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SOME BASIC PROBLEMS OF THE PLANE THEORY OF ELASTICITY FOR
MATERIALS WITH VOIDS.

Gulua B., Kasrashvili T.

Abstract. In the present paper we consider the materials with voids. The two dimensional

system of equations, corresponding to a plane deformation case, is written in a complex form

and its general solution is presented with the use of two analytic functions of a complex

variable and a solution of the Helmholtz equation. The boundary value problems are solved

for a circle and the plane with a circular hole.
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1. Introduction

This paper is conserved with plane problems in the theory of linear elastic materials
with voids. Goodman and Cowin [1] presented a theory for granular materials with
interstitial voids and used the formal argument of continuum mechanics. Nunziato and
Cowin [2] presented a nonlinear theory for the behavior of porous solids with (single)
voids or vacuous pores, where the matrix material is elastic and the interstices are void
of material. Further, Cowin and Nunziato [3] considered the linear theory of elastic
materials with voids. Ieşan [4] extended this theory and presented a linear theory
of thermoelastic materials with voids. The mathematical theories for materials with
single voids are extensively investigated by several authors and the basic results may
be found in the books of Ciarletta and Ieşan [5], Ieşan [6], Straughan [7] and references
therein.

In [8-14] some results of the 2D and 3D theories of elasticity for materials with
voids are given.

The present paper deals with the plane strain problem for linear elastic materials
with voids. The governing system of equations of the plane strain is rewritten in the
complex form and its general solution is represented by means of two analytic functions
of the complex variable and a solution of the Helmholtz equation. The constructed
general solution enables us to solve analytically a problem for a circle and a problem
for the infinite plane with a circular hole.

2. Basic equations

Let x = (x1; x2; x3) be a point of the Euclidean three dimensional space R3. In what
follows we consider an isotropic and homogeneous elastic solid with voids, occupying
a region of Ω ∈ R3. The governing equations of the theory of elastic materials with
voids can be expressed in the following form [3]:

• Equations of equilibrium
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∂σij
∂xj

+ Φi = 0, i, j = 1, 2, 3, (1)

∂hi
∂xi

+ g +Ψ = 0, i = 1, 2, 3, (2)

where σij is the symmetric stress tensor, Φi are the volume force components, hi is
the equilibrated stress vector, g is the intrinsic equilibrated body force and Ψ is the
extrinsic equilibrated body force.

• Constitutive equations

σij = λekkδij + 2µeij + βϕδij, i, j, k = 1, 2, 3,

hi = ν
∂ϕ

∂xi
, i = 1, 2, 3,

g = −ξϕ− βekk, k = 1, 2, 3,

(3)

where λ and µ are the Lamé constants, ν, β and ξ are the constants characterizing
the body porosity; δij is the Kronecker delta; ϕ := ν − ν0 is the change of the volume
fraction from the matrix reference volume fraction ν0 (clearly, the bulk density ρ = νγ,
0 < ν ≤ 1, here γ is the matrix density and ρ is the mass density); eij is the strain
tensor and

eij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (4)

where ui, i = 1, 2, 3 are the components of the displacement vector.
The constitutive equations also meet some other conditions, following from physical

considerations
µ > 0, ν > 0, ξ > 0,

3λ+ 2µ > 0, (3λ+ 2µ)ξ > 3β2.
(5)

From the basic three-dimensional equations we obtain the basic equations for the
case of plane strain. Let Ω be a sufficiently long cylindrical body with generatrix
parallel to the Ox3-axis. Denote by V the crosssection of this cylindrical body, thus
V ⊂ R2. In the case of plane deformation u3 = 0 while the functions u1, u2 and ϕ do
not depend on the coordinate x3 [16].

As it follows from formulas (3) and (4), in the case of plane strain

σk3 = σ3k = 0, h3 = 0, k = 1, 2.

Assuming Φi ≡ 0 and Ψ ≡ 0. Therefore the system of equilibrium equations (1),
(2) takes the form

∂σ11
∂x1

+
∂σ21
∂x2

= 0,

∂σ12
∂x1

+
∂σ22
∂x2

= 0,

∂h1
∂x1

+
∂h2
∂x2

+ g = 0.

(6)
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Now, Relations (3) are rewritten as

σ11 = λθ + 2µ
∂u1
∂x1

+ βϕ,

σ22 = λθ + 2µ
∂u2
∂x2

+ βϕ,

σ12 = σ21 = µ

(
∂u1
∂x2

+
∂u2
∂x1

)
,

σ33 = σ(σ11 + σ22),

hk = ν
∂ϕ

∂xk
, k = 1, 2,

g = −ξϕ− βθ,

(7)

where σ is the Poisson ratio, θ =
∂u1
∂x1

+
∂u2
∂x2

.

If relations (7) are substituted into system (6) then we obtain the following system
of governing equations of statics with respect to the functions u1, u2 and ϕ

µ∆uk + (λ+ µ)
∂θ

∂xk
+ β

∂ϕ

∂xk
= 0, k = 1, 2

(ν∆− ξ)∆ϕ− βθ = 0.
(8)

Note that ∆ is the two-dimensional Laplace operator.
On the plane Ox1x2, we introduce the complex variable z = x1 + ix2 = reiϑ, (i2 =

−1) and the operators ∂z = 0.5
(

∂
∂x1

− i ∂
∂x2

)
, ∂z̄ = 0.5

(
∂

∂x1
+ i ∂

∂x2

)
, z̄ = x1− ix2, and

∆ = 4∂z∂z̄.
To write system (6) in the complex form, we multiplied the second equation of this

system by i and sum up with the first equation

∂z(σ11 − σ22 + 2iσ12) + ∂z̄(σ11 + σ22) = 0,

∂zh+ + ∂z̄h̄+ + g = 0,
(9)

where we rewrite h+ = h1 + ih2 and formulas (7) as follows

σ11 − σ22 + 2iσ12 = 4µ∂z̄u+,

σ11 + σ22 = 2(λ+ µ)θ + 2βϕ,

h+ = 2ν∂z̄ϕ,

g = −ξϕ− βθ,

(10)

θ = ∂zu+ + ∂z̄ū+, u+ = u1 + iu2.

Substituting relations (10) into system (9), we rewrite system (8) in the complex
form

2µ∂z̄∂zu+ + (λ+ µ)∂z̄θ + β∂z̄ϕ = 0,

(ν∆− ξ)ϕ− βθ = 0.
(11)
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Theorem (see [15]). The general solution of system (11) is represented as follows:

2µu+ = κφ(z)− zφ′(z)− ψ(z)− 4αβµ

ξ(λ+ 2µ)− β2
∂z̄χ(z, z̄), (12)

ϕ = χ(z, z̄)− β

ξ(λ+ µ)− β2
(φ′(z) + φ′(z)), (13)

where κ =
ξ(λ+ 3µ)− β2

ξ(λ+ µ)− β2
, φ(z) and ψ(z) are arbitrary analytic functions of a complex

variable z in the domain V , χ(z, z̄) is an arbitrary solution of the Helmholtz equation

∆χ(z, z̄)− γ2χ(z, z̄) = 0, γ2 =
ξ(λ+ 2µ)− β2

α(λ+ 2µ)
.

From (10) we have

σ11 − σ22 + 2iσ12 = −2zφ′′(z)− 2ψ′(z)− 8αβµ

ξ(λ+ 2µ)− β2
∂z̄∂z̄χ(z, z̄),

σ11 + σ22 =
2ξ(λ+ 2µ)2 − 2(λ+ 3µ)β2

(λ+ 2µ)(ξ(λ+ 2µ)− β2)

(
φ′(z) + φ′(z)

)
+

2µβ

λ+ 2µ
χ(z, z̄),

h+ = 2α∂z̄χ(z, z̄)−
2αβ

ξ(λ+ µ)− β2
φ′′(z),

g =

(
β2

λ+ 2µ
− ξ

)
χ(z, z̄)− βµ(ξ(λ+ 2µ)− β2)

(λ+ µ)(λ+ 2µ)(ξ(λ+ µ)− β2)

(
φ′(z) + φ′(z)

)
.

(14)

Assume that mutually perpendicular unit vectors l and s are such that

l× s = e3,

where e3 is the unit vector, directed along the x3-axis. The vector l forms the angle α
with the positive direction of the x1-axis. Then the displacement components ul = u · l,
us = u · s as well as the stress and moment stress components, acting on an area of
arbitrary orientation are expressed by the formulas

ul + ius = e−iαu+,

σll + iσls =
1

2

[
σ11 + σ22 + (σ11 − σ22 + 2iσ12)e

−2iα
]
,

hl =
1

2

[
h+e

−iα + h̄+e
iα
]
.

(15)

We can analytically solve the class of plane boundary value problems for both-finite
and infinite domains.

3. The boundary value problem for a circle

Let us consider the elastic circle with voids, bounded by the circumference of radius
R (Fig. 1). The origin of coordinates is at the center of the circle.
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Fig. 1

On the circumference we consider the following boundary value problem

σrr + iσrα = A+ iB, ϕ = C, on r = R, (16)

where A, B and C are sufficiently smooth functions.
Substituting the formulas (14) into (15) we have

σrr + iσrα = κ1

(
φ′(z) + φ′(z)

)
+ κ2χ(z, z̄)

−
[
zφ′′(z) + ψ′(z) + κ3∂z̄∂z̄χ(z, z̄)

]
e−2iα,

(17)

where

κ1 =
2ξ(λ+ 2µ)2 − 2(λ+ 3µ)β2

2(λ+ 2µ)(ξ(λ+ 2µ)− β2)
, κ2 =

µβ

λ+ 2µ
, κ3 =

4αβµ

ξ(λ+ 2µ)− β2
.

The analytic functions φ′(z), ψ′(z) and the metaharmonic function χ(z, z̄) are repre-
sented as the following series

φ′(z) =
∞∑
n=0

anz
n, ψ′(z) =

∞∑
n=0

bnz
n, χ(z, z̄) =

∞∑
−∞

αnIn(γr)e
inα, (18)

where In(γr) is the modified Bessel function of the first kind of n-th order.
Substituting (18) in (17), taking into account the boundary conditions (16) and

assuming that the series converge on the circumference r = R, one finds

∞∑
n=0

Rn
(
κ1ane

inα + (κ1 − n)āne
−inα

)
−

∞∑
n=0

Rnb̄ne
−i(n+2)α

+
∞∑
−∞

[
κ2In(γR)−

κ3γ
2

4
In+2(γR)

]
αne

inα = A+ iB,

(19)

∞∑
−∞

αnIn(γR)e
inα − κ4

∞∑
n=0

Rn
(
ane

inα + āne
−inα

)
= C, (20)

where

κ4 =
β

ξ(λ+ µ)− β2
.
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Expand the function A+ iB and C, given on r = R, in a complex Fourier series

A+ iB =
∞∑
−∞

Ane
inα, C =

∞∑
−∞

Cne
inα.

Comparing in (19), (20) the coefficients of ei0α we have (it is also assumed that a0 is a
real value [26])

2κ1a0 +

(
κ2I0(γR)−

κ3γ
2

4
I2(γR)

)
α0 = A0,

−2κ4a0 + I0(γR)α0 = C0.

(21)

In order for the problem to have a solution, the following condition must be met

A0 = Ā0.

From Eqs. (19) we determine the coefficients a0 and α0

a0 =
∆1

∆
, α0 =

∆2

∆
,

where

∆ = 2κ1I0(γR) + 2κ4

(
κ2I0(γR)−

κ3γ
2

4
I2(γR)

)
,

∆1 = I0(γR)A0 −
(
κ2I0(γR)−

κ3γ
2

4
I2(γR)

)
C0,

∆2 = 2κ1C0 + 2κ4A0.

Comparing in (19), (20) the coefficients of einα (n ̸= 0) we have

κ1R
nan +

(
κ2In(γR)−

κ3γ
2

4
In+2(γR)

)
αn = An,

−κ4Rnan + In(γR)αn = Cn,

(22)

Rn(κ1 − n)ān −Rn−2b̄n−2+

(
κ2In(γR)−

κ3γ
2

4
In−2(γR)

)
α−n = A−n. (23)

From (20) one finds

an =
∆1

∆
, αn =

∆2

∆
,

where

∆ = κ1R
nIn(γR) + κ4

(
κ2In(γR)−

κ3γ
2

4
In+2(γR)

)
,

∆1 = In(γR)An −
(
κ2In(γR)−

κ3γ
2

4
In+2(γR)

)
Cn,

∆2 = κ1R
nCn + κ4R

nAn.
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From (21)

bn = R2(κ1 − n)an+2 +

(
κ2In+2(γR)−

κ3γ
2

4
In(γR)

)
αn

Rn
− Ā−n−2

Rn
.

It is easy to prove the absolute and uniform convergence of the series, obtained
in the circle (including the contours) when the functions, set on the boundaries, have
sufficient smoothness.

4. The problem for the infinite plane with a circular hole

Now let us have an infinite plane with a circular hole (Fig. 2). Assume that the
origin of coordinates is at the center of the hole of radius R.

Fig. 2. The infinite plane with a circular hole

On the circle we consider the following boundary value problem

σrr + iσrα =M + iN, ϕ = K, on r = R, (24)

where M , N and K are sufficiently smooth functions.
Conditions at infinity are

σ∞
11 = Γ1, σ∞

22 = Γ2, σ∞
12 = σ∞

21 = Γ3, ϕ = Γ4, (25)

where Γ1, Γ2, Γ3, Γ4 are the constants.
In this case the analytic functions φ′(z), ψ′(z) and the metaharmonic functions

χ(z, z̄) are represented as a series

φ′(z) =
∞∑
n=0

anz
−n, ψ′(z) =

∞∑
n=0

bnz
−n, χ(z, z̄) =

∞∑
−∞

αnKn(γr)e
inα, (26)

where Kn(γr) is the modified Bessel function of the second kind of n-th order.
Substituting (26) in (17), (13) taking into account the boundary conditions (14)

and assuming that the series converge on the circumference r = R, one finds

∞∑
n=0

1

Rn

(
κ1ane

−inα + (κ1 + n)āne
inα

)
− b̄0e

−2iα − b̄1
R
e−iα −

∞∑
n=0

b̄n+2

Rn+2
einα

+
∞∑
−∞

[
κ2Kn(γR)−

κ3γ
2

4
Kn+2(γR)

]
αne

inα =M + iN,

(27)
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∞∑
−∞

αnKn(γR)e
inα − κ4

∞∑
n=0

1

Rn

(
ane

−inα + āne
inα

)
= K. (28)

Expand the function M + iN and K, given on r = R, in a complex Fourier series

M + iN =
∞∑
−∞

Ane
inα, K =

∞∑
−∞

Cne
inα. (29)

Due to the fact that χ(z, z̄) and K are real functions, we have

αn = α−n, Cn = C−n.

It is known that [16]
a0 = Γ, b0 = Γ′, (30)

where Γ, Γ′ are known quantities, specifying the stress distribution at infinity (It is
also assumed that a0 is a real value [16]). As follows from formulas (13), (14) and
conditions (25)

ReΓ =
S1 + S2

2κ1
= − S4

2κ4
, ReΓ′ =

S2 − S1

2
, ImΓ′ = S3.

We use the condition of single-valuedness of the displacements which in the present
case is expressed as

κ1a1 + b̄1 = 0. (31)

After introducing (29) into (27), (28), and comparing the coefficients of einα, we
have

2κ1a0 −
1

R2
b̄2 +

(
κ2K0(γR) +

κ3γ
2

4
K2(γR)

)
α0 = A0, (32)

κ1
R
a1 −

1

R
b̄1 +

(
κ2K−1(γR) +

κ3γ
2

4
K1(γR)

)
α−1 = A−1, (33)

κ1
R2
a2 − b̄0 +

(
κ2K−2(γR) +

κ3γ
2

4
K0(γR)

)
α−2 = A−2, (34)

κ1
Rn

an +

(
κ2Kn(γR) +

κ3γ
2

4
Kn+2(γR)

)
α−n = A−n, n ≥ 3, (35)

κ1 + n

Rn
ān −

1

Rn+2
b̄n+2 +

(
κ2Kn(γR) +

κ3γ
2

4
Kn+2(γR)

)
αn = An, n ≥ 1, (36)

K0(γR)α0 − 2κ4a0 = C0, (37)

Kn(γR)αn − κ4ān = Cn. (38)

The coefficients an, bn and αn are found by solving (30)-(38).
It is easy to prove the absolute and uniform convergence of the series, obtained in

the infinite plane with a circular hole (including the contours), when the functions set
on the boundaries have sufficient smoothness.

4. The problem for a circular ring

In this section, we consider a boundary value problem for a concentric circular ring
with radius R1 and R2 (Fig. 3).
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Fig. 3. The circular ring

We consider the following problem

σrr + iσrϑ =



+∞∑
−∞

A′
ne

inϑ, |z| = R1,

+∞∑
−∞

A′′
ne

inϑ, |z| = R2,

(39)

ϕ =



+∞∑
−∞

C ′
ne

inϑ, |z| = R1,

+∞∑
−∞

C ′′
ne

inϑ, |z| = R2.

(40)

The analytic functions φ′(z), ψ′(z) and the metaharmonic functions χ(z, z̄) are
represented as a series

φ′(z) = δ ln z +
+∞∑
−∞

anz
n, ψ′(z) =

+∞∑
−∞

bnz
n,

χ(z, z̄) =
+∞∑
−∞

(αnIn(γr) + βnKn(γr)) e
inϑ.

(41)

Analogous to the above problems we can find all coefficients of (41).
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