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ON A PROBLEM OF INTEGER VALUED OPTIMIZATION

Chelidze G., Nikoleishvili M., Tarieladze V.

Abstract. We obtain an expression for the maximal value of the product of finite sequence
of positive integers when their sum is fixed. We show also that this value in general is strictly
less than the estimation obtained by means of the classical mean arithmetic-mean geometric
inequality.
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1. Introduction

In historical notes to Chapter 1 of [1] it is written: “The concepts of arithmetic mean and
geometric mean of two positive quantities go back to antiquity, in particular the pythagoreans
made of them one of their favorite subjects. It is also probable that the inequality

√
ab ≤ 1

2
(a+ b)

between these means was well-known to them; in any case it is proved by Euclid in connection
with the problem of maximizing the product of two numbers whose sum is given.”

The mentioned problem for not necessarily two numbers can be formulated as follows:
Let n > 1 be a natural number, L > 0 and xi > 0, i = 1, . . . , n real numbers; maximize∏n

i=1 xi when
∑n

i=1 xi = L.
A solution of this extremum problem is contained in the following version of the arithmetic

mean- geometric mean inequality, for short, the AM-GM inequality:
Let n > 1 be a natural number, L > 0 and let xi > 0, i = 1, . . . , n be real numbers with∑n

i=1 xi = L. Then
n∏

i=1

xi ≤
(
L

n

)n

, (1)

and the equality we have if and only if xi =
L
n , i = 1, . . . , n . There are many different proofs

of this inequality; e.g., in [7] is presented O. L. Cauchy’s proof (it is mentioned also in [8],
however it is not mentioned in [5]); 74 proofs are included in [2]. One more proof will appear
also in [4].

Seemingly the second author of this paper was the first who considered the above-
mentioned maximization problem for natural numbers; he observed that for them the bound(
L
n

)n
was not the best possible and found the correct bound. His result first appeared in

(unpublished) preprint [3] and then (in a slightly more general setting) in [6].
In the present paper we formulate an assertion which covers the results of [3] and of [6]

and shows also, that in general the sharper bound
[(

L
n

)n]
may not be the best possible as well.
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2. Main result and remarks

Our assertion looks as follows:
Theorem 1. Let natural numbers L, n and an integer k ≥ 0 be such d := L−n(1+k) ≥ 0.

Let, moreover, [q] be the integer part of q := L
n and r := L − n[q]. Then the following

statements are valid.
(a)

Z+(L, n; k) :=

{
(x1, . . . , xn) ∈ Zn

+ :
n∑

i=1

xi = L, xi ≥ k, i = 1, . . . , n

}
is a finite non-empty set and

b(L, n; k) := max

{
n∏

i=1

xi : (x1, . . . , xn) ∈ Z+(L, n; k)

}
≥ (1 + k)n−1(1 + k + d) .

(b) We have the equality:

b(L, n; k) = (1 + [q])r[q]n−r . (2)

(c) If r = 0, then
b(L, n; k) = qn (3)

and if r > 0, then

b(L, n; k) ≤ [qn] . (4)

Proof. (a) is easy to verify. (b) is proved in [6] (see also [4]). (c): (3) follows from (2);

an easy derivation of (4) from AM-GM-inequality (1) is omitted.
Remark 1. The inequality (4) from Theorem 1 can be rewritten as follows:

(1 + [q])r[q]n−r ≤
[(

[q] +
r

n

)n]
(5)

and the equality in (5) takes place only in the following cases:
Case 1. n = 2.
Case 2. n = 3 and L ∈ {4, 5, 7, 8}.
Case 3. n > 3 and L = n+ 1.

The proof of this statements is contained in the next remark.
Remark 2. Let n > 1 and 1 ≤ r < n be natural numbers. Then we have:

(1 + x)rxn−r ≤
[(

x+
r

n

)n]
, x = 1, 2, . . . (6)

and the following statements give a complete description set

Vn,r :=
{
x ∈ N : (1 + x)rxn−r =

[(
x+

r

n

)n]}
.

(a) V2,1 = N, V3,1 = V3,2 = {1, 2} and Vn,1 = {1}, n = 4, 5, . . .
(b) n > 3, r > 1 =⇒ Vn,r = ∅.
Proof of Remark 2. Clearly, (6) is equivalent to (5) and we also have:

Vn,r = {x ∈ N :
(
x+

r

n

)n

− (1 + x)rxn−r < 1} ; (7)
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(
x+

r

n

)n

− (1 + x)rxn−r =
n∑

k=0

( rk

nk
Cn,k − Cr,k

)
xn−k , (8)

where Cn,k :=
n!

k!(n−k)!
and Cr,k = 0 if k > r;

rk

nk
Cn,k − Cr,k = 0 , k = 0, 1 (9)

rk

nk
Cn,k − Cr,k > 0 , k = 2, . . . , n . (10)

(The equalities (7), (8) and (9) are easy to verify; (10) is equivalent to the inequality(
1− 1

n

)(
1− 2

n

)
. . .

(
1− k − 1

n

)
>

(
1− 1

r

)(
1− 2

r

)
. . .

(
1− k − 1

r

)
,

which is of course true when r < n.)
Proof of Remark 2 (a).

The equalities V2,1 = N and V3,1 = V3,2 = {1, 2} are easy to verify by using (7).
We have 1 ∈ Vn,1 from (7) and from the known inequality

(
1 + 1

n

)n − 2 < 1. The
remaining relation

x ≥ 2, n > 3 =⇒ x ̸∈ Vn,1

will follow from the next more general statement

x ≥ 2, n > 3 =⇒ x ̸∈ Vn,r . (11)

To prove (11), note that from (8),(9) and (10) we can write(
x+

r

n

)n

− (1 + x)rxn−r >
( r2

n2
Cn,2 − Cr,2

)
xn−2 =

xn−2r

2

(
1− r

n

)
.

From this relation we get (11). Indeed, if n ≥ 4 and x ≥ 2, then

xn−2r

2

(
1− r

n

)
≥ 2n−3 r(n− r)

n

and since r(n − r) achieves its minimum value at r = 1 or at r = n − 1 we have the
estimation

xn−2r

2

(
1− r

n

)
≥ 2n−3 r(n− r)

n
≥ 2n−3(1− 1

n
) > 1

and from (7) we conclude that x ̸∈ Vn,r.
Proof of Remark 2 (b). From (11) we have that if x ≥ 2, then x ̸∈ Vn,r.
Now let us prove, that if n ≥ 4 and r > 1, then 1 /∈ Vn,r as well. For this purpose

according to (7) it is sufficient to show that the following (slightly unexpected) inequality
holds

n ≥ 4, 1 < r < n =⇒
(
1 +

r

n

)n

− 2r > 1 . (12)
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Therefore, it remains now to prove the next inequality:

n ≥ 4, 1 < r < n =⇒
((

1 +
r

n

)n
r

)r

− 2r > 1 . (13)

It is clear that for given r the left-hand side of (13) increases as n increases. Let us
consider separately two cases r = 2 and r ≥ 3.

If r = 2 it is enough to check that (13) is true when n = 4. Plugging in (13) r = 2
and n = 4 we are getting the true inequality 17

16
> 1 and hence it’s over.

For r ≥ 3 it is enough to show that (13) holds when n = r + 1. In this case the
left-hand side of (13) will be

(
2− 1

r + 1

)r+1

− 2r =
Cr+1,22

r−1

(r + 1)2
− Cr+1,32

r−2

(r + 1)3
+

r+1∑
k=4

Cr+1,k2
r+1−k (−1)k

(r + 1)k
.

Since the sum
∑r+1

k=4 Cr+1,k2
r+1−k (−1)k

(r+1)k
is nonnegative, it is enough to show that

Cr+1,22r−1

(r+1)2
− Cr+1,32r−2

(r+1)3
> 1. We have

Cr+1,22
r−1

(r + 1)2
− Cr+1,32

r−2

(r + 1)3
= 2r−2

(
1− 1

r + 1

)(
5

6
+

1

3(r + 1)

)
> 2r−2

(
1− 1

r + 1

)
5

6

≥ 2× 3

4
× 5

6
=

15

12
> 1

and so, (13) holds when n = r + 1. �
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