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THE VARIATION FORMULA OF SOLUTION FOR THE LINEAR
CONTROLLED DIFFERENTIAL EQUATION CONSIDERING THE MIXED

INITIAL CONDITION AND PERTURBATION OF DELAYS

Alkhazishvili L., Iordanishvili M.

Abstract. For the linear controlled differential equation with constant delays in the phase
coordinates and controls the variation formula of solution is established, which is the linear
representation of the main part of solution increment with respect to perturbation of initial
data. Under initial data we mean the collection of the initial moment, delay parameters,
the initial vector, the initial and control functions. In the formula, effects of perturbation of
delay parameters and control function, and of the mixed initial condition are revealed.
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Let Rn
x be the n-dimensional vector space of points x = (x1, . . . , xn)T , where T denotes

transposition. Let p ∈ Rp
k and q ∈ Rq

m, with k + m = n and x = (p, q)T . Furthermore, let
0 < τ1 < τ2, 0 < σ1 < σ2, 0 < θ1 < θ2 be given numbers.

Let I = [a, b], I1 = [τ̂ , b] and I2 = [a − θ2, b], where τ̂ = a − max{τ2, σ2}; denote by Cφ

the space of continuous functions
φ : I1 → Rk

p

and by C1
g the space of continuous differentiable functions

g : I1 → Rm
q .

Next, denote by ACu the space of absolutely continuous control functions

u : I2 → Rr
u.

To any element

µ = (t0, τ, σ, θ, φ, g, u) ∈ Λ = (a, b)× (τ1, τ2)× (σ1, σ2)× (θ1, θ2)

×Cφ × C1
g ×ACu

we assign the controlled delay differential equation

ẋ(t) = (ṗ(t), q̇(t))T = A(t)x(t) +B(t)p(t− τ) + C(t)q(t− σ)

+D(t)u(t) + E(t)u(t− θ), t ∈ (t0, b) (1)

with the mixed initial condition

x(t) = (φ(t), g(t))T , t ∈ [τ̂ , t0), x(t0) = (p0, g(t0))
T . (2)

Here A(t) and B(t) are the integrable matrix functions with dimensions n × n and n × k,
respectively; C(t) is the integrable matrix function with dimension n×m; D(t) and E(t) are
the integrable matrix functions with dimension n× r.
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The condition (2) is said to be the mixed initial condition, because it consists of two
parts: the first part is

p(t) = φ(t), t ∈ [τ̂ , t0), p(t0) = p0,

the discontinuous part, since in general p(t0) ̸= p0 (discontinuity at the initial moment may
be related to the instant change in a dynamic process, for example, changes of investment,
environment and etc); the second part is

q(t) = g(t), t ∈ [τ̂ , t0],

the continuous part, since always q(t0) = g(t0).
Definition. Let µ = (t0, τ, σ, θ, φ, g, u) ∈ Λ. A function x(t) = x(t;µ), t ∈ [τ̂ , b], is called

a solution of equation (1) with the initial condition (2) or a solution corresponding to the
element µ and defined on the interval [τ̂ , t1] if it satisfies condition (2) and is absolutely
continuous on the interval [t0, b] and satisfies equation (1) almost everywhere on [t0, b].

From the linearity of equation (1) it follows that for every element µ ∈ Λ there exists a
corresponding solution. Let µ0 = (t00, τ0, σ0, p00, φ0, g0, u0) ∈ Λ be a given element. Now we
introduce the set of variations

V =
{
δµ0 = (δt0, δτ, δσ, δp0, δφ, δg0, δu) : |δt0| ≤ α, |δτ0| ≤ α, |δσ| ≤ α,

δφ =
ν∑

i=1

λiδφi, δg =
ν∑

i=1

λiδgi, δu =
ν∑

i=1

λiδui, |λi| ≤ α, i = 1, ν
}
,

where

δφi ∈ Cφ − φ0, δgi ∈ C1
g − g0, δui ∈ ACu − u0, i = 1, ν,

are fixed functions and α > 0 is a given number.
There exists a number ε1 > 0 such that for arbitrary (t, δµ) ∈ (0, ε1) × V we have

µ0 + εδµ ∈ V.
Let us define the increment of the solution x0(t) = x(t;µ0) :

∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t), (t, ε, δµ) ∈ [τ̂ , b]× (0, ε1)× V.

Theorem. Let the following conditions hold:
1) t00 + τ0 < b;
2) the function φ0(t) is absolutely continuous and φ̇0(t) is bounded;
3) the functions A(t), B(t), C(t), D(t), and E(t) are continuous at the point t00;
4) the function B(t) is continuous at the point t00 + τ0.
Then for arbitrary (t, ε, δµ) ∈ [b− δ, b]× (0, ε1)× V, with δ > 0 and b− δ > t00 + τ0, we have

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ),

where

δx(t; δµ) = Y (t00; t)
(
δp0, δg(t00)

)T
+
{
Y (t00; t)

[(
Θk×1, ġ0(t00)

)T
− f0

]
−Y (t00 + τ0; t)f1

}
δt0 −

{
Y (t00 + τ0; t)f1 +

∫ t

t00

Y (s; t)B(s)ṗ0(s− τ0)ds
}
δτ

−
{∫ t

t00

Y (s; t)C(s)q̇0(s− σ0)ds
}
δσ +

∫ t00

t00−τ0

Y (s+ τ0; t)B(s+ τ0)δφ(s)ds
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+

∫ t00

t00−σ0

Y (s+ σ0; t)C(s+ σ0)δg(s)ds−
{∫ t

t00

Y (s; t)E(s)u̇0(s− θ0)ds
}
δθ

+

∫ t

t00

Y (s; t)
[
D(s)δu(s) + E(s)δu(s− θ0)

]
ds; (3)

lim
ε→0

o(t; εδµ)

ε
= 0

uniformly for (t, δµ) ∈ [b− δ, b]× V ;

f0 = A(t00)x0(t00) +B(t00)p0(t00 − τ0) + C(t00)q0(t00 − σ0)

+D(t00)u0(t00) + E(t00)u0(t0 − θ00),

f1 = B(t00 + τ0)[p00 − φ0(t00)];

Θk×1 is the k× 1 zero matrix, Y (s : t) is the n× n matrix function satisfying on the interval
[t00, t] the equation

∂

∂s
Y (s; t) = −Y (s; t)A(s)−

(
Y (s+ τ0; t)B(s+ τ0), Y (s+ σ0; t)C(s+ σ0)

)
and the condition

Y (s; t) =

{
E for s = t,

Θn×n for s > t.

Here, E is the n× n identity matrix.
The Theorem is proved by the scheme given in [1,2].

Some Comments. The function δx(t; δµ) is called the variation of the solution x0(t) on
the interval [b− δ, b] and the expression (3) is called the variation formula.

The addend

Y (t00; t)
(
δp0, δg(t00)

)T
+
{
Y (t00; t)

[(
Θk×1, ġ0(t00)

)T
− f0

]
− Y (t00 + τ0; t)f1

}
δt0

is the effect of the mixed initial condition (2) under perturbations of initial moment t00, initial
vector p00 and function g0(t).

The expression

−
{
Y (t00 + τ0; t)f1 +

∫ t

t00

Y (s; t)B(s)ṗ0(s− τ0)ds
}
δτ −

{∫ t

t00

Y (s; t)C(s)q̇0(s− σ0)ds
}
δσ

is the effect of perturbation of the delays τ0, σ0 and the mixed initial condition (2).
The expression

−
{∫ t

t00

Y (s; t)E(s)u̇0(s− θ0)ds
}
δθ

is the effect of perturbation of the delay θ0.
The addend∫ t00

t00−τ0

Y (s+ τ0; t)B(s+ τ0)δφ(s)ds+

∫ t00

t00−σ0

Y (s+ σ0; t)C(s+ σ0)δg(s)ds

+

∫ t

t00

Y (s; t)
[
D(s)δu(s) + E(s)δu(s− θ0)

]
ds
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is the effect of perturbations of initial functions φ0(t), g0(t) and the control function u0(t).
Finally, we note that the variation formulas of solutions for various classes controlled

differential equations with delay are given in [3-9].
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