′))A−1(s)∥ ≤ c0|t′ − t′′|, c0 = const > 0.

Then we have

∥zk+2∥ ≤ c

(
∥z2∥+ ∥z3∥+ ∥z4∥+ τ

k∑
i=3

∥ri+2(τ)∥

)
, (11)

where c = const > 0, k = 3, . . . , n− 2.
Let consider the main stages of the proof. Using (10), we get

zk+1 =
18

11
Lk+1zk −

9

11
Lk+1zk−1 +

2

11
Lk+1zk−2 +

6

11
τLk+1rk+1(τ), (12)

where

Lk =

(
I +

6

11
τAk

)−1

.
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If we introduce the notation

L1
k =

18

11
Lk, L2

k = − 9

11
Lk, L3

k =
2

11
L, gk+1 =

6

11
τLk+1rk+1(τ),

then (12) takes the form

zk+1 = L1
k+1zk + L2

k+1zk−1 + L3
k+1zk−2 + gk+1.

Hence, by induction, we obtain

zk+2 = (
3

Uk−1 L
1
3+

4

Uk−2 L
2
4+

5

Uk−3 L
3
5)z2 + (

3

Uk−1 L
2
3+

4

Uk−2 L
3
4)z1

+
3

Uk−1 L
3
3z0 +

6

11
τ

k∑
i=1

i+2

U k−i Li+2ri+2(τ), (13)

where the operators
i

Uk are defined by the recurrent relation

i

Uk= L1
k+i

i

Uk−i +L2
k+i

i

Uk−2 +L3
k+i

i

Uk−3,

i

U0= I,
i

U−1=
i

U−2= 0.

Let us consider the following difference homogeneous equation

11

6
wk − 3wk−1 +

3

2
wk−2 −

1

3
wk−3 + τAwk = 0, k = 3, . . . , n, (14)

where A is a self-adjoint positive definite operator.
From (14) we have

wk = β1Lwk−1 + β2Lwk−2 + β3Lwk−3, (15)

where β1 =
18
11
, β2 = − 9

11
, β3 =

2
11
,

L = (I + τβ0A)
−1, β0 =

6

11
.

Hence we obtain (see [9], Chapter I, §3)

wk+2 = (β1LUk−1 + β2LUk−2 + β3LUk−3)w2

+(β2LUk−1 + β3LUk−2)w1 + β3LUk−1w0, (16)

the operator polynomials are defined by the recurrent relation

Uk(β1L, β2L, β3L) = β1LUk−1(β1L, β2L, β3L)

+β2LUk−2(β1L, β2L, β3L) + β3LUk−3(β1L, β2L, β3L), (17)

U0 = I, U−1 = U−2 = 0.
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In equation (14) we replace the operator A by the operator A(tj) (j is fixed) and
write the resulting equation in the form

11

6
wk − 3wk−1 +

3

2
wk−2 −

1

3
wk−3

+τA(tk+j)wk = τ(A(tk+j)− A(tj))wk, k = 3, 4, . . . .

Hence

wk = β1Lk+jwk−1 + β2Lk+jwk−2 + β3Lk+jwk−3

+τβ0Lk+j(A(tk+j)− A(tj))wk.

By virtue of formula (13) we obtain

wk+2 = (β1

j+3

U k−1 Lj+3 + β2

j+4

U k−2 Lj+4 + β3

j+5

U k−3 Lj+5)w2

+(β2

j+3

U k−1 Lj+3 + β3

j+4

U k−2 Lj+4+)w1 + β3

j+3

U k−1 Lj+3w0

+τβ0

k∑
i=1

i+m

U k−i Li+m(A(ti+m)− A(tj))wi+2, m = j + 2. (18)

Equating the right-hand parts of formulas (16) and (18) and assuming that

w0 = w1 = 0,

we obtain

Ukw2 =
m

Uk w2 + τβ0

k∑
i=1

i+m

U k−i Li+m(A(ti+m)− A(tj))Uiw2.

Since w2 is arbitrary, we get

m

Uk= Uk − τβ0

k∑
i=1

i+m

U k−i Li+m(A(ti+m)− A(tj))Ui. (19)

Here the operator polynomials Uk = Uk(β1L, β2L, β3L) are defined by the recurrent
relation (17), where

L = (I + τβ0A(tj))
−1.

Since Sp(L) ⊂ [0; 1] (Sp(L) is the spectrum of the operator L), the S = L
1
3 exists.

The following formula is easily proved by induction

Uk(sx1, s
2x2, s

3x3) = skUk(x1, x2, x3), s > 0.

By virtue of this formula we have

Uk (β1L, β2L, β3L) = SkUk

(
β1S

2, β2S, β3I
)
. (20)
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As is well known, when the argument is a self-adjoint bounded operator, the norm of
the operator polynomial is equal to the C -norm of the corresponding scalar polynomial
on the spectrum of this operator (see e.g. [12], Ch. IX, §5).

By virtue of this fact we have

∥Uk

(
β1S

2, β2S, β3I
)
∥ =

∥∥∥∥Uk

(
18

11
S2,− 9

11
S,

2

11
I

)∥∥∥∥
≤ max

x∈[0,1]

∣∣∣∣Uk

(
18

11
x2,− 9

11
x,

2

11

)∣∣∣∣ . (21)

It is obvious that the polynomials

Pk(x) = Uk

(
18

11
x2,− 9

11
x,

2

11

)
satisfy, by definition, the following recurrent relation:

Pk(x) =
18

11
x2Pk−1 −

9

11
xPk−2 +

2

11
Pk−3, (22)

P0 = I, P−1 = P−2 = 0, x ∈ [0, 1].

The characteristic equation of the difference equation (22) has the form

Q2(λ) = λ3 − 18

11
x2λ2 +

9

11
xλ− 2

11
= 0, x ∈ [0, 1]. (23)

Let us show that for any x ∈ [0, 1], the real root of equation (23) is in the unit circle,
while the other two roots are complex-conjugate and belong to one and the same circle
lying in the unit circle. Then the polynomials

Pk(x) = Uk

(
18

11
x2,− 9

11
x,

2

11

)
are uniformly bounded. (see [9], Ch. I, §3).

First we show that the discriminant of equation (23) is negative, i.e.

D = −108

(
q2

4
+

p3

27

)
< 0,

where

q =
2a3

27
− ab

3
+ c, p = b− a2

3
.

Hence, as is known, it follows that one root is real, while the other two roots are
complex-conjugate.

It is obvious that in our case we have

p(x) =
9

11
x(1− x3)− 9

112
x4 ≥ − 9

112
,
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q(x) = −24 · 33

113
x6 +

2 · 33

112
x3 − 2

11
≤ − 5

11 · 24
,

where x ∈ [0, 1].
This implies that

p3(x) ≥ − 36

116
, q2(x) ≥ 52

112 · 28
.

By virtue of these estimates we have

D = −108

(
q2

4
+

p3

27

)
≤ −108 · 1

112

(
52

210
− 33

114

)

≤ −108 · 1

112

(
52

210
− 33

3 · 210

)
< 0.

Thus we see that one root of equation (23) is real, while the other two roots are
complex-conjugate.

Let us show that there exists α > 1, such that for any x from [0, 1) the real root of
(23) lies in the interval [ 2

11
α, 1].

Obviously, there exists α ∈ (1, 11
4
), such that for any x ∈ [0, 1] we have

Q2

( 2

11
α
)
= −9α2(15 · 112 − 64α3) < 0.

Since

Q2(1) = − 9

11
(2x2 − x− 1) > 0, x ∈ [0, 1),

the real root λ1 of equation (23) belongs to the interval [ 2
11
α, 1].

Since the other roots λ2 and λ3 are complex-conjugate (λ3 = λ2), by the Viéte
theorem we have

|λ1 · λ2 · λ2| =
2

11
.

Hence

|λ2|2 =
2

11λ1

<
1

α
< 1.

Thus the real root of equation (23) is in the unit circle, while the other two roots
are complex-conjugate and belong to one and the same circle lying in the unit circle.
Hence it follows that the polynomials Uk(

18
11
x2,− 9

11
x, 2

11
) are uniformly bounded, i.e.

max
x∈[0,1]

∣∣∣∣Uk

(
18

11
x2,− 9

11
x,

2

11

)∣∣∣∣ ≤ c1, c1 = const > 0, k = 0, 1, . . . . (24)

Hence, by virtue of (21), it follows that

∥Uk∥ ≤ c1, c1 = const > 0, k = 0, 1, . . . . (25)

Further, since

τA(tj)L
k
3 =

1

β0

(I − L)L
k
3
−1, k = 3, 4, . . . ,
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we have

∥τA(tj)L
k
3 ∥ ≤ 1

β0

max
x∈[0,1]

(1− x)x
k
3
−1 ≤ 3

β0k
. (26)

Using the conditions of Theorem 1 and inequalities (24) and (26) we obtain

∥(A(tk+m)− A(tj))Uk(β1L, β2L, β3L)∥

≤ ∥(A(tk+m)− A(tj))A
−1(tj)∥∥A(tj)L

k
q ∥∥Uk(β1S

2, β2S, β3I)∥

≤ c0
tk+m − tj

τ
· 3

β0k
· c1 = c0c1

3

β0

k + 2

k
≤ c0c1

9

β0

= c. (27)

If in (19) we pass over to the norms, we get

∥
m

Uk ∥ ≤ ∥Uk∥+ τβ0

3∑
i=1

∥
i+m

U k−i ∥∥Li+m(A(ti+m)− A(tj))Ui∥

+τβ0

k∑
i=4

∥
i+m

U k−i ∥∥Li+m∥∥(A(ti+m)− A(tj))Ui∥. (28)

Note that the operator (A(t) − A(tj))Li is bounded. Indeed, due to the condition
of the theorem we have

∥(A(t)− A(tj))Li∥ ≤ ∥(A(t)− A(tj))A
−1(ti)∥∥A(ti)Li∥ ≤ c0β

−1
0 τ−1|t− tj|. (29)

Since by the condition of the theorem, the definition domain of the operator A(t)
does not depend on t, we have LiA(t) ⊂ (A(t)Li)

∗. The same is true if A(t) is replaced
by A(t)− A(tj). In view of this fact and estimates (25) and (29) we obtain

∥Li+m(A(ti+m)− A(tj))Uiv∥ = ∥((A(ti+m)− A(tj))Li+m)
∗Uiv∥

≤ c1∥((A(ti+m)− A(tj))Li+m)
∗∥∥v∥ = c1∥((A(ti+m)− A(tj))Li+m)∥∥v∥

≤ c0c1β
−1
0 |i+m− j|∥v∥ = c0c1β

−1
0 |i+ 2|∥v∥

≤ 5c0c1β
−1
0 ∥v∥, i = 1, 2, 3, v ∈ H. (30)

From (28), by virtue of (25), (27) and (30), we have

∥
m

Uk ∥ ≤ c+ cτ

k∑
i=1

∥
i+m

U k−i ∥, c = const > 0.

If we replace k by (n−m), then

∥
m

Un−m∥ ≤ c+ c · τ
n−m∑
i=1

∥
i+m

U n−m−i∥,
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or, which is the same,

∥
m

Un−m∥ ≤ c+ c · τ
n∑

s=m+1

∥
s

Un−s∥.

If we introduce the notation ∥
s

Un−s∥ = xs , then we get

xm ≤ c+ cτ(xm+1 + · · ·+ xn), m = 2, 3, · · · , n− 1.

This by induction implies the estimate

xn−i ≤ c(1 + cτ)i−1(1 + τxn). (31)

Since

xn = ∥
n

U0∥ = 1,

from (31) we obtain

xn−i ≤ c(1 + cτ)i, i = 0, 1, · · · , n−m.

Therefore we have

∥
n−i

U i∥ ≤ c(1 + cτ)i ≤ cecti .

Replacing i by (n− i−m), we obtain

∥
i+m

U n−m−i∥ ≤ cectn−m−i , i = 0, 1, · · · , n−m,

or, which is the same,

∥
i+m

U k−i∥ ≤ cectk−i , i = 0, 1, · · · , k.

Again using the notation m = (j + 2), we obtain

∥
i+j+2

U k−i∥ ≤ cectk−i .

Taking this estimate into account, from (13) we get the a priori estimate (11).
This completes the proof of the theorem.
Further, we note that if ∥u(tk)−vk∥ = O(τ 3), k = 1, 2, then for sufficiently smooth

initial data it easy to prove the estimates

∥u(tk)− vk∥ = O(τ 3), k = 3, 4. (32)

Finally, taking ∥rk(τ)∥ = O(τ 3) into account, from (11) and (32) there follows the
following assertion.

Theorem 2. Let the operator A(t) satisfy the conditions of Theorem 1 and let the
solution of problem (1), (2) be a sufficiently smooth function. Then for ∥u(tk)− vk∥ =
O(τ 3), k = 1, 2, the estimate

∥u(tk)− vk∥ = O(τ 3), k = 3, . . . , n.

holds true.
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