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EXPLICIT SOLUTION OF THE DIRICHLET TYPE BOUNDARY VALUE
PROBLEM OF ELASTICITY FOR THE POROUS SPHERICAL LAYER

Bitsadze L.

Abstract. In this research the quasi-static boundary value problem of the coupled theory of
elasticity for porous materials is examined. The problem of equilibrium of a spherical layer
is reviewed and the explicit solution of the Dirichlet boundary value problem is given as a
absolutely and uniformly convergent series.
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1. Introduction

In most of naturally or manufactured solids is not completely filled. In nearly every body
there are empty interspaces, which are called pores through which the liquid or gas may
flow. Many materials such as rocks, sand, soil etc., which occur on and below the surface of
the earth, are known as porous materials. In some bodies there are immediately visible, in
others the pores are recognized only with a magnifier. For example, the human skin has a
larger number of pores, bone tissue could be assumed to be transversely isotropic and most
closely describes mechanical anisotropy of bone and cancellous bone is considered as a porous
material.

The foundations of the theory of elastic materials with voids were first proposed by Cowin
and Nunziato [1,2]. They investigated the linear and nonlinear theories of elastic materials
with voids. In these theories the independent variables are displacement vector field and the
change of volume fraction of pores. Such materials include, in particular, rocks and soils,
granulated and some other manufactured porous materials.

Elastic materials which contain a multi-porous structure has a multitude of applications
in real life. The history of development of porous body mechanics, the main results and
the sphere of their application are set forth in detail in the monographs [3-6] (see references
therein). The generalization of the theory of elasticity and thermoelasticity for materials
with double void pores belongs to Ieşan and Quintanilla [7]. In [8] Svanadze consider the
coupled linear model of porous elastic solids by combining the following three variables: the
displacement vector field the volume fraction of pores; and the pressure of the fluid. The basic
internal and external BVPs (boundary value problems) of steady vibrations are investigated,
Green’s formulas are obtained, the uniqueness and the existence theorems are proved by
means of the potential method and the theory of singular integral equations (see references
therein). In [9] the coupled linear quasi-static theory of elasticity for porous materials is
considered. The fundamental solution is constructed, and its basic properties are established.
Green’s formulas are obtained, and the uniqueness theorems of the internal and external
boundary value problems are proved, the existence theorems for classical solutions of the
BVPs are proved by means of the potential method and the theory of singular integral
equations.

For applications, it is especially important to construct the solutions of boundary value
problems in an explicit form because such solutions enable us to effectively perform quanti-
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tative analysis of the investigated problem. Many researchers have studied questions related
to this topic, for example, in [10-30], where the explicit solutions are constructed for some
boundary value problems of porous elasticity for the concrete domains, by applying different
methods, such as analytical, numerical, ect.

In this paper the BVP of coupled linear quasi-static theory of elasticity is considered
for an isotropic porous elastic materials.The paper is outlined as follows: in Section 2, the
basic equations are presented in terms of the displacement vector field, the changes of volume
fraction of pores, and fluid pressure in the pore network. The Dirichlet BVP is formulated
for a spherical layer. In Section 3, some basic theorems, which are useful in the sequel, are
given. In Section 4, the solution of the Dirichlet type BVP for a spherical layer is obtained
in the form of absolutely and uniformly convergent series.

2. Basic equations. Formulation of the problem

Let x = (x1, x2, x3) be a point in the Euclidean three-dimensional space E3. Let us assume
that D is a spherical layer, R1 < |x| < R2, centered at point O(0, 0, 0) in the space E3, S1 is
a spherical surface of radius R1, S2 is a spherical surface of radius R2 and S = S1 ∪ S2. Let
us assume that the domain D is filled with an isotropic porous materials.

Following Svanadze [8] and Mikelashvili [9] the basic system of equations of motion in the
coupled linear quasi-static theory of elasticity for porous elastic materials expressed in terms
of the displacement vector u, changes of volume fraction of pores φ and the change of fluid
pressure in pore network p has the following form [8, 9]

µ∆u+ (λ+ µ)graddivu+ bgradφ− βgradp = 0,

(α∆− α1)φ− b divu+mp = 0,

(k∆+ iω a)p+ iωβ divu+ iω mφ = 0,

(1)

where u := (u1, u2, u3)
⊤, λ and µ are the Lamé constants, β is the effective stress

parameter, k = k′

µ′ , µ′ is the fluid viscosity, k′ is the macroscopic intrinsic permeabil-
ity associated with the pore network, α, b, m, α1, are constitutive coefficients, the value
a measures the compressibility of pores, ω > 0 is the oscillation frequency, i is the imaginary
unit, ∆ is the Laplacian. Throughout this paper the superscript ⊤ stands for the transpose
operation.

Definition. A vector-function U = (u, φ, p) defined in the domain D is called regular if

U ∈ C2(D) ∩ C1(D).

For the equations (1) we consider the following basic BVP.
Problem 1. Find in the domain D a regular solution U = (u, φ, p) of equations (1) with

the boundary conditions on S :

u−(z) = F−(z), φ−(z) = f−
4 (z), p− = f−

5 (z), ρ = R1,

u+(z) = F+(z), φ+(z) = f+
4 (z), p+ = f+

5 (z), ρ = R2.

where the vector-function F(z) = (f1, f2, f3) and the functions f4(z), f5(z) are given
functions on S, at z. Moreover we assume that the boundary values are absolute integrable
functions. The symbol U+(U−) denotes the limits of U(x) = (u, φ, p) on z ∈ S from D

U+(z) = lim
D∋x→z∈S2

U(x), U−(z) = lim
D∋x→z∈S1

U(x).
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We assume that

µ > 0, λ+ 2µ > 0, k > 0, a > 0, α > 0, (3λ+ 2µ)α1 > 3b2.

The following assertion holds (for details see [9]).
Theorem 1. The Dirichlet type BVP has at most one regular solution in the finite

domain D.

3. Preliminaries

In this section, some basic theorems from [13], which are useful in our subsequent, are
given and we cite it without proof.

Theorem 2. If U := (u, φ, p) is a regular solution of the homogeneous system (1) then
u, divu, φ and p satisfy the following equations

∆∆(∆+ λ2
1)(∆ + λ2

2)u = 0, ∆(∆+ λ2
1)(∆ + λ2

2)Φ = 0, (2)

where Φ = (divu, φ, p), λ2
j , j = 1, 2 are roots of algebraic equation

αµ0kξ
2 −A1ξ + iωA2 = 0, µ0 = λ+ 2µ, A1 = µ0(aαiω − α1k) + kb2 + iωαβ2,

A2 = µ0(−α1a−m2) + ab2 − α1β
2 + 2bmβ.

We may assume without loss of generality that Imλ2
j > 0 and λ2

j are distinct and different
from zero [9].

Theorem 3. The regular solution U = (u, φ, p) of the system (1) admits a representation

u = Ψ− grad

[
(k0 − 1)h0 +

2∑
j=1

hj
λ2
j

]
,

φ = B0h+
2∑

j=1
Bjhj ,

p = C0h+
2∑

j=1
Cjhj ,

(3)

where 

divu = h+
2∑

j=1
hj , divΨ = k0h, ∆h0 = h, ∆h = 0, (∆ + λ2

j )hj = 0,

B0 =
ab+mβ

δ0
, C0 =

βα1 −mb

δ0
, k0 =

A2

µδ0
,

Bj =
iωδ0B0 − bkλ2

j

δj
, Cj = iω

δ0C0 + αβλ2
j

δj
, j = 1, 2,

δ0 = −aα1 −m2, δj = −(α1 + αλ2
j )(iωa− kλ2

j )− iωm2,

µ0 + bB0 − βC0 =
A2

δ0
, bBJ − βCj = −µ0.

(4)
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Herein it is assumed that, the functions Ψ and h0 are interrelated by the following relations:

∆Ψ = 0, divΨ = k0h, ∆h0 = h, ∆h = 0.

From relations (3) we conclude that the representation of a solution of u contains a harmonic,
bi-harmonic, and a meta-harmonic functions, while the representations of φ and p contain
only a harmonic and a meta-harmonic functions.

4. Explicit solution of Problem 1

Let us introduce the spherical coordinates and the following notations:
x1 = ρ sin ξ cos η, x2 = ρ sin ξ sin η, x3 = ρ cos ξ, x ∈ D,

y1 = R sin ξ0 cos η0, y2 = R sin ξ0 sin η0, y3 = R cos ξ0, y ∈ S,

|x| = ρ =
√
x21 + x22 + x23, 0 ≤ ξ ≤ π, 0 ≤ η ≤ 2π 0 ≤ ρ ≤ R.

(5)

If g(x) = g(g1, g2, g3) and q(x) = q(q1, q2, q3), then by symbols (g.q) and [g.q] we mean the
scalar product and vector product of the two vectors, respectively. The operator ∂

∂Sk(x)
is

defined as follows:

[x · ∇]k =
∂

∂Sk(x)
, k = 1, 2, 3, ∇ =

(
∂

∂x1
,

∂

∂x2
,

∂

∂x3

)
.

Making use of the identity, (x · grad) = ρ ∂
∂ρ , from (3) we obtain

(x · u) = (x ·Ψ)− ρ
∂

∂ρ

(k0 − 1)h0 +
2∑

j=1

hj
λ2
j

 ,

φ = B0h+
2∑

j=1
Bjhj , p = C0h+

2∑
j=1

Cjhj .

(6)

By direct calculation it can be shown, that the function (x ·Ψ) is a solution of the equation

∆(x ·Ψ) = 2div Ψ = 2k0h.

From here we yield, that
(x ·Ψ) = Ω + 2k0h0, (7)

where Ω is an arbitrary harmonic function ∆Ω = 0 and the function h0 is a bi-harmonic
function and chosen so that ∆h0 = h.

Substituting in (6), expression (7), we get

(x · u) = Ω + 2k0h0 − ρ
∂

∂ρ

(k0 − 1)h0 +
2∑

j=1

hj
λ2
j

 ,

φ = B0h+
2∑

j=1
Bjhj , p = C0h+

2∑
j=1

Cjhj ,
3∑

k=1

∂uk
∂Sk(z)

=
3∑

k=1

∂Ψk

∂Sk(z)
..

(8)
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In the sequel we us the following notation

(z · F)± = q±1 (z), (divF)± = q±2 (z),
3∑

k=1

∂uk
∂Sk(z)

= q±3 . (9)

Let us assume that functions qk, k = 1, 2, and fk, k = 4, 5 are representable in the form
of the series

qk(y) =
∞∑
n=0

qkn(ξ0, η0), (10)

where qkn, k = 1, 2, 3 are the spherical harmonics of order n

qkn =
2n+ 1

4π

∫∫
S

Pn(cos γ)qk(y)dSy,

Pn is a Legender polynomial of the n-th order, and γ is an angle formed by radius-vectors
Ox and Oy,

cos γ =
1

|x||y|

3∑
k=1

xkyk.

From (8), passing to the limit as ρ → R1, ρ → R2 and taking into account the boundary
conditions for determining the unknown values h, hj and Ω, we obtain the following system
of algebraic equations:

for ρ = R1
Ω− + 2k0h0 −R1

∂

∂ρ

(k0 − 1)h0 +

2∑
j=1

hj
λ2
j

 = q−1 ,

3∑
k=1

∂uk
∂Sk(z)

= q−3 ,

B0h
− +

2∑
j=1

Bjh
−
j = f−

4 , C0h
− +

2∑
j=1

Cjh
−
j = f−

5 , h− +
2∑

j=1
h−j = q−2 ,

(11)

for ρ = R2
Ω+ + 2k0h0 −R2

∂

∂ρ

(k0 − 1)h0 +
2∑

j=1

hj
λ2
j

 = q+1 ,
3∑

k=1

∂uk
∂Sk(z)

= q+3 ,

B0h
+ +

2∑
j=1

Bjh
+
j = f+

4 , C0h
+ +

2∑
j=1

Cjh
+
j = f+

5 , h+ +
2∑

j=1
h+j = q+2 .

(12)

Taking into account the identities

µ0 + bB0 − βC0 =
A2

δ0
, bBJ − βCj = −µ0

at first we find the functions h± from systems (11) and (12)
h− =

δ0
A2

[bf−
4 − βf−

5 + µ0q
−
2 ] = G−,

h+ =
δ0
A2

[bf+
4 − βf+

5 + µ0q
+
2 ] = G+.

(13)
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Now we consider the following equivalent system to equations (11)2, (11)3, (12)2 and (12)3

2∑
j=1

Bjh
−
j = f−

4 −B0G
− = g−1 ,

2∑
j=1

h−j = q−2 −G− = g−2 ,

2∑
j=1

Bjh
+
j = f+

4 −B0G
+ = g+1 ,

2∑
j=1

h+j = q+2 − h+ = g+2 ,

(14)

Bj , (j = 0, 1, 2) are given by (4).
On the basis of Theorem 1, we conclude that the determinant of system (14) is different

from zero and the system (14) is always solvable. It follows from Eqs. (14), that

h±j =
(−1)j

d

[
B0G

± − f±
4 +

B1B2

Bj
(q±2 −G±)

]
= G±

j , j = 1, 2. (15)

where

d = B1 −B2 = −iω
(λ2

1 − λ2
2)βδ0K0

µ0δ1δ2
=

(λ2
1 − λ2

2)αkµ0β

K0
,

K0 = kbC0 + αβiωB0, δ1δ2 = − iωδ20K
2
0

αkµ2
0

.

Thus, the functions h and hj are known and from (11)1 and (12)1 it follows that

Ω− = −2k0h
−
0 +R1

∂

∂ρ

(k0 − 1)h0 +
2∑

j=1

hj
λ2
j

+ q−1 = G−
3 , ρ = R1,

Ω+ = −2k0h
+
0 +R2

∂

∂ρ

(k0 − 1)h0 +

2∑
j=1

hj
λ2
j

+ q+1 = G+
3 , ρ = R2,

(16)

Let the functions h, hj , j = 1, 2,
3∑

k=1

∂uk
∂Sk(z)

and Ω be sought in the form [31]

h(x) =
∞∑
n=0

[(
R1

ρ

)n+1

Zn +

(
ρ

R2

)n

Z0n

]
,

Ω(x) =
∞∑
n=0

[(
R1

ρ

)n+1

Yn +

(
ρ

R2

)n

Y0n

]
,

3∑
k=1

∂uk
∂Sk(z)

=

∞∑
n=0

[(
R1

ρ

)n+1

Y3n +

(
ρ

R2

)n

Y4n

]
,

hj(x) =
∞∑
n=0

[ϕn(λjρ)Yjn +Ψn(λjρ)Zjn] , R1 < ρ < R2

(17)

where Yn, Y0n, Zn, Z0n, Yjn and Zjn, j = 1, 2 are the unknown spherical harmonics
of order n,

ϕn(λkρ) =

√
R2Jn+ 1

2
(λkρ)

√
ρJn+ 1

2
(λkR2)

k = 1, 2,
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Jn+ 1
2
(λkρ) is the Bessel function,

Ψm(λkρ) =

√
R1H

(1)

m+ 1
2

(λkρ)

√
ρH

(1)

m+ 1
2

(λkR1)
,

is the Hankel function.
On the basis of equation ∆h0 = h, the function h0 can be represented in the following

form

h0(x) =
1

2

∞∑
n=0

[
ρ2

3 + 2n

(
ρ

R2

)n

Z0n(ϑ, η) +
ρ2

1− 2n

(
R1

ρ

)n+1

Zn(ϑ, η)

]
. (18)

On the other hand, as seen from equations (13), (15), (16) and (17), for determining unknown
functions, we get

Zn +

(
R1

R2

)n

Z0n = G−
n ,

(
R1

R2

)n+1

Zn + Z0n = G+
n ,

Yn +

(
R1

R2

)n

Y0n = G−
3n,

(
R1

R2

)n+1

Yn + Y0n = G+
3n,

Y3n +

(
R1

R2

)n

Y4n = q−3n,

(
R1

R2

)n+1

Y3n + Y4n = q+3n,

Φn(λjR1)Yjn + Zjn = G−
jn, Yjn +Ψn(λjR2)Zjn = G+

jn,

(19)

where G±
n , G−

3n, G−
jn, G+

3n, and G+
jn, are the known spherical harmonics of order n.

By applying Theorem 1 we conclude that the determinant of system (19) for n ≥ 0 is
different from zero. Therefore, system (19) is uniquely solvable.

Zn =
Rn+1

2

R2n+1
2 −R2n+1

1

[Rn
2G

−
n −Rn

1G
+
n ],

Z0n =
Rn

2

R2n+1
2 −R2n+1

1

[Rn+1
2 G+

n −Rn+1
1 G−

n ],

Y3n =
Rn+1

2

R2n+1
2 −R2n+1

1

[Rn
2 q

−
n −Rn

1 q
+
n ],

Y4n =
Rn

2

R2n+1
2 −R2n+1

1

[Rn+1
2 q+n −Rn+1

1 q−n ],

Yn =
Rn+1

2

R2n+1
2 −R2n+1

1

[Rn
2G

−
3n −Rn

1G
+
3n],

Y0n =
Rn

2

R2n+1
2 −R2n+1

1

[Rn+1
2 G+

3n −Rn+1
1 G−

3n],

Yjn =
1

Φn(λjR1)Ψn(λjR2)− 1
[Ψn(λjR2)G

−
jn −G+

jn],

Zjn =
1

Φn(λjR1)Ψn(λjR2)− 1
[Φn(λjR1)G

+
jn −G−

jn], j = 1, 2.

(20)

Substituting relations (20) into (17) and then obtained functions in (3), we get the solution
of Problem 1, where functions h, hj , Ω and h0 are defined from (17) and (18).
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For absolutely and uniformly convergence of series, together with their first derivatives,
it is sufficient to assume that

fj ∈ C5(S), j = 1, 2, .., 5.

Under these conditions the resulting series are absolutely and uniformly convergent.
Thus, the considered problem is completely solved.
Remark. By using the above-mentioned method, it is possible to construct explicitly the

solutions of basic BVPs for systems of equations in modern linear theories of poroelasticity
and thermoelasticity for materials with micro-structures for simple cases of 3D domains
(sphere, space with a spherical cavity and etc.) in the form of absolutely and uniformly
convergent series.

5. Conclusions

This paper with the coupled linear quasi-static equations of the theory of elasticity for
porous elastic materials, in which the basic equations are expressed in terms of the displace-
ment vector u, the changes of the volume fraction φ of pores and the fluid pressure p in
pore network. The following results are obtained:

1. Efficient solutions of the Dirichlet type BVP is obtained for a porous spherical layer.
2. The obtained solution is represented as absolutely and uniformly convergent series.
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