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ON HIGHER ORDER NONLINEAR DIFFERENCE EQUATIONS WITH
PROPERTY B

Koplatadze R.

Abstract. We study oscillatory properties of solutions of the functional difference equation
of the form
AMy(k) 4+ F(u)(k) =0,

where n > 2, F': S(N;R) — S(N;R) (By S(N;R) denote the set of discrete functions whose
set of values is R).

Sufficient conditions for the above equation to have the co-cold Property B are estab-
lished. Analogous results for oscillation of solutions of linear ordinary and nonlinear functional
differential equations see in [1-3, 5-10].
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1. Introduction

Let 7 € S(N;R), kETOOT(k) = +00. Denote by V(7) the set of mappings F': S(N;R) —
S(N; R) satisfying the condition F(x)(k) = F(y)(k) holds for any k € N and z;y € S(N;R)
provided that z(s) = y(s) for 7(k) < s, s € N.

This work is dedicated to the study of oscillatory properties of solutions of the functional
difference equation

A (k) + F(u)(k) =0, (1.1)
where n > 2, F € V(1), AWu(k) = u(k + 1) —u(k), A" = AD o AC-D (5 =2,... n).

For any kg = N we denote by Hy, - the set of all discrete functions u € S(N;R) satisfying
u(k) # 0 for ky <k € N, where k, = min {ko, 7x(ko)}, 7(k) = inf {7(s) : k < s, s € N}.

Throughout the work whenever the notation V' (7) and Hy, - occurs it will be understood,
unless specified otherwise, that function 7 satisfies the conditions stated above.

It will always be assumed that the condition

F(u)(k)u(k) <0 for we Hy,,, ko€N (1.2)

is fulfilled.

The following notation will be used throughout the work N ,;'g = {ko, ko +1,...} (N o =
{1,2,...,ko}).

Definition 1.1. Let kg € N. We will call a function u : Nzo — R a proper solution of
the equation (1.1), if it satisfies (1.1) on N;:O and

sup {|u(i)| :i €N} >0 forany ke N,Jgo.

Definition 1.2. We say that a proper solution u : N,Jgo — R of equation (1.1) is oscillatory,

if for any k € Ny, there exist ki; k2 € N,‘: such that u(ky) u(ke) < 0. Otherwise the equation
is called nonoscillatory.
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Definition 1.3. We say that equation (1.1) has Property B if any of its proper solutions
either is oscillatory or satisfies

ADu(k)| L0 as kf4oo, keN (i=0,...,n—1), (1.3)
when n is even or
’A(i)u(k)’T—i—oo as kt+oo, keN (i=0,...,n—1). (1.4)

Sufficient conditions of higher order Emden-Fowler type difference equation to have Prop-
erty A can be found in [4,17-19]. The problem of establishing sufficient conditions for the
oscillation of all solutions to the second order linear and nonlinear difference equations see in
[11-16].

2. On some classes of nonoscillatory discrete functions

Lemma 2.1. Letn >2, ko € N, u: N} — R and u(k) > 0, AMu(k) >0, AMu(k) £ 0
for any s € Nzo and k € NY. Then there exist ky € N;o and £ € {0,...,n}, such that £ +n
even and

ADu(k) >0 for keN) (i=0,....0),
(1) ADu(k) >0 for keN (i=¢...,n-2), (2.1)
AMy(k) >0 for ke N:l.

Proof. The lemma follows immediately from the fact that, if u(k) > 0 and A@u(k) <0
for k € N:O, than there exist k1 € NZO such that AMy(k) > 0 for k € Ny,

Remark 2.1. It is obvious that if ui;us : N — R and A(i)ul(ko) = A(i)UQ(kO) (1 =
0,...,n —1) and AMuy (k) = A™uy(k) for k € N. Then u; (k) = ug(k) for k € N.

Lemma 2.2. ([19]) Let u : N — R, m;s € N. Then

m—1 ]) J—1i
Z u(s Hk‘—s—r—|—1)
j=1 (7 =) r=1
1 k. m—i—1
- i (M), (i —
+(m_2_1)§£[ j—r+DAMu(G 1), (2.2)
(i=0,....,m—1) for k&N,
where
0
AMy(s—1) =0, JJk-s—r+1)=1
r=1
and
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where
0

AtMy(s)y =0, [Jk-s—r+1)=1.

r=1

Lemma 2.3. ([19]) Let u: N — R, m;s € N. Then the equality holds

k m—1
D i I AM () = (=)™ Ak + DA (ki 4+ 1 —m)
, P
m—i—1 . .
Z ADu(s + AT D(s 4 i+1—m)™ 771 for keNF, (2.4)
where
AMy(s) =0
and
s 4 m—1 ) 4 4
= i+ )™ ITAM (1) = (=)™ Ak + DA (ki 41— m)
i=1 i=1
- Z 1™ ADy(s + DA (s i 1 —m)™ T for ke Ny, (2.5)
where

AMy(s4+1) = 0.

Lemma 2.4. Let u: N — R, kg;n € N, n is even and

(—1)'ADuk) >0 (i=0,....n—1), AMu(k)>0 for keN]. (2.6)
Then
“+o00
D> ETTAMu(k) < +oo (2.7)
k=1
and
400 m—i—1
(i) _ _ DA™
|ADy(k)| > n—z—l'z IT G- k+r—1AaMu) (2.8)

j=k r=1
for kENZO (t=0,...,n—1).

Proof. Let kg < k < s. It can by assumed without loss generality that A(”)u(s) = 0.
Let m = n. Then from (2.3) we have
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Therefore, since n is even, by (2.6), (2.7) holds.

According to (2.6) from (2.9) with s — +o00 we can readily (2.8).

Lemma 2.5. Let u: N — R and for some k € N and £ € {1,...,n — 2}, where { + n is
even, (2.1) be fulfilled. Then

+oo
S T TAM (k) < oo, (2.10)

there exist ko € Ng, such that

+oon—i—1

(i) k1AM
|ADu(k)| > n—z—1v§ H1 (G+r 1AM u(j) (2.11)
for keNg, (@=4...,n—1),
1 k—1 £—i—1
ADy(k) > ADqy(ky) (ETESCE I E+r—-s-1)
j=ko r=1
+oon—4—1
x> I G+r—s—1AaMu() (2.12)
j=s r=1

for kENk 4 (@=0,...,0-1).

If in addition

“+o0o
S T AM (k) = 4o, (2.13)
k=1
then ) )
u u
-1 _ L -1 ‘ [k (2.14)
[1(k—1) [Tk =)
1=0 =1
for large k
u(k) > H;()kf LACD (k) (2.15)
and
/—1 n—f0—1 n—F0
ANy z 'Z Al CRT Z AMy(i) (2.16)
i=ko
for ke NZQ.

Proof. Let s;k € N and s < k. Assume that A(™u(s) = 0. By (2.1), from equality (2.4),
with j = ¢ and m = n we have

n—1
S (=0 Ay ) = = (=) ADuE + DAY (R i 41— )
i=s =/
+) (=D FADu(s + AT (s i+ 1 — )L (2.17)

i={
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Since £ 4+ n is even and (—1)T"A®y(s4+1) >0 (i =4,...,n — 1), from (2.17) we obtain
Zz" (=1AM) <Z‘A s—i—l)‘A("_i_l)(s—i—i—i—l—n)"_é_l.

From the last inequality, when k — 400 (k € N) we obtain (2.10). From equality (2.5) also
follows the inequality

k
S |ADu(k + )| ATED (R i 41— ) >Zz" LA™ 4 1) (2.18)
=0

for ke Nk,2

On account of (2.1) and (2.10), from (2.2) with s = ko and m = ¢, we get

k f—i—1
) N 1
Dy(k) > ADy0) b i~ DAO( —
ADy(k) > AWy u(k2)+(£_i_1)!j§kj 1_[1(k i+r—1DAOyG —1) (2.19)
=ko T=

(i=0,....,0—1) for keN_.

Hence, by (2.11) and (2.19) we obtain (2.12).
Using (2.1), from (2.4) with j = ¢ —1, m = n and s = ky we have

/—1 -n—/{
A (k) = (n—¢ |Z Al
Jj=k2
1 n—1
i n—i—1 . n—~¢

n-‘rz—f—lA (kg + 1)A(n—i—1)(k2 +i4+1— n)n—ﬁ‘

'L:E 1

Therefore, according to (2.13) there exist k* > ks such that

k
ACDy( 4 1) > 1 S it Aty (i)

1 n—1 A .
Qe S [ADu(k + )[ATTY (R 4+ 1= )" for ke N
i=/

From the last inequality, by (2.13) we have
Ak +1) = (k+0+1—n)ADu(k+1) = 400 (2.20)

and by (2.18) inequality (2.16) holds.
Let kg € N and for any k € N;:O and ¢ € {1,...,/} put

pi(k) = iATDu(k) — (k+ 1 — i) ATy (), (2.21)
vi(k) = (k — )AF (k) — (i — A Du(k). (2.22)
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Applying (2.20) and Lopital’s rule, we have

(¢~i)
im 20 Lo =10, (2.23)
k—+oo =1 .
[T(k—14)

j=1

(Here it is meant that H?zl(k —j)=1).

Since .
A(l)( Ay (k) ): 7i(k)

i=/ i=¢
[T(k=7-1) [[(k=j—-1)

Jj=1 J=1
by (2.23) there exist ky > --- > k1 > ko such that v;(k;) > 0 (i = 1,...,¢). Therefore by
(2.20), p1(k) = +oo as k — +oo, AW p; (k) = pi(k), AV~ (k) = (k) and ~,(k) =
(k—1)AOu(k) > 0 for k € NZO (i=1,...,£—1), we find that p;(k) — 400 as k — 400 and
vi(k) > 0 fork € N;; (t=1,...,¢). These facts along with (2.20)—(2.23) prove (2.14).
On the other hand, since p;(k) — +o0, by (2.21) for large k

iINT (k) > (k+1— ) ATk (i=1,...,0),
which implies (2.15).

3. Necessary condition for the existence of conditions of type 2.1

The results of this section play on important role in establishing sufficient conditions for
equation (1.1) to have Property B.

Let ko € Nand ¢ € {1,...,n —2}. By Uy, we denote the set of all solutions of equation
(1.1) satisfying the condition (2.1).

Theorem 3.1. Let for some ko € N, condition (2.2) and

|F(u)(k)| = p(k)|[u(c (k)" for keNf, we Hyr, (3.1)
be fulfilled, ¢ € {1,...,n — 2} with £ + n is even and

+o0

Sk (o (k)N Vp(k) = +oo, (3.2)

k=1

where

0<A<1l, pk)>0, ok)>k+1 for keN (3.3)
If, moreover, Uy, # @, then for any § € [0,] and i € N, we have

+oo

S K o ()M (pre(o (k) p(k) < +00 (i=1,2,...), (3.4)
k=1
where
k—1 400 1
pralh) = (g 2o D" el n() (3.5)
=1 j=1

k—1 +o0

pe(k) = (@n E,ZZ SN (g0 GDA) (s=2.3..0). (36)

Jj=1 j=i
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Proof. Let kg € N and Uy, # @. By definition of the set Uy, equation (1.1) has a
proper solution u € Uy, satisfying the condition (2.1). By (2.1), (3.1) and (3.2) it is clear
that the condition (2.13) holds. Thus by Lemma 2.5, (2.13)—(2.15) are fulfilled and by (1.1),
(2.15) and (2.16), we have

A(Z—l) ( > n E'Z in— —f— 1 A(l— 1)(A(Z 1) ( ()))\p(l)

(n—0)! Z "o (A Vu(o(6)) p(i) for k € Nf, (3.7)

where k, is a sufficiently large natural number. By the identity

k k
Z w(@) AW (i) = u(k)v(k + 1) — u(k, — v Z v(i u(i —1)

1=Ky i=ky

we have

Zz" Lo (@)D (A Du(o (i) *pli)

1=k
k [e'e)
B Z AD +Z:Sn—f—l(o_(s)))\(é—l)(A(Z—l)u(g(s))))\p(s)
i:k* s=1

:_kz DRGRUING 1)u(0(8)))Ap(S)

(ke — 1) Zs" =1 A= 1)(A(éfl)u(a(s)))Ap(s)

k +o0

3 (D o) (A u(o(s)) () ).

i=ks s=1
Therefore, from (3.7) we get

1 k +oco

m Z (ZSn—Z—l(U(s))X(Z—l)(A(e—l)u(g(s)))/\p(s)> . Nz*-

i=kx S=1

Ay (k) >

(3.8)

Denote

k +oo
o(4) = = 2 (e (A V(o) o)) ke N

=k

Since A¢Dy(k) is a nondecreasing and o (k) > k + 1, by (3.7) we have

_ A +oo
A(l)x(k) > (A(égll();t(_kg_;l)) isn—é—l(g(s)))\(ﬁ—l)p(s)
s=k
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2 Mk 4+ 1) I el B
2 gl(n_@? s o(s)M Vp(s) for ke Ny .
' "t s=k
Therefore,
k-1 ; k—1  +oo
A(I)IL‘ j 1 e ~
S AT s L S (S e ) keng (9
J=k« J : T =k, i=j
Since . .
— AMg(j - (j+1)
ZM—ZSU /\(J+1)/' dt
J=kx J G=kx z(4)

and 27 *(j + 1) <t when z; <t < 2(j + 1), we have

k-1

Z A . Z/ ]+1)t—/\dt— 1 ( I_A(k)_ 1_)\(]{: )) < 1 1_)\(]{:)
= l')‘j—i-l 1V v )= ’

That’s why, from (3.9) we get

2 (2 5 (S worena) ™. o

*

ILe.
AVu(k) > prop. (k) for keNJ, (3.11)
where
1-A — (De, Ae=1), o)) T8
pren ) = (o= 2o (2@ )) ™
’ D=k =]
Thus, by (3.8) and (3.11) we get
Au(k) > pogp, (k) for keNS (s=23,...), (3.12)
where
k—1 \
n—_0— /— . .
puee ) = gy 2 (Zz Yo ()M Ip(0) (pact e (o)
Jj=

On the other hand, by (2.1), (3.3), (3.5) and (3.6) from (3.7), for any ¢ € [0, A], we have

Al- )(k:+1 o, 'Z(Z]ne1 )\(K 1)

i=kx J=t
p() (psc. <a<j>>)‘5(A“—Hu(a(j))))k‘é (s=12..)

and

(-1 DRG
ACDy(k 4 1) > _g,z (D))

x (ps,g,k*w)))‘;(w Bu(e(G) ™ (s=12,...).  (3.13)
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If § = A, then from (3.13) we get

n—4t): (t=1)y,
Zy"“ D) (i (o)) < HEL D AR D

k+1
By first for condition of (2.14), we get
ZJ” TGN IR0 (e (0()) < Hoo (s =12,..0). (3.14)
Let § € [0, A). Then from (3.13)
A Du(k +1) s> KRk e N,
. Y = 0)! .
55 )N I0) (e (o)) (A Duie) Y
Therefore
(Al + 1)k p(k) (M ED)°
gy A—6\ A5
ZkJ”’Z’l( a (PN Dp(5) (pser. (0(5)))" )
j:
k—Fke \NA0 0y A(—1) Y\ 0
> — . 1
> (o) F P (o (01) (3.15)
Denote
ak—zﬂ oI (s (0(0)) (AT u( + 1)
Since A~ Dy(k) is a nondecreasing function, from (3.15), we get
ap — agy1 k—Fke N0 i Al=1) Y
> . 1
P (o) F e OEEP D (P (7)) (3.16)

Hence from the last inequality we get

k A 3 k
Z aia:\izs—f—l > <€'( 1 6)!>>\ 5Z(Z._k*))\_ain—f—lp(i)(U<Z~)>>\(ﬁ 1)(Ps£k*( ()))5

i=ko i A\ i=ko
Since
k S . k a; ar, ]1€+5 A
> Za‘s A/ dt < Z/ t‘”dts/ P = e
i=ko i=ko @it1 i=k, Y i+l 0 — 0 —
Thus, from (3.16) we get
'“ LA O - 01
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Without loss of generality, by (3.14) we can assume aj, < 1. Thus from (3.17) we have
k
(n —OHA—0
S (i — BN (@) (0 ()N (py e (o)) < L= DD (3.18)
- ” 14+6—A
1=R0
According to (3.14) and (3.16), for any § € [0,\] and s € N, we have
+00 5
> i AR (0 (1) (ps e (0(4))) < oo (3.19)
i=ks
Since L
M =1 for k — o0,
Ps.t k. (k)

by (3.19) it is obvious that (3.4) holds, which proves the validity of the theorem.

4. Sufficient conditions of nonexistence of solutions of type (2.1)

Theorem 4.1 Let conditions (1.2), (3.1)—(3.3 be fulfilled, ¢ € {1,...,n — 2}, with £+ n
even and for some § € [0,\] and s € N

+oo

>R ()M (g (0 (k) plk) = +oo, (4-1)
k=1

where ps ¢ is defined by (3.5) and (3.6). Then Uy, = @ for any ko € N.

Proof. Assume the contrary. Let there exist kg € N such that Uy, # @. Thus equation
(1.1) has a proper solution w : N,jo — (0, +00) satisfying the condition (2.1).

Since conditions of Theorem 3.1 are fulfilled (3.2) holds for any § € [0, A] and s € N, which
contradicts condition (4.1). The obtained contradiction proves the validity of the theorem.

From this theorem, with § = 0, immediately follow

Theorem 4.1'. Let conditions (1.2), (3.1)—(3.3) be fulfilled ¢ € {1,...,n—2}, with {+n
even and

io EPA Y (o (k)M Dp(k) = +oo. (4.2)
k=1

Then for any ko € N, Ugy, = 2.
Theorem 4.2. Let conditions (1.2), (

3.1)—(3.3) be fulfilled, ¢ € {1,...,n—2}, with {+n
even and for some o € (1,400) and v € (A, 1

)
S (¢-1)
linf &7 S 571 (g (N AED n
lim inf jz—:kj (N Yp(5) > 0, (4.3)
k)
liminf 2 < 0. 44
SN e 4

If moreover, at last one of conditions
al>1, (4.5)

or if ax < 1, for some e >0

ar(1—7v)

S SR (o () D (k) = o (4.6)
k=1
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holds, then Uy, = @, for any ko € N.
Proof. It is sufficient to show that condition (4.1) satisfies for some s € N and § = A.
Indeed, according to (4.3) there exist a > 1, v € (A, 1), ¢ > 0 and ko € N such that

+o0
K 5 o) Yp(j) = ¢ for ke Nf (4.7)

and
o(k) > ck® for ke N,:“O. (4.8)

By (4.3), (4.4) and (3.5) it is obvious that limy_, | p1,¢(k) = +00. Therefore without
loss of generality we can assume that p; (k) > 1 for k € NZ‘O. Thus, by (4.8), (3.4) and (3.5)
we get

p”(k—gln_ 12_7_ (n—¢ |Z_7/

zko i=ko

k
tdt = t7dt
T z / =

(K17~ ké ")

E!(n — E)!( —7)
We can choose ki € NJ“O, such that

p2,(k) = 201(n — ec)!(l - )

Thus, by (4.8), from (3.6), we have

k' for keNf.

I 1+
> (1) (1+an) -
pae(k) > <2€!(n i 7)) k for keN;

where kg € Nk+1,is a sufficiently large natural number. Therefore for any s € N, there exists
ks € N such that

c LA+ + A2
Pou(k) 2 (za(n —ol1 —v))

Assume that (4.5) is fulfilled. Choose so € N such that (1 — v)(so — 1) > 5. Then

according to (4.9), p ( ) > cok for k € N+, where ¢y > 0. Therefore, by (4.9), it is obvious
that (4.1) holds, for (5 — Xand s = so. In the case, when (4.5) holds, the validity of the
theorem has been already proved.

Assume now that 0 < aX < 1 and (4.6) holds. Let ¢ > 0 and by (4.9), choose s, € N such
that

k(l_y)(1+a>\+~~+(a)\)572) for k¢ NZ_- (4'9)

pe(k) > 1k for ke NJ:_O,
where ¢; > 0. Therefore, by (4.6), holds (4.1) for s = sg. The proof of the theorem is proved.

5. Difference equations with Property B

Theorem 5.1 Let conditions (1.2), (3.1), (3.3) be fulfilled and for any ¢ € {1,...,
n — 2} with £ +n even, let as well (4.1) hold. Moreover, if

—+00

S (@B Vp(k) = +o0 (5.1)

k=1
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and with n is even

+o00
> (k) = +o0, (5.2)
k=1

then equation (1.1) has Property B.

Proof. Let equation (1.1) have a proper nonoscillatory solution u : Ny, — (0, +00).
By (1.1), (1.2) and Lemma 2.1, there exist ¢ € {0,...,n}, such that ¢ + n is even and the
condition (2.1) holds. Since conditions of Theorem 4.1 are fulfilled, for any ¢ € {1,...,n—2},
with £ 4+ n even, we have £ € {1,...,n — 2}. Therefore, { =n or £ = 0 and n is even.

Assume that ¢ = n. To complete the proof, it suffices to show that (1.4) is valid. From
(2.1), when ¢ = n, we have u(c(k)) > c(o(k))" ! for k € Nzl, where ¢ > 0 and k € N,jo is a
sufficiently large natural number. Therefore, by (1.2), (5.1) and (2.1), when ¢ = n from (1.1)
we get

k—1
A Dy(k) > A Du(ky) + A p(i) (@) = +oo for k= +o0.
Jj=k1
Now assume that, n is even and ¢ = 0. Then we will show that, condition (1.3) hold. If

that is not the case, there exist ¢ > 0 such that u(k) > ¢ for sufficiently large k. According
to (2.1), with £ =0, by (3.1), from (1.1) we have

k k
A e > () <0, (5.3)
Jj=ko Jj=ko

where kg € N is a sufficiently large natural number.
On the other hand, in view of the identity

k
> AWy = kAT Dk + 1) = (ko — 1) AP Du(ko)
Jj=ko
k
= > A Du(Hag -yt
Jj=ko
it is easy to show that
k n—1
DT AMu () = (1) Ak — i) AT Dk 4 1)
j=ko i=0
n—1
=N (1) (ko — i — 1) TTACTI Dy (ko).
=0

Since (—1)!AMy(k) > 0, from (5.3), we have

k n—1
¢y i p() < (ko —i— 1A U (k)
Jj=ko =0

which contradicts the condition (5.2). Therefore equation (1.1) has Property B.
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From this theorem, with § = 0, immediately follow

Theorem 5.1'. Let condition (1.2), (3.1), (3.2), (5.1.), (5.2) and for any ¢ € {1,...,
n — 2} with £ + n even, the condition (4.2) holds. Then equation (1.2) has Property B.

Theorem 5.2. Let conditions (1.2), (3.1), (3.2) as well as (5.3) be fulfilled for even n
and

o (k)
lligfolf o 0. (5.4)
Then the condition N
D KT Pp(k) = 4o, (5.5)
k=1
for odd n and the condition
+oo
D KT (a(k) (k) = 400 (5.6)
k=1

for even n is sufficient, for equation (1.1) have Property B.

Proof. It is obvious that, according to (5.4), (5.5) for any £ € {1,...,n—2}, where {+n
even, condition (4.2) holds. Therefore, all conditions of Theorem 5.1" hold, which proves the
validity of the theorem.

Theorem 5.3. Let conditions (1.2), (3.1), (5.1) be fulfilled and let

A
lim sup o (k)
k—+o0 k

< +4o0. (5~7)

Then for equation (1.1), to have Property B it is sufficient that

+oo

> KT o (k) p(k) = +oo. (5.8)
k=1

Proof. It is obvious that, according to (5.7), (5.8) and since 0 < A < 1 and o(k) > k+1
conditions (5.2) and for any ¢ € {1,...,n — 2}, with £ 4+ n even, conditions (4.2) holds.
Therefore condition of the Theorem 5.1’ holds, which proved the validity of the theorem.

Theorem 5.4. Let conditions (1.2), (3.1), (5.1) and for any £ € {1,...,n—L}, with {+n
even (4.2)—(4.4) be fulfilled. Moreover, of conditions (4.5) or (4.6) hold, Then for equation
(1.1), to have Property B.

Proof. Let equation (1.1) have a proper nonoscillatory solution w : N;O — (0, +00) (the
case u(k) < 0 is similar). Then by (1.1), (1.2) and Lemma 2.1, there exist £ € {1,...,n — 2},
such that £+ n is even and condition (2.1) holds. Since all conditions of the Theorem 4.2 are
fulfilled for any ¢ € {1,...,n — 2} with ¢ + n even, we have ¢ ¢ {1,...,n — 2}. Therefore,
¢ =norniseven and ¢ = 0. It is obvious that, since v € (0,1) by first condition of (4.2),
satisfied the condition (5.1), (5.2). Therefore, analogously Theorem 5.1, by (4.2) and (5.1),
(5.2) we can prove that condition(1.3) and (1.4) hold. That is, equation (1.1) has Property
B.

Theorem 5.5. Let conditions (1.2), (3.1), (4.4), (4.5) or if 0 < aX < 1, then for some
e>0andvye (A1)

o ar(1—7)
SR p(k) = oo (5.9)
k=1
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and

k—+o0

+oo
liminf &7 ) " ?p(j) > 0. (5.10)
j=k

Then equation (1.1) has Property B.

Proof. It is obvious that by (4.4), (4.5), (5.9) and (5.10) all conditions of the Theorem
5.4 hold, which proves the validity of the theorem.

Analogously we can prove

Theorem 5.6. Let conditions (1.2), (3.1), (4.4), (4.5), (5.7) or if 0 < a\ < 1, then for
somee >0 and vy € (1,))

—+00
liminf &> j(o(7) " Pp(j) > 0,
=k

—+00

I aA(1—
DRI (o ()X Ip(h) = oo
k=1

holds. Then equation (1.1), has Property B.
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