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ON ONE PROBLEM OF THE PLANE THEORY OF VISCOELASTICITY FOR A
DOUBLY-CONNECTED DOMAIN BOUNDED BY POLYGONS

Kapanadze G., Gulua B.

Abstract. In this research the quasi-static boundary value problem of the coupled theory
of elasticity for porous materials is examined. The problem of equilibrium of a spherical
layer is reviewed and the explicit solution of the Dirichlet boundary value problem is given
as absolutely and uniformly convergent series. The paper considers the problem of the plane
theory of viscoelasticity for a doubly-connected domain bounded by convex polygons. It is
assumed that absolutely smooth rigid punches are applied to the outer boundary while the
inner polygon has a smooth washer whose dimensions are slightly different from the dimen-
sions of the rectangle so that the boundary points receive constant normal displacements
without friction. The problem consists of determining the corresponding complex potentials
characterizing the equilibrium of the plate by the Kelvin-Voigt model.
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Statement of the problem

Let the viscoelastic plate on the plane z of a complex variable occupy a finite doubly-
connected domain S, bounded by the convex polygons (A) and (B) (so we have the polygonal
domain (A) with a hole (B)). we will denote by Aj (j = 1, n) and Bk (k = 1,m) the vertices

(and their affixes), and L
(j)
0 and L

(k)
1 the sides of the polygons A and B. The values of the

internal angles of the domain S at the vertices Aj and Bk will be denoted by πα0
j and πβ0k,

while the angles between the x axis and outward normals to the contours L0 =
n∪

j=1
L
(j)
0 and

L1 =
m∪
k=1

L
(k)
1 will be denoted by α(σ) and β(σ), respectively. So α(σ) = α

(j)
0 = const, β(σ) =

β
(k)
1 = const, σ ∈ L0 ∪ L1. It is assumed that absolutely smooth rigid punches are applied

to the outer boundary are under the action of normal stresses with the principal vectors

N
(0)
j (j = 1, n) while the polygon (B) has a smooth washer whose dimensions are slightly

different from the dimensions of the rectangle so that on the boundary L
(k)
1 (k = 1,m) are

given normal displacements vn = v
(k)
1 = const and without friction.

The problem consists of determining the corresponding complex potentials characterizing
the distribution of stresses and displacements of the plate S by the Kelvin-Voigt model.

Solution of the problem

The problem is solved by the methods of conformal mappings and the theory of boundary
value problems of analytic functions. Relying on the well-known KolosovMuskhelishvili’s
formulas, the problem formulated with respect to unknown complex potentials is reduced to
the two RiemannHilbert problems for a circular ring.
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In the view that a given domain is doubly connected, it is advisable to use functions
Φ(z, t) and Ψ(z, t) which are also one-valued in the case of a multiply connected domain,
however, when composed boundary conditions containing boundary values of displacements,
it is necessary to differentiate these values.

1. The function z = ω(ζ) conformally maps the circular ring D = {1 < |ζ| < R} onto the
domain S. Its derivative is the solution of the Riemann-Hilbert problem for the circular ring
D (see [1])

Re[iσe−iγ(σ)ω′(σ)] = 0, σ ∈ l0 ∪ l1, (1)

l0 = {|ζ| = R}, l1 = {|ζ| = 1}, γ(σ) = α(σ), σ ∈ l0; γ(σ) = β(σ), σ ∈ l1,

and if
n∏

k=1

(ak
R

)α0
k−1

m∏
i=1

(bi)
β0
i−1 = 1,

is given by the formula

ω′(ζ) = K0
n∏

k=1

(
ak
R

)α0
k−1

2
(
1− ζ

ak

)α0
k−1 m∏

i=1

(
1− bi

ζ

)β0
i −1

×
∞∏
j=1

n∏
k=1

(
1− ζ

R2jak

)α0
k−1(

1− ak
R2jζ

)α0
k−1

×
m∏
i=1

(
1− ζ

R2jbi

)β0
i −1(

1− bi
R2jζ

)β0
i −1

(2)

where K0 is an arbitrary real constant.
2. The first and second basic boundary value problems of the viscoelasticity plane S for

the Kelvin-Voigt linear model have the following forms

φ(σ, t) + σφ′(σ, t) + ψ(σ, t) = i

∫ s

0
(Xn + iYn)ds0 + c1 + ic2, (3)

∫ t
0 [x

∗ek(τ−t) + 2em(τ−t)]φ(σ, τ)dτ −
∫ t
0 e

m(τ−t)[φ(σ, τ) + τφ′(σ, τ) + ψ(σ, τ)]dτ
= 2µ∗(u+ iv), σ ∈ L = L0 ∪ L1,

(4)

here and then the coordinate t is the parameter of the time.
From (3) and (4) we have

Γφ(σ, t) =M
[
i

s∫
0

(Xn + iYn)ds0 + c1 + ic2

]
+ 2µ∗(u+ iv), (5)

where Γ and M are operators of the time t

Γφ(σ, t) =
t∫
0

[(x∗ek(τ−t) + 2em(τ−t)]φ(σ, τ)dτ,

M [c(σ, t)] =
∫ t
0 e

m(τ−t)C(σ, τ)dτ,

(6)

Considering the equality

Xn + iYn = (N + iT )eiγ(σ); (γ(σ) = α(σ), σ ∈ L0; γ(σ) = β(σ), σ ∈ L1),

u+ iv = (vn + ivs)e
iγ(σ), T (σ) = 0, σ ∈ L = L0 ∪ L1, vn(σ) = vkn = const,
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σ ∈ L
(k)
0 ; vn(σ) = vin = const, σ ∈ L

(i)
1 (k = 1, n; i = 1,m),

from boundary conditions (3) and (4) we have

Re[e−iα(σ)Γφ(σ, t)] = f0(σ, t), σ ∈ L0,

Re[e−iβ(σ)Γφ(σ, t)] = f1(σ, t), σ ∈ L1,
(7)

fj(σ, t) = 2µ∗v(j)n +M [C(j)(σ)], j = 0, 1,

C(j)(σ) = Re[i

s∫
0

N (j)(σ0)e
i[γ(σ0)−γ(σ)]ds0 + e−iγ(σ)[c

(j)
1 + ic

(j)
2 ]

=

r(j)∑
k=1

N
(j)
k sin[γrj (σ)− γr(j)(σ0)] + c

(j)
1 cos γ(σ)− cj2 sin γ(σ), σ ∈ Lj ,

j = 0, 1, r(0) = 1, n, r(1) = 1,m, N
(j)
k =

∫
L
(k)
j

N(σ0)ds0, c
(j)
1 and c

(j)
2 are arbitrary real

constants.
Let’s assume that at the initial moment of time the points of the contour L are given of the

normal displacement vk(σ) (this state will be considered starting) this state will be assumed
to be the initial one and is subsequently held in this position (so vk(σ) = 0, when t ≥ 0), and
the corresponding stresses are determined through the complex potentials Φ(z) = φ′(z, t)
and Ψ(z) = ψ′(z, t). With that said, it is easy to notice that functions fj(z, t) (j = 0, 1) are
written in the forms

fj(σ, t) = C(j)(σ)F (t), F (t) =
1

m
[1− e−mt], j = 0, 1.

Introducing the notation

φ1(z, t) =
1

F (t)
Γφ(z, t), (8)

from (7) we obtain the boundary condition

Re[e−iγ(σ)φ1(σ, t)] = C(j)(σ), σ ∈ Lj , j = 0.1, (9)

however we will fined the solution of problem (9) in the class h(a1, a2, ..., a3) (see [5]).
Differentiating (9) with respect to the arc abscissa s and taking into account the fact the

functions γ(σ) and C(j)(σ) are piecewise constants, we obtain

ReiΓφ′
1(σ, t) = 0, σ ∈ L. (10)

Let the function z = ω(ζ) map conformally the domain S onto the circular ring D (see
formula (2)). Introducing the notation φ[ω(ζ), t] = φ0(ζ, t) and from the equality φ′

0(ζ, t) =
φ′[ω(ζ), t] · ω′(ζ) for the function

Φ0(ζ, t) = φ′
0(ζ, t) = φ′[ω(ζ), t]ω′(ζ) (11)

we obtain for the circular ring D the following Riemann-Hilbert boundary value problem

Re
[ i

F (t)
ΓΦ0(ξ, t)

]
= 0, ξ ∈ l = l0 ∪ l1. (12)
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The solution of problem (12) is given by the formula

1

F (t)
ΓΦ0(ζ, t) = K0,

where K0 is a real constant.

Based on what has been said and from (6) for determining Φ0(ζ, t) we obtain the equation

κ∗
t∫

0

ek(τ−t)Φ0(ζ, τ)dτ + 2

t∫
0

em(τ−t)Φ0(ζ, t)dτ = K0F (t),

or

κ∗
t∫

0

ekτΦ0(ζ, τ)dτ + 2e(k−m)t

t∫
0

emτΦ0(ζ, τ)dτ = K0e
ktF (t). (13)

Differentiating (13) with respect to the variable t and the obtained equality pluses (13)
which is multiplied by m− k we have

κ∗(m− k)

t∫
0

ekτΦ0(ζ, τ)dτ + (κ∗ + 2)ektΦ0(ζ, t) = K0e
kt. (14)

From this, after differentiating with t, we easily obtain the differential equation

Φ̇0(ζ, t) + aΦ0(ζ, t) = b, (15)

where Φ̇0(ζ, t) denotes derivatives in time t

a =
κ∗m+ 2

κ∗ + 2
; b =

kK0

κ∗ + 2
. (16)

From (14) we have

Φ0(ζ, 0) =
K0

κ∗ + 2
. (17)

The solution of the differential equation (15) for condition (16) has the form

Φ0(ζ, t) =
K0

κ∗ + 2
[(k + a)e−at − k], (18)

where a is defined by formula (16).

After finding the function Φ0(ζ, t), for the definition of the function Ψ0(ζ, t) = ψ′
0(ζ, t) =

ψ′
0(ω(ζ), t) we use the first basic condition which after the conformally mapping is rewritten

in the form

Φ0(η, t) + Φ0(η, t)− η2

ω′(η)

[
ω(η)Φ′

0(η, t) + ω′(η)Ψ0(η, t)
]

= N(η, t)− iT (η, t), η ∈ l.
(19)

On the basis of (18) and the equation T (η, t) = 0, from (19) we have

Im
[ η2

ω′(η)
ω′(η)Ψ0(η, t)

]
= 0, η ∈ l,
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or
ηω′(η)

ηω′(η)
Ψ0(η, t)−

ηω′(η)

ηω′(η)
Ψ0(η, t) = 0, η ∈ l, (20)

From (20) for the function Ω(ζ, t) = ζ2ω′2(ζ)Ψ0(ζ, t) we obtain the Dirichlet problem for
a circular ring

ImΩ(η, t) = 0, η ∈ l. (21)

The solution of problem (21) has the form Ω(ζ, t) = K1 (K1 is the real constant) and for the
function Ψ0(ζ, t) we obtain the formula

Ψ0(ζ, t) =
K1

ζ2ω′(ζ)
.

On the basis of (12) we have

φ′(ζ, t) =
Φ0(ζ, t)

ω′(ζ)
. (22)

Based on the results obtained in (see [6]) near the angles points we have

z −Bk = (ζ − bk)
β0
kΩk(ζ), (Ωk(bk) ̸= 0, k = 1,m), (23)

and thus from (18), (2) and (23) near a point B (B is one of the point Bk (k = 1,m)) we
have the estimate

|φ′(z, t)| < M |z −B|
1
β0

−1
, M = const.

So near the points Bk (k = 1,m), φ′(z, t) has integral singularity. Similarly it can be proved
that near the points Ak (k = 1, n) the fuction φ′(z, t) is bounded.
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