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EFFECTIVE SOLUTION OF THE ONE NONLOCAL PROBLEM OF STATICS
OF THE THEORY OF ELASTIC MIXTURE IN A CIRCULAR DOMAIN

Svanadze K.

Abstract. In the paper we consider the boundary value problem of statics of the linear
theory of elastic mixture in a circular domain, when on the boundary of the domain the
partial diplacement vectors satisfy the conditions of the Dirichlet and the Neumann problems
respectively, and the rotor vector satisfies the condition of A. Bitsadze’s nonlocal problem for
harmonic vector-function in a circle. The problem can be reduced in same domain to the of
the Dirichlet and the Neumann problems for equation of the Poisson.
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1. Introduction

The basic two-dimensional classical and nonlocal (nonclassical) boundary value problems
of statics of the linear theory of elastic mixtures are studied in [1, 2, 4, 5] and also by many
other authors.

In the work [3] A. Bitsadze considered the nonlocal boundary value problem in a circle
for harmonic and bi-harmonic equations.

In the work in a circle for the homogeneous equation of statics of the linear theory of
elastic mixture we consider the nonlocal boundary value problem, which is of this type of
work [3] by A. Bitsadze.

In the work it is shown that the solution of the considering problem is reduced to the
solution of the Dirichlet and Neumann problems in a circle for the Poisson equation.

2. Some auxiliary formulas and operators

In the two-dimensional case, the basic homogeneous equations of statics of the elastic
mixture theory have the form [1]

a1 △ u′ + b1graddivu
′ + c △ u′′ + dgraddivu′′ = 0,

c △ u′ + dgraddivu′ + a2 △ u′′ + b2graddivu
′′ = 0, (2.1)

where u′ = (u1, u2)
T and u′′ = (u3, u4)

T are partial displacements, ak, bk, (k = 1, 2) c, d
are the known constants, characterizing the physical properties of a mixture, and at that

a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5, b1 = µ1 + λ1 + λ5 − α2
ρ2
ρ
,

b2 = µ2 + λ2 + λ5 + α2
ρ1
ρ
, α2 = λ3 − λ4, ρ = ρ1 + ρ2,

d = µ3 + λ3 − λ5 − α2
ρ1
ρ

≡ µ3 + λ4 − λ5 + α2
ρ2
ρ
.



Effective Solution of the One Nonlocal Problem of Statics of the Theory of... 47

where µ1, µ2, µ3, λp, p = 1, 5 are elastic constants, ρ1 and ρ2 are partial densities. The above
constants, satisfying the definite conditions (inequalities [1]).

Using the identity

∆u′ =

(
∂

∂x1
∂

∂x2

)
θ′ +

(
− ∂

∂x2
∂

∂x1

)
ω′, θ

′
= divu

′
, ω

′
= rotu

′
,

∆u′′ =

(
∂

∂x1
∂

∂x2

)
θ′′ +

(
− ∂

∂x2
∂

∂x1

)
ω′′, θ

′′
= divu

′′
, ω

′′
= rotu

′′
,

we can rewrite (2.1) as follows:

a∆u′ + c0∆u′′ − b1

(
− ∂

∂x2
∂

∂x1

)
ω′ − d

(
− ∂

∂x2
∂

∂x1

)
ω′′ = 0,

c0∆u′ + b∆u′′ − d

(
− ∂

∂x2
∂

∂x1

)
ω′ − b2

 − ∂
∂x2

∂
∂x1

ω′′ = 0, (2.2)

where a = a1 + b1, b = a2 + b2, c0 = c+ d.
From (2.1) and (2.2) elementary calculations yield:

∆u′ = H(x) =

(
− ∂

∂x2
∂

∂x1

)(
bb1 − c0d

d1
ω′ +

bd− c0b2
d1

ω′′
)

=

 ∂
∂x1

∂
∂x2

(cd− a1b1
d2

θ′ +
cb2 − a2d

d2
θ′′
)
, (2.3)

∆u′′ = Q(x) =

(
− ∂

∂x2
∂

∂x1

)(
ad− c0b1

d1
ω′ +

ab2 − c0d

d1
ω′′
)

=

 ∂
∂x1

∂
∂x2

(cb1 − a1d

d2
θ′ +

cd− a1b2
d2

θ′′
)
, (2.4)

where d1 = ab− c20 > 0, d2 = a1a2 − c2 > 0.
Let D0 be a circle x21 + x22 < 1 and L = {x : |x| = 1}. In what follows we assume

U ∈ C3(D0) ∩ C2(D0 ∪ L), U = (u
′
, u

′′
)T = (u1, u2, u3, u4)

T .
Finally note that from (2.1) we’ll have

∆ω(x) = 0, ω = (ω′, ω′′)T , ; x ∈ D0, (2.5)

∆θ(x) = 0, θ = (θ′, θ′′)T , x ∈ D0. (2.6)

By TU = M1
∂U

∂n(x) +M2
∂U

∂S(x) +M3U, we denote the stress vector, where [1]

M1 =


a 0 c0 0
0 a 0 c0
c0 0 b 0
0 c0 0 b

 , M2 =


0 a− 2µ1 0 c0 − 2µ3

2µ1 − a 0 2µ3 − c0 0
0 c0 − 2µ3 0 b− 2µ2

2µ3 − c0 0 2µ2 − b 0

 ,
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M3 =


−b1n2

∂
∂x2

b1n2
∂

∂x1
−dn2

∂
∂x2

dn2
∂

∂x1

b1n1
∂

∂x2
−b1n1

∂
∂x1

dn1
∂

∂x2
−dn1

∂
∂x1

−dn2
∂

∂x2
dn2

∂
∂x1

−b2n2
∂

∂x2
b2n2

∂
∂x1

dn1
∂

∂x2
−dn1

∂
∂x1

b2n1
∂

∂x2
−b2n1

∂
∂x1

 ,

∂
∂n(x) = n1

∂
∂x1

+ n2
∂

∂x2
, ∂

∂S(x) = n1
∂

∂x2
− n2

∂
∂x1

, n = (n1, n2)
T is a unit vector.

Using the condition [1]
∫
L TUds = 0, we get∫

L

∂u′(y)

∂n(y)
ds−

∫
D0

H(x)dx = 0,

∫
L

∂u′′(y)

∂n(y)
ds−

∫
D0

Q(x)dx = 0. (2.7)

3. Statement of the boundary value problem and the uniqueness theorem

In the present work we consider the following boundary value problem. Find in the domain
D0 a vector-function U(x) = (u1, u2, u3, u4)

T , which belongs to the class C3(D0)∩C2(D0∪L),
is a solution of equations (2.2) and satisfies the following conditions:

(M)+f,φ,h : u
′
(y) = f(y),

∂u
′′
(y)

∂n(y)
= g(y), y ∈ L,

ω(eiφ0)− ω(δeiφ0) = h(eiφ0), 0 < δ < 1, 0 ≤ φ ≤ 2π, (3.1)

where f = (f1, f2)
T ,g = (g1, g2)

T and h = (h1, h2)
T are the real given vector-functions on the

boundary L and belongs to the class C1,α(L), 0 < α < 1, also
∫ 2π
0 h(eiφ0) = 0.

The following assertion is true.

Theorem 3.1. The general solution of the problem [M ]+0,0,0 is represented by the formula

U0 = (0, 0, γ, β)T , where γ and β are arbitrary real constants.

Proof. The general solution of the nonlocal problem

∆ω0(x) = 0, x ∈ D0, ω0(e
iφ0)− ω0(δe

iφ0) = 0, 0 < δ < 1, 0 ≤ φ0 ≤ 2π,

is represented by the formula [3]

ω0(x) = (ω
′
0, ω

′′
0 )

T = (γ1, γ2)
T = const, x ∈ D0,

therefore from (2.3) and (2.4) when ω
′
= ω

′
0 and ω

′′
= ω

′′
0 we obtain

H(x) = Q(x) = 0, x ∈ D0. (3.2)

By virtue of the above said it follows (see (2.3.), (2.4), (3.1) and (3.2)) that our problem
[M ]+0,0,0 is reduced to the Dirichlet and the Neuman boundary value problems for the Laplace
equation

∆u
′
0(x) = 0, x ∈ D0, u

′
0(y) = 0, y ∈ L, (3.3)

∆u
′′
0(x) = 0, x ∈ D0,

∂u
′′
0(y)

∂n(y)
= 0, y ∈ L. (3.4)

Finally note that [6], since the general solutions of problems (3.3) and (3.4) are
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u
′
0(x) = (u01, u02)

T = 0 and u
′′
0(x) = (u03, u04)

T = const, x ∈ D0 respectively therefore
we can conclude that the Theorem 3.1. is true.

4. Solution of the problem [M ]+f,g,h

Let us consider the following nonlocal problem

∆ω(x) = 0, x ∈ D0, ω(eiφ0)− ω(δeiφ0) = h(eiφ0), (4.1)

0 < δ < 1, h ∈ C1,α, (0 ≤ φ0 ≤ 2π), 0 < α < 1,

∫ 2π

0
h(eiφ0)dφ0 = 0.

Note that the solution of problem (4.1) has the form [3]

ω(x) = ω(r, φ) = C0 +

∞∑
k=1

rk

1− δk
(Ck cos kφ+Dk sin kφ), (4.2)

where r =
√

x21 + x22, (x1, x2) ∈ D0, Ck = (Ck1, Ck2)
T and Dk = (Dk1, Dk2)

T are the
Fourier coefficients of the vector-function h(eiφ0) , 0 ≤ φ0 ≤ 2π, and C0 = (C01, C02)

T is an
arbitrary real constant vector.

Owing to (4.2) we can conclude that H(x) and Q(x) (see (2.3) and (2.4)) are known
vector-functions and belong to the class C1(D0)

∩
C(D0

∪
L).

By virtue of the above said from (2,3), (2,4) and (3.1)it follows that our problem [M ]+f,g,h
is reduced to the Dirichlet and Neumann boundary value problems for the Poisson equation:

∆u
′
(x) = H(x), x ∈ D0, u

′
(y) = f(y), y ∈ L, (4.3)

∆u
′′
(x) = Q(x), x ∈ D0,

∂u
′′
(y)

∂n(y)
= g(y), y ∈ L. (4.4)

Further note that owing to the second formula (2.7) the necessary condition (see[6])∫
L
g(y)ds−

∫
D0

Q(x)dx = 0

of solvability (4.4) problem is fulfilled.
Taking into account the obtained results, we’ll have that the problem [M ]+f,g,h is solved

and the solution is represented by means of the solutions of problems (4.3) and (4.4) .
A solution of the problem [M ]+f,g,h is given by the formula

U(x) = U(r, φ) = (u
′
, u

′′
)T ,

where

u
′
(x) = u

′
(r, φ) =

1

2π

∫ 2π

0

∫ 1

0
G(1)(r, φ;R,φ0)H(R,φ0)RdRdφ0

+
1

2π

∫ 2π

0

(1− r2)f(φ0)dφ0

1− 2r cos(φ− φφ) + r2
,

u
′′
(x) = u

′′
(r, φ) =

1

2π

∫ 2π

0

∫ 1

0
G(2)(r, φ;R,φ0)Q(R,φ0)RdRdφ0

− 1

π

∫ 2π

0
ln
√

1− 2r cos(φ− φ0) + r2g(φ0)dφ0.
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Here G(1)(x, y
0) and G(2)(x, y

0) are the Green functions of the Dirichlet and the Neumann
problems respectively in a circle x21 + x22 < 1 for the Laplace equation.

Further note that:

G(1)(x, y
0) = ln

√
(y01 − x1)2 + (y02 − x2)2

r
√
(y01 −

x1
r2
)2 + (y02 −

x2
r2
)2
,

G2(x, y
0) = ln

r

R

√
(y01 − x1)2 + (y02 − x2)2

√
(y01 −

x1
r2

)2 + (y02 −
x2
r2

)2,

r =
√
x21 + x22, (x1, x2) ∈ D0, x1 = r cosφ, x2 = r sinφ, 0 ≤ φ ≤ 2π,

R =

√
y0

2

1 + y0
2

2 , (y01, y
0
2) ∈ D0, y01 = R cosφ0, y02 = R sinφ0, 0 ≤ φ0 ≤ 2π,

Remark 4.1. The following BVP can be solved in a similar way:
Find in the domain D0 a vector U = (u

′
, u

′′
)T = (u1, u2, u3, u4)

T , belongs to the class
C3(D0)

∩
C2(D0

∪
L), satisfying the equations (2.1) and the following boundary conditions:

u
′
(y) = f(y),

∂u
′′
(y)

∂n(y)
= g(y), y ∈ L,

Θ(eiφ0)−Θ(δeiφ0) = h(eiφ0),

0 < δ < 1, 0 ≤ φ0 ≤ 2π.
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