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Abstract. This paper is concerned with the study of the 2D boundary value problems for
transversely isotropic elastic half-plane with double porosity. Explicitly is solved the basic
BVPs for half-plane. For finding explicit solutions of the basic BVPs the potential method
and the theory of Fredholm integral equations are used. The Poisson type formulas are
constructed.
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Introduction

In most of cases naturally or artificially constructed solids are not completely filled with
matter. In nearly every body there are empty interspaces which are called pores. In some
bodies they are immediately visible, in others the pores are recognized only with a magnifier.
For example, the human skin has a larger number of pores. Wood and bricks, if covered
with water, absorb the liquid in their pores and increase their weight. Early studies reported
that bone tissue could be assumed to be transversely isotropic, and in reality orthotropy most
closely describes mechanical anisotropy of bone and cancellous bone is considered as a porous
material. Porous media theories play an important role in many branches of engineering,
including material science, the petroleum industry, chemical engineering, and soil mechanics,
as well as biomechanics.

The physical and mathematical foundations of the theory of consolidation for elastic
materials with so-called double porosity were first presented by Aifantis and co-workers in
the papers [1]-[3] (see [1]-[3] and the references cited therein). They gave detailed physical
interpretations of the phenomenological coefficients appearing in the double porosity theory.
They also solved several representative boundary value problems, uniqueness and variational
principles were established for the equations of double porosity, and provided a related finite
element to consider the numerical solution of Aifantis’ equations of double porosity. The
basic results and the historical information on the theory of porous media were summarized
by Boer [4]. The cross-coupled effect in porous media with double porosity was studied in
[5,6]. The phenomenological equations of the quasi-static theory for double porous media are
established in [7], where a method to calculate the relevant coefficients is also presented. The
materials with double porosity are of interest in mechanics of bones [8].

In the last years many authors have investigated different types of problems of the 2-
dimensional and 3-dimensional theories of elasticity for materials with double porosity, pub-
lishing a large number of papers(For example, some results can be seen in the works [9-24]
and references therein). There the explicit solutions on some BVPs in the form of series and
in quadratures are given in a form useful to engineering practice.

The above models are all based on the assumption of isotropy, whereas most rocks are
characterized by anisotropy of various degrees. Transverse isotropy is an important type of
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anisotropy in geophysical applications and mechanics of bones. Therefore, research on the
behavior of anisotropic dual-porosity media is very important. In [25] fully coupled dual
porosity model for anisotropic formulations is considered. In [26] is given the deformation of
transversely isotropic porous elastic circular cylinder. The non-linear theory and the linear
theory of porous materials with voids is described by Nunziato and Cowin in [27-28]. The
history of development of porous body mechanics, the main results and the sphere of their
application are set forth in detail in the monographs [29-30].

This paper is concerned with the study of the 2D boundary value problems for transversely
isotropic elastic half-plane with double porosity. Effectively are solved the basic BVPs for
the half-plane. For finding explicit solutions of the basic BVPs the potential method and the
theory of Fredholm integral equations are used. The Poisson type formulas are constructed.

1. Basic equations. Boundary value problems

We say that a body is subject to a plane deformation if the component u2 of the dis-
placements vector u(u1, u2, u3) vanish and the other components are functions only of the
variables x1, x3. In what follows we denote by R2

+ the upper half-plane x3 > 0. Clearly, the
boundary of R2

+ is Ox1-exes and we denote it by S.
Let

x := (x1, x3) ∈ R2
+, ∂x :=

(
∂

∂x1
,
∂

∂x3

)
.

We assume the domain R2
+ to be filled with transversely isotropic materials with double

porosity. n(0, 1) is an unite normal vector.
The governing homogeneous system of equations in the linear theory of elasticity for

transversely isotropic materials with double porosity can be written as follows [25]

C(∂x)u = α′gradp1 +α
′′gradp2, u = (u1, u3), (1)

k′11
µ

∂2p1
∂x21

+
k′33
µ

∂2p1
∂x23

+ γ(p1 − p2) = 0,

k′′11
µ

∂2p2
∂x21

+
k′′33
µ

∂2p2
∂x23

− γ(p1 − p2) = 0,

(2)

where

C(∂x) = ∥Cpq(∂x)∥2x2,

C11(∂x) = c11
∂2

∂x21
+ c44

∂2

∂x23
, C22(∂x) = c44

∂2

∂x21
+ c33

∂2

∂x23
,

C21(∂x) = C12(∂x) = (c13 + c44)
∂2

∂x1∂x3
,

α′ := −
(
α′
11 0

0 α′
33

)
, α′′ := −

(
α′′
11 0

0 α′′
33

)
.

u = (u1, u3) is a displacement vector, p1 and p2 are the pore and fissure fluid pressures
respectively. cpq are Hooke’s coefficients, α′

ij and α′′
ij are the Biot coefficients.

Definition 1. A vector-function U(x) = (u1, u3, p1, p2) defined in the domain R2
+ is

called regular if it has integrable continuous second order derivatives in R2
+, U itself and
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its first derivatives are continuously extendable at every point of the boundary of R2
+ and

satisfies the following conditions at infinity:

U(x) = O(|x|−1),
∂Ul(x)

∂xk
= O(|x|−2), |x| >> 1.

The basic BVPs are formulated as follows: find a regular solution U in R2
+, of the

equations (1)-(2), if on the boundary S one of the following conditions are given:
Problem I. The displacement vector and the fluid pressures are given on S:

u+(z) = f(z1), p+1 (z) = f3(z1), p+2 (z) = f4(z1), z1 ∈ S.

Problem II. The stress vector and the normal derivatives of the pressure functions are
given on S :

τ13 = c44

(
∂u1
∂x3

+
∂u3
∂x1

)
= f1(z1), τ33 = c13

∂u1
∂x1

+ c33
∂u3
∂x3

+ (α′
33p1 + α′′

33p2) = f2(z1),

(
∂p1
∂x3

)+

= f3(z1),

(
∂p2
∂x3

)+

= f4(z1), z1 ∈ S.

Note that BVPs for the system (2), which contain p1 and p2 can be investigated separately.
Then if supposing pj as known, we can study BVPs for the system (1) with respect to u. By
combining the obtained results, we arrive at explicit solutions of BVPs for system (1)-(2).

Let us assume that pj are known functions and search the solution of the following non-
homogeneous equation

C(∂x)u = α′gradp1 +α
′′gradp2, (3)

general solution of which has the following form

u(x) = V(x) + u0(x),

where V(x) is a general solution of the equation

C(∂x)V(x) = 0

and u0(x) is a particular solution of the non-homogeneous equation (3)

u0(x) = − 1

2π

∫∫
R2

+

Γ(x− y)
[
α′gradp1 +α

′′gradp2
]
dτy, (4)

Γ(x− y) is a matrix of fundamental solution of the equation

C(∂x)u(x) = 0,

Γ(x− y) = 2Im
3∑

k=2

∥A(k)
lm (∂x)∥2x2 lnσk,

A
(k)
11 = (−1)k√

ak
i(c44 − akc33)n, A

(k)
12 = A

(k)
21 = (−1)k(c13 + c44)n,

A
(k)
22 = (−1)k√

ak
i(c11 − akc44)n, n−1 = (a2 − a3)c44c33,

σk = zk − ζk, ζk = y1 + i
√
aky3, zk = x1 + i

√
akx3,

(5)
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ak, k = 2, 3 are the positive roots of a characteristic equation

c33c44a
2 + [(c13 + c44)

2 − c11c33 − c244]a+ c11c44 = 0.

In (4) α′gradp1 + α
′′gradp2 is a continuous vector in R2

+ along with its first derivatives
and satisfies the following conditions at infinity

α′gradp1 +α
′′gradp2 = O(|x|−1−α), α > 0.

Thus, we reduce the solution of BVP of the theory of poroelastisity to the solution of the
BVP of elasticity for the equation of the transversely isotropic elastic body

C(∂x)V(x) = 0,

V+(z) = f+(z)− u+
0 (z) = F+(z), z ∈ S.

(6)

First of all we will construct a fundamental matrix of solutions for equations (2). Let us
rewrite the system of equations (2) in the following form

(k1∆4 + γ)p1 − γp2 = 0,

(k2∆4 + γ)p2 − γp1 = 0,
(7)

where

k1 =
k′33
µ
, k2 =

k′′33
µ
,

∆4 = a4
∂2

∂x21
+

∂2

∂x23
, a4 =

k′11
k′33

=
k′′11
k′′33

.

We look for the functions pj in the form(
p1
p2

)
=

(
k2∆4 + γ γ
γ k1∆4 + γ

)
ψ, (8)

where the vector ψ(x) is a fundamental solution of the scalar equation

∆4(∆4 + λ2)ψ = 0, λ2 =
γ(k1 + k2)

k1k2
> 0, ψ =

φ4 − φ5

λ2
,

∆4φ4 = 0, (∆4 + λ2)φ5 = 0, φ4 = ln r4, r24 = x21 + a4x
2
3,

φ5 = K0(λr4) is a modified Hankel’s function of the first kind of order zero

K0(z) = J0(z)
(
ln
z

2
+ C

)
+

∞∑
n=0

1

(n!)2

(z
2

)2n( 1

n
+ ....1

)
,

J0(z) =
∞∑
n=0

1

(n!)2

(z
2

)2n
.

From (8) it follows that the fundamental matrix of solution for equation (2) reads as

Γ(1)(x− y) =
1

k1k2


k2φ5 +

γ

λ2
[φ4 − φ5]

γ

λ2
[φ4 − φ5]

γ

λ2
[φ4 − φ5] k1φ5 +

γ

λ2
[φ4 − φ5]

 , (9)
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r24 = (x1 − y1)
2 + a4x

2
3.

From (9), it is easy to show, that columns and rows of the matrix Γ(1) are solutions of the
equation (7) with respect to x, for any x ̸= y.

2. Matrix of singular solution for equation C(∂x)u = 0

Let’s write now the expression of the stress vector, which acts on elements with the normal
(0, 1). Denoting the stress vector By T(∂x, n)u, we obtain

T(∂x,n)u :=


c44

∂

∂x3
c44

∂

∂x1

c13
∂

∂x1
c33

∂

∂x3

u.

Let us consider the generalized stress vector

P(∂x,n)u := T(∂x, n)u+

 0 χ1

χ2 0

 ∂u

∂s
,

where
∂

∂s
= n3

∂

∂x1
− n1

∂

∂x3
,

χ1 and χ2 are arbitrary constants.

Taking into account (5), let us calculate the matrix P(∂x,n)Γ(x − y). After simple cal-
culations we get

P(∂x,n)Γ(x− y) := 2Im
3∑

k=2

 q
(k)
11 q

(k)
12

q
(k)
21 q

(k)
22

 ∂ lnσk
∂sx

+

 0 χ1

χ2 0

 ∂

∂sx
Γ(x− y), (10)

where

q
(k)
11 =

(−1)k(c33ak + c13)

c33(a2 − a3)
, q

(k)
12 =

(−1)ki(c13ak + c11)

c33(a2 − a3)
√
ak

,

q
(k)
21 =

(−1)ki(c13 + c33ak)

c33(a2 − a3)
√
ak

, q
(k)
22 =

(−1)k(c11 + c13ak)

c33(a2 − a3)ak
.

Consider now the matrix P∗(∂x,n) which is obtained from (10) by transposition of the
columns and rows and the variables x and y

P∗(y− x) := −2Im
3∑

k=2

 q
(k)
11 q

(k)
21

q
(k)
12 q

(k)
22

 ∂ lnσk
∂sy

−2Im
3∑

k=2

 A
(k)
11 A

(k)
12

A
(k)
12 A

(k)
22


 0 χ2

χ1 0

 ∂ lnσk
∂sy

.

(11)
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In (11) the function
∂ lnσk
∂sy

is a singular kernel on S, which is integrable in the sense of the

principal Cauchy value.

The following theorem is true.

Theorem 1. Every column of the matrix P ∗(x-y), for any values χ1 and χ2,
considered as a vector, is a solution of the equation C(∂x)u(x) = 0 at every point x if x ̸= y.

Definition 2. The vector

w(x) =
1

π

∫
S

P ∗(x-y)h(y)dy

is called a double layer potential.

Definition 3. The vector

v(x) =
1

π

∫
S

Γ(x-y)h(y)dy

is called a single layer potential.

Theorem 2. If S is a Lyapunow curve, h ∈ C1,α(S), α > 0, then the function
w ∈ C0,α(S) and

w±(x) = ±h+
1

π

∫
S

P ∗(x-y)h(y)dy.

Theorem 3. If S is a Lyapunow curve, h ∈ C0,α(S), α > 0, then the function
v ∈ C0,α(S) and

[Tv]±(x) = ∓h+
1

π

∫
S

T (∂x, n)Γ(x-y)h(y)dy.

The kernel, which will be obtained from P ∗(x-y), for

χ1 =
c44(c13 + c44)

c44 + c33
√
a2a3

and χ2 = χ1
√
a2a3,

will be called the kernel N∗(x-y), and anable to obtain the Fredholm integral equation of
the second kind for the first BVP, where

N∗(∂x) = 2Im

3∑
k=2

∥N (k)
pq (∂x)∥2x2

1

t− zk
,

N
(k)
11 = (−1)kd(c33ak − c44)

√
a2a3a

−1
k , N

(k)
21 = i(−1)kd(c13 + c44),

N
(k)
12 =

√
a2a3N

(k)
21 , N

(k)
22 = (−1)kd(c44ak − c11)

√
a−1
k ,

d−1 = (
√
a2 −

√
a3)(c44 + c33

√
a2a3).

(12)

From (12) we find
3∑

k=2

N
(k)
11 = 1,

3∑
k=2

N
(k)
22 = 1,

3∑
k=2

N
(k)
12 = 0.
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3. Solution of the Problem I in the Domain R2
+

Let us consider the BVP (6). We look for a solution of equation (2) with boundary
conditions p+1 = f3(z1), p

+
2 = f4(z1) in the form of the double layer potential(
p1(x)
p2(x)

)
=

1

π

∫
S

∂

∂x3
Γ(1)(y − x)g(y)dy, (13)

where g(g1, g2) is a two-dimensional unknown vector. For determining it we obtain the
following Fredholm integral equation of the second kind

−
(
k2 0
0 k1

)
g(z1) +

1

π

∫
S

∂

∂x3
Γ(1)(y − z)g(y)dy =

(
f3(z1)
f4(z1)

)
. (14)

Taking into account that
∂

∂x3
Γ(1)(y − x) = 0 for x3 = 0, from equation (14) we have

g(z1) = − 1

k1k2

(
k1 0
0 k2

)(
f3(z1)
f4(z1)

)
. (15)

Using (15), (13) takes the form(
p1(x)
p2(x)

)
= − 1

πk1k2

∫
S

∂

∂x3
Γ(1)(y − x)

(
k1f3(y)
k2f4(y)

)
dy. (16)

We look for a solution of the equation C(∂x)V = 0 with the boundary condition (V+ = F),
in the domain R2

+ in the form of the double layer potential

V(x) =
1

π
Im

3∑
k=2

∥N (k)
pq (∂x)∥2x2

∫
S

g(t)

t− zk
dt, (17)

where g(t) is an unknown real vector-function.To determine it we obtain the following Fred-
holm integral equation

g(t0) +
1

π
Im

3∑
k=2

∥N (k)
pq (∂x)∥2x2

∫
S

g(t)

t− t0
dt = F(t0). (18)

Taking into account the fact that

3∑
k=2

N
(k)
11 = 1,

3∑
k=2

N
(k)
22 = 1,

3∑
k=2

N
(k)
12 = 0,

3∑
k=2

N
(k)
21 = 0,

from (18) we obtain g(t0) = F(t0) and (17) takes the form

V(x) =
1

π
Im

3∑
k=2

∥N (k)
pq (∂x)∥2x2

∫
S

F(t)

t− zk
dt. (19)

Formulas (16) and (19) are analogues of Poisson’s type formulas for the solution of Prob-
lem I in the domain R2

+.
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For the regularity of the solution of the first boundary value problem it is sufficient that

F, fj ∈ C1,α, F, fj =
c1

|x|1+β
, j = 3, 4, β > 0, for large |x|, where c1 = const.

4. Solution of the Problem II in the Domain R2
+

We look for a solution of equation (2) with boundary conditions
(
∂p1
∂x3

)+
= f3(z1),

(
∂p2
∂x3

)+
=

f4(z1) in the form of a single layer potential(
p1(x)
p2(x)

)
=

1

π

∫
S

Γ(1)(x− y)q(y)dy. (20)

Passing to the limit as x→ z ∈ S for q(y) we obtain the following Fredholm integral equation
of the second kind(

k2 0
0 k1

)
q(z1) +

1

π

∫
S

∂

∂z3
Γ(1)(z1 − y)q(y)dy =

(
f3(z1)
f4(z1)

)
.

Taking into account that
∂

∂z3
Γ(1)(y − z1) = 0, for z3 = 0, from the last equation we

have

q(z1) =
1

k1k2

(
k1 0
0 k2

)(
f3(z1)
f4(z1)

)
and (20) takes the form(

p1(x)
p2(x)

)
=

1

πk1k2

∫
S

Γ(1)(x− y)

(
k1f3(y)
k2f4(y)

)
dy.

We look for a solution of equationC(∂x)V = 0 with the boundary condition (T(∂n)V)+ =
F(z1) in the domain R2

+ as a single layer potential of the second kind

V(x) =
1

π
Re

3∑
k=2

∥L(k)
pq (∂x)∥2x2

∫
S

ln(t− zk)h(t)dt, (21)

where

L
(k)
11 = (−1)k(c13 + akc33)n, L

(k)
12 = (−1)ki(c13 + akc33)

√
a2a3a

−1
k n,

L
(k)
21 = (−1)ki(c11 + akc13)

√
a−1
k n, L

(k)
22 = (−1)k+1i(c11 + akc13)a

−1
k

√
a2a3n,

n−1 = (
√
a2 −

√
a3)(c11c33 − c213), zk = x1 + i

√
ak x3,

h is an unknown real vector.
From (21) for the stress vector we obtain

T(∂x,n)V(x) =
1

π
Re

3∑
k=2

M(k)

∫
S

h(t)dt

t− zk
,
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where

M(k) =
(−1)k

(
√
a2 −

√
a3)

(
−i√ak

√
a2a3

1 i
√
a2a3a

−1
k

)
.

Taking into account the properties of the vector TV and boundary condition (TV)+ =
F(z1), z1 ∈ S , for the unknown density h(y), we obtain the following Fredholm integral
equation of the second kind

−h(z1) +
1

π
Re

3∑
k=2

M(k)

∫
S

h(t)

t− z1
dt = F(z1).

The solution to the integral equation exists if the principal vector
∫
S

F(y)dy and the

principal moment
∫
S

yF2(y)dy of external stresses are equal to zero. Note that Re
3∑

k=2

M(k) =

0, for z3 = 0 . Then h(z1) = −F(z1) . Substituting h(t) into (21), we get a solution of
the second BVP (the Poisson type formula), provided the principal vector and the principal
moment of external stresses are equal to zero.

Therefore, we have the following Poisson type formula for the solution of the second BVP

V(x) = − 1

π
Re

3∑
k=2

∥L(k)
pq (∂x)∥2x2

∫
S

ln(t− zk)F(t)dt.

For the regularity of the solution V(x) it is sufficient that F(t) ∈ C0,α(S), α > 0,
and F(t) = O(|t|−1−β), β > 0, for large |t|.
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