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Abstract. The boundary value problems of elastostatics for a porous circular ring with voids
are considered. The general solution of the system of equations is represented by harmonic,
biharmonic and metaharmonic functions. Explicit solutions of problems are obtained in the
form of series.The conditions are established that ensure absolute and uniform convergence
of these series.
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1. Introduction

In this paper we study boundary problems for elastic materials with empty pores. The
foundations of the linear theory of elastic materials with voids were first proposed by Cowin
and Nunziato [1]. Such materials include, in particular, rocks and soils, granulated and some
other manufactured porous materials.Problems of elasticity for materials with voids were
investigated by many authors. The history of development of porous body mechanics, the
main results and the sphere of their application are set forth in detail in the monographs
[2-5]. The generalization of the theory of elasticity and thermoelasticity for materials with
double void pores belongs to Iesan and Quintanilla [6].

For applications, it is especially important to construct the solutions of boundary value
problems in an explicit form because such solutions enable us to effectively perform quantita-
tive analysis of the investigated problem. Questions related to this topic are considered, for
example, in [7-18], where the explicit solutions of static boundary value problems of porous
elasticity are constructed for the specific fluid-saturated media with double porosity. The
boundary problems of elastostatics for a porous circular ring with voids are considered.

The boundary value problems of elastostatics for a porous circular ring with voids are
considered. The general solution of the system of equations is represented by harmonic,
biharmonic and metaharmonic functions. Explicit solutions of problems are obtained in the
form of series.The conditions are established that ensure absolute and uniform convergence
of these series.

2. Basic equations and boundary value problems

Let us assume that the isotropic elastic circular ring, with center at the origin, is bounded
by the circumferences S1 and S2 with the radius R1 and R2, respectively; R1 < R2.

The basic system of equations of the theory of elastostatics for porous material with voids
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can be written in the form [1]:{
µ∆u+ (λ+ µ)graddivu+ βgradφ = 0,
α∆φ− ξφ− βdivu = 0,

(1)

where u = u(u1, u2) is the displacement vector in a solid, φ is a change with respect to the
pore area; λ and µ are the Lamé constants; α, β and ξ are the constants, characterizing the
body porosity.

Let us now formulate the boundary value problems.
Find, a regular vector U = (u1, u2, φ), (U ∈ C1(D) ∩ C2(D), D = D ∪ S1 ∪ S2) satisfies

in the ring D a system of equations (1) and on the circumferences S1 and S2 the boundary
conditions:

Problem I: [
u−(z) = f−(z), φ−(z) = f−3 (z), z ∈ S1,
u+(z) = f+(z), φ+(z) = f+3 (z), z ∈ S2;

(2)

Problem II:  R(∂z,n)U(z)− = f−(z),
∂φ(z)

∂n

−
= f−3 (z),

R(∂z,n)U(z)+ = f+(z),
∂φ(z)

∂n

+

= f+3 (z),

(3)

where f∓(z) = (f∓1 (z), f∓2 (z)), f∓3 (z) are the given functions on the circumferences S1 and S2 ;

R (∂x,n)U(x) = (P (∂x,n)U(x), α
∂φ(x)

∂n
)

is the stress vector in the theory of elasticity for porous bodies with voids [1],

P (∂x,n)U(x) = T (∂x,n)u(x) + βnφ(x),

T (∂x,n)u(x) = µ∂nu(x) + λndivu(x) + µ
2∑
i=1

ni(x)gradui(x) is the stress vector in the

classical theory of elasticity.

3. General representations of solution of a system of equations

The solution of system (1) are written in the form[
u(x) = c0u

1(x) + c1u
2(x),

φ(x) = φ1(x) + φ2(x),
(4)

where φ1 is a harmonic function, ∆φ1 = 0, and φ2 is a metaharmonic function with the

parameter s21, (∆ + s21)φ2 = 0; s1 = i

√
µ0ξ − β2

µ0α
= is0, i =

√
−1,

λ > 0, µ > 0, α > 0, µ0ξ > β2; (5)

c0 and c1 are the unknown constants. A general solution u1 = (u11, u
1
2) of the homogeneous

equation, corresponding to the nonhomogeneous equation (1)1 with respect, is represented
as follows

u(z) = grad[Φ1(x) + Φ2(x)] + rotΦ3(x), (6)
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where the functions Φ2(x) and Φ3(x) are related to each other by the equality

µ0grad∆Φ2(x) + µrot∆Φ3(x) = 0; (7)

∆Φ1(x) = 0, ∆∆Φ2(x) = 0, ∆∆Φ2(x) = 0; Φ1(x), Φ2(x), Φ3(x)- are scalar functions,

rot =

(
− ∂

∂x2
,
∂

∂x1

)
.

u2 = (u21, u
2
2) is one of the particular solutions of equation (1)1:

u2(z) = − β

µ0
grad(− 1

s21
φ2 + φ0), (8)

where φ0 is chosen such that ∆φ0 = φ1 . It is obvious that φ0 is a biharmonic function:
∆∆φ0 = ∆φ1 = 0. For simplicity, the function is chosen such that φ1 = divu1 ≡ ∆Φ2.
Then we can take φ0 = Φ2. Let us calculate the values of the coefficients c0 and c1 in
representation (4). We apply the operator div to the first equality in (4) and compare the
obtained expression with divu defined by equation (12). We obtain

c0 =
µ0ξ − β2

µ0β
, c1 = 1.

By an immediate verification we make sure that representations (4) satisfy equations (1)1
and (1)2.

4. Solution of the problems

Let us rewrite representations (5) in terms of polar coordinates r and ψ as normal and
tangential components


un = ∂r(c0Φ1 + c3Φ2 + c4φ2)− c0

1

r
∂ψΦ3,

us =
1

r
∂ψ(c0Φ1 + c3Φ2 + c4φ2) + c0∂rΦ3,

φ = φ1 + φ2,

(9)

where

c3 = − ξ

β
, c4 =

β

µ0s21
, r2 = x21 + x22.

Harmonic, biharmonic and metaharmonic functions in a circular ring can be represented
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as follows[19-21]:

φ1(x) = ln rX01 +
∞∑
m=1

[

(
r

R2

)m
(Xm1 · νm(ψ))+(R1

r

)m
(Xm2 · νm(ψ))],

Φ2(x) = ln rX01 +
R2

2

4

∞∑
m=2

[
1

m+ 1

(
r

R2

)m+2

(Xm1 · νm(ψ))

+
1

1−m

(
R1

r

)m−2

(Xm2 · νm(ψ))] +
1

2

(
r

R2

)2

X02,

Φ3(x) = ln rX01 −
R2

2µ0
4µ

∞∑
m=0

[
1

m+ 1

(
r

R2

)m+2

(Xm1 · sm(ψ))

+
1

1−m

(
R1

r

)m−2

(Xm2 · sm(ψ))] +
1

2

(
r

R2

)2

X01,

Φ1(x) = ln rX05 +
∞∑
m=1

[

(
r

R2

)m
(Xm5 · νm(ψ))+(R1

r

)m
(Xm6 · νm(ψ))],

φ2(x) =
∞∑
m=0

[Im(λ0r)(Xm3 · νm(ψ)) +Km(λ0r)(Xm4 · νm(ψ))],

(10)

where Im and Km are Bessel’s and modified Hankel’s functions of an imaginary argument, re-
spectively; Xmi is the unknown two-component constant vector, νm(ψ) = (cosmψ, sinmψ), sm(ψ) =
(− sinmψ, cosmψ), i = 1, 2, 3, 4, 5, 6; x = (r, ψ), x ∈ D.
We rewrite conditions (2) in the tangential and normal components:

u∓n (z) = f∓n , u∓s (z) = f∓s , φ∓(z) = f∓3 (z). (11)

Expand the functions f∓n , f
∓
s and f∓3 ; in the Fourier series, whose Fourier coefficients are:

α∓
m = (α∓

m1, α
∓
m2), β∓

m = (β∓m1, β
∓
m2), γ∓

m = (γ∓m1, γ
∓
m2). We substitute (9) into (10) and

then the obtained expression into (11). Passing to the limit, as r → R1 and r → R2 for the
unknowns Xmi we obtain a system of algebraic equations:

m=0 

c3
R1

X01 +
c3
R2

R1X02 + c4λ0I
′
0(λ0R1)X03 + c4λ0K

′
0(λ0R1)X04

+ c0
R1
X05 =

α−
0

2
,

c3
4R2

X01 + c3X02 + c4λ0I
′
0(λ0R2)X03 + c4λ0K

′
0(λ0R2)X04

+ c0
R2
X05 =

α+
0

2
,

c0
R1

X01 +
R1

R2
X06 =

β−0
2
,

c0
R2

X01 +X06 =
β+
0

2

lnR1X01 + I0(λ0R1)X03 +K0(λ0R1)X04 =
γ−
0

2
,

lnR2X01 + I0(λ0R2)X03 +K0(λ0R2)X04 =
γ+
0

2
;

(12)
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m=2,3,...

A1(R1)Xm1 +A2(R1)Xm2 +A3(R1)Xm3 +A4(R1)Xm4 +A5(R1)Xm5

+A6(R1)Xm6 = α−
m,

A1(R2)Xm1 +A2(R2)Xm2 +A3(R2)Xm3 +A4(R2)Xm4 +A5(R2)Xm5

+A6(R2)Xm6 = α+
m,

B1(R1)Xm1 +B2(R1)Xm2 +B3(R1)Xm3 +B4(R1)Xm4 +B5(R1)Xm5

+B6(R1)Xm6 = β−
m,

B1(R2Xm1 +B2(R2)Xm2 +B3(R2)Xm3 +B4(R2)Xm4 +B5(R2)Xm5

+B6(R2)Xm6 = β+
m,(

R1

R2

)m
Xm1 +Xm2 + Im(λ0R1)Xm3

+Km(λ0R1)Xm4 = γ−
m,

Xm1 +

(
R1

R2

)m
Xm2 + Im(λ0R2)Xm3

+Km(λ0R2)Xm4 = γ+
m,

(13)

where

A1(r) =
1

4(m+ 1)

[
c3(m+ 2)r +

c0mµ0R
2
2

µ

(
r

R2

)m+2 ]
,

A2(r) =
R2

1
4(m+1)

[c0mµ0
µ

− c3(m− 2)
](R1

R2

)m
,

A3(r) = c4λ0I
′
m(λ0r), A4(r) = c4λ0K

′
m(λ0r), A5(r) =

c0m

R2

(
r

R2

)m−1

,

A6(r) = −c0m
R1

(
R1

r

)m+1

,

B1(r) =
R2

4(m+ 1)

[c3mR2

r
− c0µ0(m+ 2)

µ

]( r

R2

)m+2

,

B2(r) =
R2

1

4(1−m)r

[
c3m− c0(m− 2)µ0

µ

(
R1

r

)m−2 ]
,

B3(r) =
c4m

r
Im(λ0r), B4(r) =

c4m

r
Km(λ0r),

B5(r) =
c0m

r

(
r

R2

)m
, B6(r) =

c0m

r

(
R1

r

)m
.

We substitute the solutions of systems (12) and (13) Xmi in (10) and then in formulas
(6) and (8). Then taking into account φ0 = Φ2 we get the solution to problem I. Applying
representations (10) and (4), we can solve problem II by a similar method.
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