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Abstract. For the nonlinear controlled functional differential equations with delays in the
phase coordinates and controls considering the discontinuous (continuous) initial condition
the local (global) variation formulas of solutions are obtained. For the optimization problems
with general boundary conditions and functional the necessary optimality conditions are
proved: for the initial and final moments in the form of inequalities and equalities; for delays
containing in the phase coordinates and for the initial vector in the form of equalities; for the
initial and control functions in the form of the integral maximum principle.
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1. Introduction

As is known, real economical, biological, physical and majority of processes contain an
information about their behavior in the past, i. e., the processes that contain effects with
delayed action and which are described by functional differential equations with delays [1-3].
In the present work the controlled functional differential equation

ẋ(t) = f(t, x(t), x(t− τ1), . . . , x(t− τs), u(t), u(t− θ1)

, ..., u(t− θk)), x(t) ∈ Rn (1.1)

as well as with the discontinuous initial condition

x(t) = φ(t), t < t0, x(t0) = x0 (1.2)

and with the continuous initial condition

x(t) = φ(t), t ≤ t0 (1.3)

is considered
Condition (1.2) is called a discontinuous initial condition since, in general, x(t0) ̸= x0.

Discontinuity at the initial moment may be related to the instant change in a dynamical
process (changes of investment, environment and so on). Condition (1.3) is called a continuous
initial condition since, always, x(t0) = φ(t0).

In section 2, the local variation formula of solution is obtained, that is, a linear repre-
sentation of variation of the solution of problem (1.1)-(1.2) in the neighborhood of the right
end of the main interval with respect to perturbations of the initial data. In the section 3
the global variation formula of solution is obtained for problem (1.1)-(1.3). In the variation
formulas the effects of perturbations of the initial moment and several delays and also the
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effects of discontinuous and continuous initial conditions are detected. The variation formula
plays a basic role in proving the necessary conditions of optimality [4-9] and in the sensi-
tivity analysis of mathematical models [10]. Moreover, the variation formula allows one to
get an approximate solution of the perturbed equation [11]. The term “variation formula
of solution” has been introduced by R. V. Gamkrelidze and proved in [4] for the ordinary
differential equation. The effects of perturbation of the initial moment and the discontinu-
ous initial condition in the variation formulas for the first time were revealed in [12] for the
delay differential equation. The variation formulas for various classes of controlled functional
differential equations are derived in [8,13-19].

In sections 4 for the optimization problem with the discontinuous initial conditions with
general boundary conditions and functional the necessary conditions of optimality are proved:
for the initial and final moments in the form of inequalities and equalities; for delays con-
taining in the phase coordinates and for the initial vector in the form of equalities; for the
initial and control functions in the form of the integral maximum principle. In sections 5 for
the optimization problem with the continuous initial conditions the necessary conditions of
optimality are proved.

Optimal control problems for various classes of functional differential equations are inves-
tigated in [5-8,16,20].

2. Local variation formulas of solution for the controlled functional differential
equation with the discontinuous initial condition

Let O ⊂ Rn and U0 ⊂ Rr be open sets. Let hi2 > hi1 > 0, i = 1, s and θk > · · · > θ1 > 0
be given numbers and the n-dimensional function f(t, x, x1, ..., xs, u, u1, ..., uk) satisfies the
following conditions:

(a) for almost all fixed t ∈ I = [a, b] the function f(t, ·) : O1+s × U1+k
0 → Rn is continu-

ously differentiable;
(b) for each fixed (x, x1, ..., xs, u, u1, ..., uk) ∈ O1+s × Uk

0 the functions

f(t, x, x1, · · · , xs, u, u1, ..., uk), fx(t, ·), fxi(t, ·), i = 1, s

and
fu(t, ·), fui(t, ·), i = 1, k

are measurable on I;
(c) for compact sets K ⊂ O and U ⊂ U0 there exists a function mK,U (t) ∈ L1(I, [0,∞))

such that

| f(t, x, x1, ..., xs, u, u1, ..., uk) | + | fx(t, ·) | +
s∑

i=1

| fxi(t, ·) |

+ | fu(t, ·) | +
k∑

i=1

| fui(t, ·) |≤ mK,U (t)

for all (x, x1, ..., xs, u, u1, ..., uk) ∈ K1+s × U1+k and for almost all t ∈ I.
Furthermore, Φ is the set of continuous initial functions φ : I1 = [τ̂ , b] → O, τ̂ = a −

max
{
h12, · · · , hs2

}
and let Ω be a set of control measurable functions u(t), t ∈ I2 = [a− θk, b]

satisfying the conditions: the set clu(I2) ⊂ U0 and it is compact in Rr.
To each element

µ = (t0, τ1, ..., τs, x0, φ, u) ∈ Λ1 = [a, b)× [h11, h12]×
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· · · × [hs1, hs2]×O × Φ× Ω

we assign the delay controlled functional differential equation

ẋ(t) = f(t, x(t), x(t− τ1), ..., x(t− τs), u(t), u(t− θ1)

, ..., u(t− θk)) (2.1)

with the discontinuous initial condition

x(t) = φ(t), t < t0, x(t0) = x0. (2.2)

Condition (2.2) is called discontinuous because, in general, x(t0) ̸= φ(t0).

Definition 2.1. Let µ = (t0, τ1, ..., τs, x0, φ, u) ∈ Λ1. A function x(t) = x(t;µ) ∈ O, t ∈
[τ̂ , t1], t1 ∈ (t0, b] is called a solution of equation (2.1) with the initial condition (2.2) or the
solution corresponding to µ and defined on the interval [τ̂ , t1] if it satisfies condition (2.2) and
is absolutely continuous on the interval [t0, t1] and satisfies equation (2.1) almost everywhere
(a.e.) on [t0, t1].

Let µ0 = (t00, τ10, · · · , τs0, x00, φ0, u0) ∈ Λ1 be a fixed element and let x0(t) be the solution
corresponding to µ0 and defined on the interval [τ̂ , t10], where t00, t10 ∈ (a, b), t00 < t10 and
τi0 ∈ (hi1, hi2), i = 1, s.

Let us introduce the set of variation:

V1 =
{
δµ = (δt0, δτ1, ..., δτs, δx0, δφ, δu) : δt0 ∈ (a, b)− t00,

δτi ∈ (hi1, hi2)− τi0, i = 1, s, δx0 ∈ O − x00, δφ =

m∑
i=1

λiδφi,

δφi ∈ Φ− φ0, i = 1,m, δu ∈ Ω− u0, | δt0 |≤ α, | δτi |≤ α, i = 1, s,

| δx0 |≤ α, | λi |≤ α, i = 1,m, ||δu|| ≤ α
}
,

where α > 0 is a fixed number, (a, b) − t00 = {δt0 = t0 − t00 : t0 ∈ (a, b)} and ||δu|| =
sup

{
|δu(t)| : t ∈ I2

}
.

There exist numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ (0, ε1) × V1 we
have µ0 + εδµ ∈ Λ1, and the solution x(t;µ0 + εδµ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1
corresponds to it [16].

By the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t) on the
interval [τ̂ , t10+ δ1]. Therefore, we can assume that the solution x0(t) is defined on the whole
interval [τ̂ , t10 + δ1].

Now we introduce the increment of the solution x0(t) := x(t;µ0),

∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t), ∀(ε, δµ) ∈ (0, ε1)× V1.

Theorem 2.1. Let the following conditions hold:
2.1) τs0 > · · · > τ10 and t00 + τs0 < t10;
2.2) the function φ0(t) is absolutely continuous and φ̇0(t), t ∈ I1 is bounded;
2.3) the function f(w, u, u1, ..., uk), where w = (t, x, x1, ..., xs) ∈ I × O1+s is bounded on
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I ×O1+s × U1+k
0 ;

2.4) there exists the finite limit

lim
w→w0

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f−, w ∈ (a, t00]×O1+s,

where w0 = (t00, x00, φ0(t00 − τ10), ..., φ0(t00 − τs0));
2.5) there exist the finite limits

lim
(w1i,w2i)→(w0

1i,w
0
2i)
[f(w1i, u0(t), u0(t− θ1), ..., u0(t− θk))

−f(w2i, u0(t), u0(t− θ1), ..., u0(t− θk))] = fi,

where w1i, w2i ∈ (a, b)×O1+s, i = 1, s,

w0
1i = (t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), · · · , x0(t00 + τi0 − τi−10),

x00, x0(t00 + τi0 − τi+10), ..., x0(t00 + τi0 − τs0)),

w0
2i = (t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), ..., x0(t00 + τi0 − τi−10),

φ0(t00), x0(t00 + τi0 − τi+10), ..., x0(t00 + τi0 − τs0)).

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) with t10 − δ2 > t00 + τs0 such that for
arbitrary (t, ε, δµ) ∈ [t10 − δ2, t10 + δ2] × (0, ε2) × V −

1 , where V
−
1 = {δµ ∈ V1 : δt0 ≤ 0}, we

have
∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ). (2.3)

where
δx(t; δµ) = −Y (t00; t)f

−δt0 + β1(t; δµ), (2.4)

β1(t; δµ) = Y (t00; t)δx0 −
[ s∑

i=1

Y (t00 + τi0; t)fi

]
δt0 −

s∑
i=1

[
Y (t00 + τi0; t)fi

+

∫ t

t00

Y (ξ; t)fxi [ξ]ẋ0(ξ − τi0)dξ
]
δτi

+
s∑

i=1

∫ t

t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ)dξ

+

∫ t

t00

Y (ξ; t)
[
fu[ξ]δu(ξ) +

k∑
i=1

fui [ξ]δu(ξ − θi)
]
dξ;

here it is assumed that∫ t

t00

Y (ξ; t)fxi [ξ]ẋ0(ξ − τi0)dξ =

∫ t00+τi0

t00

Y (ξ; t)fxi [ξ]φ̇0(ξ − τi0)dξ

+

∫ t

t00+τi0

Y (ξ; t)fxi [ξ]ẋ0(ξ − τi0)dξ.

Next, Y (ξ; t) is the n× n-matrix function, satisfying the equation

Yξ(ξ; t) = −Y (ξ; t)fx[ξ]−
s∑

i=1

Y (ξ + τi0; t)fxi [ξ + τi0], ξ ∈ [t00, t] (2.5)
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and the condition

Y (ξ; t) =

{
H for ξ = t,

Θ for ξ > t,
(2.6)

where H is the identity matrix and Θ is the zero matrix; fxi [ξ] = fxi(ξ, x0(ξ), x0(ξ −
τ10), ..., x0(ξ − τs0), u0(ξ), u0(ξ − θ1), ..., u0(ξ − θk)),

lim
ε→0

o(t; εδµ)/ε = 0 uniformly for (t, δµ) ∈ [t10 − δ2, t10 + δ2]× V −
1 .

Some comments. The function δx(t; δµ) is called the first variation of the solution
x0(t), t ∈ [t00 − δ2, t00 + δ2]. The expression (2.4) is called the local variation formula of
solution.

The addend

−
[
Y (t00; t)f

− +

s∑
i=1

Y (t00 + τi0; t)fi

]
δt0

in formula (2.4) is the effect of the discontinuous initial condition (2.2) and perturbation of
the initial moment t00.

The addend

−
s∑

i=1

[
Y (t00 + τi0; t)fi +

∫ t

t00

Y (ξ; t)fxi [ξ]ẋ0(ξ − τi0)dξ
]
δτi

in formula (2.4) is the effect of the discontinuous initial condition (2.2) and perturbations of
the delays τi0, i = 1, s.

The expression

Y (t00; t)δx0 +
s∑

i=1

∫ t00

t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ)dξ

in formula (2.4) is the effect of perturbations of the initial vector x00 and the initial function
φ0(t).

The addend ∫ t

t00

Y (ξ; t)
[
fu[ξ]δu(ξ) +

m∑
i=1

fui [ξ]δu(ξ − θi)
]
dξ

is the effect of perturbation of the control function u0(t).

It is easy to see that (2.4) can be represented by the following form:

δx(t; δµ) = δx0(t; δµ) +

s∑
i=1

δxi(t; δµ) (2.7)

where

δx0(t; δµ) = Y (t00; t)(δx0 − f−δt0) +
s∑

i=1

∫ t00

t00−τi0

Y (ξ + τi0; t)fxi [ξ + τi0]δφ(ξ)dξ

+

∫ t

t00

Y (ξ; t)
[
fu[ξ]δu(ξ) +

m∑
i=1

fui [ξ]δu(ξ − θi)
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−
s∑

i=1

fxi [ξ]ẋ0(ξ − τi0)δτi

]
dξ,

and
δxi(t; δµ) = −Y (t00 + τi0; t)fi(δt0 + δτi), i = 1, s.

Using of the Cauchy formula [16], we can conclude that the function

δx0(t) =

{
δφ(t), t ∈ [τ̂ , t00),

δx0(t; δµ), t ∈ [t00, t10 + δ2]

satisfies the following equation

δ̇x(t) = fx[t]δx(t) +

s∑
i=1

fx[t]δx(t− τi0) + fu[t]δu(t) +

m∑
i=1

fui [t]δu(t− θi)

−
s∑

i=1

fxi [t]ẋ0(t− τi0)δτi (2.8)

with the initial condition

δx(t) = δφ(t), t ∈ [τ̂ , t00), δx(t00) = δx00 − f−δt0;

and the function

δxi(t) =

{
0, t ∈ [τ̂ , t00 + τi0),

δxi(t; δµ), t ∈ [t00 + τi0, t10 + δ2]

satisfies the following equation

δ̇x(t) = fx[t]δx(t) +
s∑

i=1

fxi [t]δx(t− τi0) (2.9)

with the initial condition

δx(t) = 0, t ∈ [τ̂ , t00 + τi0), δx(t00 + τi0) = −fi(δt0 + δτi).

Therefore, the local first variation of solution can be calculated by two ways: first-find
the matrix function Y (ξ; t) (see (2.5) and (2,6)), second- find the solutions of s + 1 linear
equations ( see (2.7)-(2.9)).

Theorem 2.2. Let the conditions 2.1)-2.3) and 2.5) of the Theorem 2.1 hold. Moreover,
there exists the finite limit

lim
w→w0

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f+,

w ∈ [t00, b)×O1+s. (2.10)

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1), with t10− δ2 > t00+ τs0 such that for
arbitrary (t, ε, δµ) ∈ [t10 − δ2, t10 + δ2] × (0, ε2) × V +

2 , where V
+
2 = {δµ ∈ V : δt0 ≥ 0}, the

formula (2.3) holds, where

δx(t; δµ) = −Y (t00; t)f
+δt0 + β(t; δµ).
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Theorem 2.3. Let the conditions 2.1)-2.5) of Theorem 2.1 and condition (2.10) hold.
Moreover,

f− = f+ := f̂ .

Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1), with t10 − δ2 > t00 + τ0 such that for
arbitrary (t, ε, δµ) ∈ [t10 − δ2, t10 + δ2]× (0, ε2)× V, formula (2.3) holds, where

δx(t; δµ) = −Y (t00; t)f̂ δt0 + β(t; δµ).

Theorems 2.1 and 2.2 are proved by the scheme given in [16]. Theorem 2.3 is a corollary
to Theorems 2.1 and 2.2. For the controlled functional differential equation without delay in
controls the analogous local variation formulas are proved in [18].

3. Global variation formulas of solution for the controlled functional differen-
tial equation with the continuous initial condition

To each element ϱ = (t0, τ1, · · · , τs, φ, u) ∈ Λ2 = [a, b)× [h11, h12]×· · ·× [hs1, hs2]×Φ×Ω
we assign the delay controlled functional differential equation (2.1) with the continuous initial
condition

x(t) = φ(t), t ∈ [τ̂ , t0]. (3.1)

Definition 3.1. Let ϱ = (t0, τ1, ..., τs, φ, u) ∈ Λ2. A function x(t) = x(t; ϱ) ∈ O, t ∈
[τ̂ , t1], t1 ∈ (t0, b] is called a solution of equation (2.1) with the initial condition (3.1) or the
solution corresponding to ϱ and defined on the interval [τ̂ , t1] if it satisfies condition (3.1) and
is absolutely continuous on the interval [t0, t1] and satisfies equation (2.1) a. e. on [t0, t1].

Let us introduce the set of variation:

V2 =
{
δϱ = (δt0, δτ1, ..., δτs, δφ, δu) : δt0 ∈ (a, b)− t00,

δτi ∈ (hi1, hi2)− τi0, i = 1, s, δφ =

m∑
i=1

λiδφi,

δφi ∈ Φ− φ0, i = 1,m, δu ∈ Ω− u0, | δt0 |≤ α, | δτi |≤ α, i = 1, s,

| λi |≤ α, i = 1,m, ||δu|| ≤ α
}
.

Let x0(t) be a solution corresponding to the element ϱ0 = (t00, τ10, ...,
τs0, φ0, u0) ∈ Λ2 and defined on the interval [τ̂ , t10], where t00, t10 ∈ (a, b), t00 < t10 and
τi0 ∈ (hi1, hi2), i = 1, s.

There exist the numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δϱ) ∈ (0, ε1) × V2
we have ϱ0+ εδϱ ∈ Λ2, and the solution x(t; ϱ0+ εδϱ) defined on the interval [τ̂ , t10+ δ1] ⊂ I1
corresponds to it [16].

Due to the uniqueness, the solution x(t; ϱ0) is a continuation of the solution x0(t) on
the interval [τ̂ , t10 + δ1]. Therefore, we cane assume that the solution x0(t) is defined on the
interval [τ̂ , t10 + δ1] ⊂ I1.

Let us define the increment of the solution x0(t) := x(t; ϱ0),

∆x(t; εδϱ) = x(t; ϱ0 + εδϱ)− x0(t),

∀(t, ε, δϱ) ∈ [τ̂ , t10 + δ1]× (0, ε1)× V2.
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Theorem 3.1. Let the function φ0(t), t ∈ I1 be absolutely continuous. Let the func-
tions φ̇0(t) and f(w, u, u1, ..., uk), (w, u, u1, ..., uk) ∈ I × O1+s × U1+k

0 be bounded, where
w = (t, x, x1, ..., xs). Moreover, there exist the finite limits

lim
t→t00−

φ̇0(t) = φ̇−
0 ,

lim
w→w0

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f−, w ∈ (a, t00]×O1+s,

where w0 = (t00, φ0(t00), φ0(t00 − τ10), ..., φ0(t00 − τs0));
Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) with t10 − δ2 > t00 + τs0 such that for
arbitrary (t, ε, δϱ) ∈ [t10, t10 + δ2]× (0, ε2)× V −

2 , where V
−
2 = {δϱ ∈ V2 : δt0 ≤ 0}, we have

∆x(t; εδϱ) = εδx(t; δϱ) + o(t; εδϱ). (3.2)

where
δx(t; δϱ) = Y (t00; t)

[
φ̇−
0 − f−

]
δt0 + β2(t; δϱ),

β2(t; δϱ) = Y (t00; t)δφ(t00) +
s∑

i=1

∫ t

t00−τi0

Y (s+ τi0; t)fxi [s+ τi0]δφ(s)ds

−
∫ t

t00

Y (s; t)
[ s∑

i=1

fxi [s]ẋ0(s− τi0)δτi

]
ds

+

∫ t

t00

Y (s; t)
[
fu[s]δu(s) +

k∑
i=1

fui [s]δu(s− θi)
]
ds,

where Y (s; t) is the n × n-matrix function satisfying the equation (2.5) and the condition
(2.6).

Theorem 3.2. Let the function φ0(t), t ∈ I1 be absolutely continuous and f(w, u, u1, ..., uk),
(w, u, u1, ..., uk) ∈ I ×O1+s × U1+k

0 be bounded. Moreover, there exist the finite limits

lim
t→t00+

φ̇0(t) = φ̇+
0 ,

lim
w→w0

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f+, w ∈ [t00, b)×O1+s,

Then for each t̂0 ∈ (t00, t10), there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for
arbitrary (t, ε, δϱ) ∈ [t00, t10+ δ2]× (0, ε2)×V +

2 , where V
+
2 = {δϱ ∈ V2 : δt0 ≥ 0}, the formula

(3.2) holds, where

δx(t; δϱ) = Y (t00; t)
[
φ̇+
0 − f+

]
δt0 + β(t; δϱ).

Theorem 3.3. Let the assumptions of Theorems 3.1 and 3.2 be fulfilled. Moreover,

φ̇−
0 − f− = φ̇+

0 − f+ = f̃ .

Then for each t̂0 ∈ (t00, t10), there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that for
arbitrary (t, ε, δϱ) ∈ [t̂0, t10 + δ2]× (0, ε2)× V2, the formula (2.4) holds, where

δx(t; δϱ) = Y (t00; t)f̃ δt0 + β2(t; δϱ).

Theorems 3.1 and 3.2 are proved by the scheme given in [16]. Theorem 3.3 is a corollary
to Theorems 3.1 and 3.2. For the controlled functional differential equation without delay in
controls the analogous global variation formulas are proved in [19].
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4. Optimal control problem with the discontinuous initial condition

Let U ⊂ Rr be a convex compact set. Assume that the n-dimensional function f(t, x, x1, ..., xs, u,
u1, ..., uk) is continuous on the set I × O1+s × U1+k and continuously differentiable with re-
spect to (x, x1, ..., xs, u, u1, ..., uk) ∈ O1+s × U1+k; moreover,there exists a number M > 0
such that

| f(t, x, x1, ..., xs, u) | + | fx(t, x, ·) | +
s∑

i=1

| fxi(t, x, ·) | + | fu(t, x, ·) |

+
k∑

i=1

| fui(t, x, ·) |≤M

for all (t, x, x1, ..., xs, u, u1, ..., uk) ∈ I ×O1+s × U1+k.
Furthermore, let Φ1 be the set of continuous initial functions φ(t) ∈ N, t ∈ I1, where

N ⊂ O is a convex compact set; Ω1 is the set of measurable functions u(t) ∈ U, t ∈ I2;X0 ⊂ O
is a convex compact set.

To each element

ν = (t0, t1, τ1, ..., τs, x0, φ, u) ∈ A1 = I × I × [h11, h12]× ...× [hs1, hs2]

×X0 × Φ1 × Ω1

we assign the delay controlled functional differential equation

ẋ(t) = f(t, x(t), x(t− τ1), ..., x(t− τs), u(t), u(t− θ1), ..., (4.1)

u(t− θk)), t ∈ [t0, t1], u ∈ Ω1,

with the discontinuous initial condition

x(t) = φ(t), t < t0, x(t0) = x0. (4.2)

Definition 4.1. Let ν = (t0, t1, τ1, ..., τs, x0, φ, u) ∈ A1. A function x(t) = x(t; ν) ∈
O, t ∈ [τ̂ , t1] is called a solution of equation (4.1) with the initial condition (4.2) or the
solution corresponding to ν and defined on the interval [τ̂ , t1] if it satisfies condition (4.2) and
is absolutely continuous on the interval [t0, t1] and satisfies equation (4.1) a.e. on [t0, t1].

By the step method and Gronwall inequality it can be proved that for every element
µ ∈ Λ1 there exists the unique solution x(t;µ) defined on the interval [τ̂ , b] and it is continuous
with respect to µ.

Let the scalar-valued functions qi(t0, t1, τ1, ..., τs, x0, x1), i = 0, l, be continuously differen-
tiable on I × I × [h11, h21]× ...× [h1s, h2s]×O2.

Definition 4.2. An element ν = (t0, t1, τ1, · · · , τs, x0, φ, u) ∈ A1 is said to be admissible
if the corresponding solution x(t) = x(t; ν) satisfies the boundary conditions

qi(t0, t1, τ1, ..., τs, x0, x(t1)) = 0, i = 1, l. (4.3)

Denote by A10 the set of admissible elements.
Definition 4.3. An element ν0 = (t00, t10, τ10, · · · , τs0, x00, φ0, u0) ∈ A10 is said to be

optimal if for arbitrary element ν ∈ A10 the inequality

q0(t00, t10, τ10, ..., τs0, x00, x(t10)) ≤ q0(t0, t1, τ1, ..., τs, x0, x(t1)) (4.4)
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holds. Here x0(t) = x(t; ν0) and x(t) = x(t; ν).
The problem (4.1) − (4.4) is called an optimal control problem with the discontinuous

initial condition.
Theorem 4.1. Let ν0 ∈ A10 be an optimal element with t00, t10 ∈ (a, b) and A10∩A−

1 ̸= Ø,
where A−

1 = (a, t00]× (t00, t10]× [h11, h21]× ...× [h1s, h2s]×X0 ×Φ1 ×Ω1. Moreover, let the
following conditions hold:
4.1) τs0 > · · · > τ10 and t00 + τs0 < t10 with τi0 ∈ (hi1, hi2), i = 1, s;
4.2) the function φ0(t) is absolutely continuous and φ̇0(t), t ∈ I1 is bounded;
4.3) there exists the finite limit

lim
w→w0

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f−, w ∈ (a, t00]×O1+s,

where w0 = (t00, x00, φ0(t00 − τ10), ..., φ0(t00 − τs0));
4.4) there exist the finite limits

lim
(w1i,w2i)→(w0

1i,w
0
2i)
[f(w1i, u0(t), u0(t− θ1), ..., u0(t− θk))

−f(w2i, u0(t), u0(t− θ1)..., u0(t− θk))] = fi,

where w1i, w2i ∈ (a, b)×O1+s, i = 1, s,

w0
1i = (t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), ..., x0(t00 + τi0 − τi−10),

x00, x0(t00 + τi0 − τi+10), ..., x0(t00 + τi0 − τs0)),

w0
2i = (t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), ..., x0(t00 + τi0 − τi−10),

φ0(t00), x0(t00 + τi0 − τi+10), ..., x0(t00 + τi0 − τs0)),

4.5) there exists the finite limit

lim
w→ws+1

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f−s+1, w ∈ (t00, t10)×O1+s,

ws+1 = (t10, x0(t10), x0(t10 − τ10), ..., x0(t10 − τs0)).

Then there exist a vector π = (π0, ..., πl) ̸= 0, with π0 ≤ 0 and a solution ψ(t) = (ψ1(t), ..., ψn(t))
of the equation

˙ψ(t) = −ψ(t)fx[t]−
s∑

i=1

ψ(t+ τi0)fxi [t+ τi0], t ∈ [t00, t10], (4.5)

ψ(t) = 0, t > t10,

such that the following conditions hold:
4.6) the conditions for the moments t00 and t10 :

πQ0t0 ≥ ψ(t00)f
− +

s∑
i=1

ψ(t00 + τi0)fi,

πQ0t1 ≥ −ψ(t10)f−s+1,

where
Q = (q0, · · · , ql)T , Q0 = Q(t00, t10, τ10, ..., τs0, x00, x0(t10)),
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Q0t0 =
∂

∂t0
Q0;

4.7) the conditions for the delays τi0, i = 1, s:

πQ0τi0 = ψ(t00 + τi0)fi +

∫ t00+τi0

t00

ψ(t)fxi [t]φ̇0(t− τi0)dt

+

∫ t00

t00+τi0

ψ(t)fxi [t]ẋ0(t− τi0)dt;

4.8) the conditions for the vector x00:(
πQ0x0 + ψ(t00)

)
x00 = max

x0∈X0

(
πQ0x0 + ψ(t00)

)
x0;

4.9) the integral maximum principle for the initial function φ0(t):∫ t00

t00−τi0

ψ(t+ τi0)fxi [t+ τi0]φ0(t)dt = max
φ(t)∈Φ1

∫ t10

t00

ψ(t+ τi0)fxi [t+ τi0]φ(t)dt;

4.10) the integral maximum principle for the control function u0(t):∫ t10

t00

ψ(t)
[
fu[t]u0(t) +

k∑
i=1

fui [t]u0(t− θi)
]
dt

= max
u(t)∈Ω1

∫ t10

t00

ψ(t)
[
fu[t]u(t) +

k∑
i=1

fui [t]u(t− θi)
]
dt;

4.11) the condition for the function ψ(t),

ψ(t10) = πQ0x1 .

Theorem 4.2. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and A10 ∩ A+
1 ̸= Ø,

where A+
1 = [t00, t10) × [t10, b) × [h11, h21] × ... × [h1s, h2s] × X0 × Φ1 × Ω1. Moreover, the

conditions 4.1), 4.2), and 4.4) of Theorem 4.1 hold and there exist the finite limits

lim
w→w0

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f+, w ∈ [t00, t10)×O1+s,

lim
w→ws+1

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f+1+s, w ∈ [t10, b)×Os+1.

Then there exist a vector π = (π0, ..., πl) ̸= 0, with π0 ≤ 0 and a solution ψ(t) = (ψ1(t), · · · , ψn(t))
of equation (4.5), such that conditions 4.7)-4.11) hold. Moreover,

πQ0t0 ≤ ψ(t00)f
+ +

s∑
i=1

ψ(t00 + τi0)fi,

πQ0t1 ≤ −ψ(t10)f−1 .

Theorem 4.3. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and the conditions of
Theorems 4.1 and 4.2 hold. Moreover,

f− = f+ := f, f−s+1 = f+s+1 := fs+1.
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Then there exist a vector π = (π0, ..., πl) ̸= 0, with π0 ≤ 0 and a solution ψ(t) = (ψ1(t), · · · , ψn(t))
of equation (4.5), such that the conditions 4.7)-4.11) hold. Moreover,

πQ0t0 = ψ(t00)f +

s∑
i=1

ψ(t00 + τi0)fi,

πQ0t1 = −ψ(t10)fs+1.

Let the function u0(t) be continuous at the points

t00, t00 − τi0, i = 1, s; t00 + τi0, i = 1, s; t10, t10 − τi0, i = 1, s.

Then we have

f = f
(
t00, x00, φ0(t00 − τ00), ..., φ0(t00 − τs0), u0(t00), u0(t00 − θ1),

..., u0(t00 − θk)
)
,

fs+1 = f
(
t10, x0(t10), x0(t10 − τ10), ..., x0(t10 − τs0), u0(t10), u0(t10 − θ1),

..., u0(t10 − θk)
)
;

fi = f
(
t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), ..., x0(t00 + τi0 − τi−10), x00,

x0(t00 + τi0 − τi+10), ..., x0(t00 + τi0 − τs0), u0(t00 + τi0), u0(t00 + τi0 − θ1),

..., u0(t00 + τi0 − θk)
)
− f

(
t00 + τi0, x0(t00 + τi0), x0(t00 + τi0 − τ10), ...,

x0(t00 + τi0 − τi−10), φ0(t00), x0(t00 + τi0 − τi+10), ..., x0(t00 + τi0 − τs0)

u0(t00 + τi0), u0(t00 + τi0 − θ1), ..., u0(t00 + τi0 − θk)
)
.

It is clear that, if φ0(t00) = x00 then fi = 0, i = 1, s.
Theorem 4.3 is a corollary to Theorems 4.1 and 4.2.
Proof of Theorem 4.1. On the basis of the variation formula of solution (see Theorem

2.1) Theorem 4.1 will be proved by the scheme given in [8, 16].
On the convex set Z = R+ ×A−

1 , where R+ = [0,∞), let us define the mapping

P : Z → R1+l (4.6)

by the formula
P (z) = (p0(z), ..., pl(z))T , z = (ξ, ν) ∈ Z,

where
p0(z) = q0(t0, t1, τ1, ..., τs, x0, x(t1; ν)) + ξ, pi(z) = qi(t0, t1, τ1,

..., τs, x0, x(t1; ν)), i = 1, l.

Consequently,
P (z) = Q(t0, t1, τ1, ..., τs, x0, x(t1; ν)) + (ξ, 0..., 0)T .

It is clear that

p0(z0) ≤ p0(z), pi(z) = 0, i = 1, l, ∀z ∈ R+ × (A10 ∩A−
1 ) ⊂ Z,
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where z0 = (0, ν0) = (0, t00, t10, τ10, ..., τs0, x00, φ0, u0).
Thus, the point z0 = (0, ν0) ∈ Z is critical (see [8, 16]), since P (z0) ∈ ∂P (Z). Moreover,

mapping (4.6) is continuous.
There exists a small ε1 > 0 such that for arbitrary ε ∈ (0, ε1) and

δz = (δξ, δν) = (δξ, δt0, δt1, δτ1, ..., δτk, δx0, δφ, δu),

where

δξ ∈ [0, α), δt1 ∈ (−α, 0] and δµ = (δt0, δτ1, ..., δτk, δx0, δφ, δu) ∈ V −
1

we get

z0 + εδz = (εδξ, t00 + εδt0, t10 + εδt1, τ10 + εδτ1, ..., τs0 + εδτs, x00

+εδx0, φ0 + εδφ, u0 + εδu)) ∈ [0, α)× (a, t00]× (t10 − δ2, t10]×

(h11, h12)× ...× (hs1, hs2)×X0 × Φ1 × Ω1 ⊂ Z.

It easy to see that on the interval [τ̂ , t10]

x(t; ν0 + εδν) = x(t;µ0 + εδµ) and x0(t) = x(t; ν0) = x(t;µ0),

therefore

∆x(t; εδν) = x(t; ν0 + εδν)− x0(t) = ∆x(t; εδµ)

On the basis of Theorem 2.1 we have

∆x(t; εδν) = εδx(t; δµ) + o(t; εδµ),∀(t, ε, δµ) ∈ [t10 − δ2, t10]× (0, ε2)× V −
1 ,

where δx(t; δµ) has the form (2.4).
Now we calculate a differential of mapping (4.6) at the point z0. We have,

P (z0 + εδz)− P (z0) = Q(t00 + εδt0, t10 + εδt1, τ10 + εδτ1, ..., τs0 + εδτs, x00 + εδx0,

, ..., 0)T .

where

Q0 = Q(t00, t10, τ10, ..., τs0, x00, x0(t10)).

We introduce the notation:

ϑ(εδt1; εδµ) = x(t10 + εδt1; εδµ)− x0(t10)

and

Q[ε; s] = Q(t00 + εsδt0, t10 + εsδt1, τ10 + εsδτ1, ..., τs0 + εsδτs, x00 + εsδx0,

x0(t10) + sϑ(εδt1; εδµ).

For ϑ(εδt1; εδµ) we have

ϑ(εδt1; εδµ) = x(t10 + εδt1; εδµ)− x0(t10 + εδt1) + x0(t10 + εδt1)− x0(t10)

= εδx(t10 + εδt0; εδµ) + o(t10 + εδµ; εδµ) +

∫ t10

t10+εδt1

ẋ0(t)dt

= ε[δx(t10; εδµ) + f−s+1δt1] + o(εδµ).
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Let us transform the difference

Q(t00 + εδt0, t10 + εδt1, τ10 + εδτ1, ..., τs0 + εδτs, x00 + εδx0, x(t10 + εδt1; εδµ))

−Q0 =

∫ 1

0

d

ds
Q[ε; s]ds =

∫ 1

0

[
ε
(
Qt0 [ε; s]δt0 +Qt1 [ε; s]δt1 +

s∑
i=1

Qτi [ε; s]δτi

+Qx0 [ε; s]δx0

)
+Qx1 [ε; s]ϑ(εδt1; εδµ)

]
ds

= ε
[
Q0t0δt0 +Q0t1δt1 +

s∑
i=1

Q0τiδτi +Q0x0δx0 +Q0x1 [δx(t10; δµ) + f−s+1δt1]
]
+ γ(εδµ),

where

γ(εδµ) = ε

∫ 1

0

{
[Qt0 [ε; s]−Q0t0 ]δt0 + [Qt1 [ε; s]−Q0t1 ]δt1

+

s∑
i=1

[Qτi [ε; s]−Q0τi ]δτi + [Qx0 [ε; s]−Q0x0 ]δx0 + [Qx1 [ε; s]−Q0x1 ][δx(t10; δµ) + f−s+1δt1]

+Q0x1

o(εδw)

ε

}
ds.

It is easy to see that

lim
ε→0

[Qt0 [ε; s]−Q0t0 ] = 0, lim
ε→0

[Qt1 [ε; s]−Q0t1 ] = 0, lim
ε→0

[Qτi [ε; s]−Q0τi ] = 0,

lim
ε→0

[Qx0 [ε; s]−Q0x0 ] = 0, lim
ε→0

[Qx1 [ε; s]−Q0x1 ] = 0.

Therefore, γ(εδµ) = o(εδµ). Thus,

P (z0 + εδz)− P (z0) = εdPz0(δz) + o(εδz),

where o(εδz) := o(εδµ) and differential dPz0(δz) of the mapping (4.6) has the form

dPz0(δz) = Q0t0δt0 +Q0t1δt1 +
s∑

i=1

Q0τiδτi +Q0x0δx0 +Q0x1 [δx(t10; δµ) + f−s+1δt1]

Due to relation (2.4) we get

dPz0(δz) =
[
Q0t0 −Q0x1Y (t00; t10)f

− −
s∑

i=1

Q0x1Y (t00 + τi0)fi

]
δt0

+
[
Q0t1 +Q0x1Y (t00; t10)f

−
s+1

]
δt1 +

s∑
i=1

[
Q0τi −Q0x1Y (t00 + τi0; t10)fi

+

∫ t10

t00

Q0x1Y (t; t10)fxi [t]ẋ(t− τi0)dt
]
δτi +

[
Q0x0 +Q0x1Y (t00; t10)

]
δx0

s∑
i=1

∫ t00

t00−τi0

Q0x1Y (t+ τi0; t10)δφ(t)dt+

∫ t10

t00

Q0x1Y (t; t10)
[
fu[t]δu(t)
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+

k∑
i=1

fui [t]δu(t− θi)
]
dt. (4.7)

From the necessary condition of criticality [8, 16] it follows that: there exists a vector π =
(π0, ..., πl) ̸= 0 such that

πdPz0(δz) ≤ 0,∀ δz ∈ R+ × R2
− × Rs × [X0 − x00]

×[Φ1 − φ0]× [Ω1 − u0]. (4.8)

Introduce the function
ψ(t) = πQ0x1Y (t; t10) (4.9)

as is easily seen, it satisfies equation (4.5) and the initial condition.
Taking into account (4.7) and (4.9) from inequality (4.8) we obtain

[
πQ0t0 − ψ(t00)f

− −
s∑

i=1

ψ(t00 + τi0)fi

]
δt0

+
[
πQ0t1 + ψ(t00)f

−
s+1

]
δt1 +

s∑
i=1

[
πQ0τi − ψ(t00 + τi0)fi

+

∫ t10

t00

ψ(t)fxi [t]ẋ(t− τi0)dt
]
δτi +

[
πQ0x0 + ψ(t00)

]
δx0

s∑
i=1

∫ t00

t00−τi0

ψ(t+ τi0)δφ(t)dt+

∫ t10

t00

ψ(t)
[
fu[t]δu(t)

+
k∑

i=1

fui [t]δu(t− θi)
]
dt ≤ 0. (4.10)

Let δt0 = δt1 = 0, δτi = 0, i = 1, s, δx0 = 0, δφ = 0, δu = 0 in (4.10), then we obtain

π0δξ ≤ 0, ∀δξ ∈ R+.

This implies π0 ≤ 0.
Let δξ = 0, δτi = 0, i = 1, s, δx0 = 0, δφ = 0, δu = 0 then taking into account that

δti ∈ R−, i = 0, 1 from (4.10) we obtain condition 4.6).
Let δξ = δt0 = δt1 = 0, δx0 = 0, δφ = 0, δu = 0 then, taking into account that δx0 ∈

X0 − x00 from (4.10) we obtain condition 4.7).
Let δξ = δt0 = δt1 = 0, δτi = 0, i = 1, s, δφ = 0, δu = 0 then, taking into account that

δx0 ∈ X0 − x00 from (4.10) we obtain condition 4.8).
Let δξ = δt0 = δt1 = 0, δτi = 0, i = 1, s, δx0 = 0, δu = 0 then, taking into account that

δφ ∈ Φ1 − φ0 from (14) we obtain condition 4.9).
Let δξ = δt0 = δt1 = 0, δτi = 0, i = 1, s, δx0 = 0, δφ = 0 then, taking into account that

δu ∈ Ω1 − u0 from (14) we obtain condition 4.10).
Finally we note that Theorem 4.2 can be proved analogously to Theorem 4.1.
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5. Optimal control problem with the continuous initial condition

Let us consider the optimal control problem

ẋ(t) = f(t, x(t), x(t− τ1), ..., x(t− τs), u(t), u(t− θ1),

..., u(t− θk)), t ∈ [t0, t1], u ∈ Ω (5.1)

x(t) = φ(t), t ∈ [τ̂ , t0], (5.2)

qi(t0, t1, τ1, ..., τs, φ(t0), x(t1)) = 0, i = 1, l, (5.3)

q0(t0, t1, τ1, ..., τs, φ(t0), x(t1)) → min . (5.4)

Problem (5.1)-(5.4) is called an optimal control problem with the continuous initial con-
dition.

Definition 5.1. Let ρ = (t0, t1, τ1, ..., τs, φ, u) ∈ A2 = (a, b) × (h11, h12) × (hs1, hs2) ×
Φ1 × Ω1. A function x(t) = x(t; ρ) ∈ O, t ∈ [τ̂ , t1] is called a solution of equation (5.1) with
the continuous initial condition (5.2) or the solution corresponding to ρ and defined on the
interval [τ̂ , t1] if it satisfies condition (5.2) and is absolutely continuous on the interval [t0, t1]
and satisfies equation (5.1) a. e. on [t0, t1].

Definition 5.2. An element ρ = (t0, t1, τ1, ..., τs, φ, u) ∈ A2 is said to be admissible if the
corresponding solution x(t) = x(t; ρ) satisfies the boundary conditions (5.3).

Denote by A20 the set of admissible elements.

Definition 5.3. An element ρ0 = (t00, t10, τ10, ..., τs0, φ0, u0) ∈ A20 is said to be optimal
if for an arbitrary element ρ ∈ A20 the inequality

q0(t00, t10, τ10, ..., τs0, φ0(t00), x0(t10)) ≤ q0(t0, t1, τ1, ..., τs, φ(t0), x(t1))

holds.

Theorem 5.1. Let ρ0 be an optimal element with t00, t10 ∈ (a, b) and A20 ∩ A−
2 ̸= Ø,

where A−
2 = (a, t00]× (t00, t10]× [h11, h21]× ...× [h1s, h2s]×Φ1 ×Ω1. Moreover, the following

conditions hold:
5.1) the function φ0(t) is absolutely continuous and φ̇0(t), t ∈ I1 is bounded;
5.2) there exist the finite limits

lim
t→t00−

φ̇0(t) = φ̇−
0 ,

lim
w→w0

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f−, w ∈ (a, t00]×O1+s,

where w0 = (t00, φ0(t00 − τ10), ..., φ0(t00 − τs0));
5.3)there exists the finite limit

lim
w→ws+1

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f−s+1, w ∈ (t00, t10]×O1+s,

ws+1 = (t10, x0(t10), x0(t10 − τ10), ..., x0(t10 − τs0));
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Then there exists a vector π = (π0, ..., πl) ̸= 0, with π0 ≤ 0 and a solution ψ(t) = (ψ1(t), ..., ψn(t))
of the equation

˙ψ(t) = −ψ(t)fx[t]−
s∑

i=1

ψ(t+ τi0)fxi [t+ τi0], t ∈ [t00, t10], (5.5)

ψ(t) = 0, t > t10,

such that the following conditions hold:
5.4) the conditions for the moments t00 and t10 :

πQ0t0 +
(
πQ0x0 + ψ(t00)

)
φ̇−
0 ≥ ψ(t00)f

−,

πQ0t1 ≥ −ψ(t10)f−s+1,

5.5) the conditions for the delays τi0, i = 1, s:

πQ0τi0 =

∫ t10

t00

ψ(t)fxi [t]ẋ0(t− τi0)dt;

5.6) the integral maximum principle for the initial function φ0(t):[
πQ0x0 + ψ(t00)

]
φ0(t00) +

s∑
i=1

∫ t00

t00−τi0

ψ(t+ τi0)fxi [t+ τi0]φ0(t)dt

= max
φ(t)∈Φ1

[[
πQ0x0 + ψ(t00)

]
φ(t00) +

s∑
i=1

∫ t00

t00−τi0

ψ(t+ τi0)fxi [t+ τi0]φ(t)dt
]
;

5.7) the integral maximum principle for the control function u0(t):∫ t10

t00

ψ(t)
[
fu[t]u0(t) +

k∑
i=1

fui [t]u0(t− θi)
]
dt

= max
u(t)∈Ω1

∫ t10

t00

ψ(t)
[
fu[t]u(t) +

k∑
i=1

fui [t]u(t− θi)
]
dt;

5.8) the condition for the function ψ(t):

ψ(t10) = πQ0x1 .

Theorem 5.2. Let ρ0 be an optimal element with t00, t10 ∈ (a, b) and A20 ∩ A+
2 ̸= Ø,

where A+
2 = [t00, t10)× [t10, b)× [h11, h21]× ...× [h1s, h2s]×Φ1 ×Ω1. Moreover, the condition

5.1) of Theorem 5.1 holds and there exist the finite limits

lim
t→t00+

φ̇0(t) = φ̇+
0 ,

lim
w→w0

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f+, w ∈ [t00, b)×O1+s,

lim
w→ws+1

f(w, u0(t), u0(t− θ1), ..., u0(t− θk)) = f+1+s, w ∈ [t10, b)×O1+s.
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Then there exist a vector π = (π0, ..., πl) ̸= 0, with π0 ≤ 0 and a solution ψ(t) = (ψ1(t), · · · , ψn(t))
of equation (5.5), such that conditions 5.5)-5.8) hold. Moreover,

πQ0t0 +
(
πQ0x0 + ψ(t00)

)
φ̇+
0 ≤ ψ(t00)f

+,

πQ0t1 ≤ −ψ(t10)f+s+1.

Theorem 5.3. Let ν0 be an optimal element with t00, t10 ∈ (a, b) and the conditions of
Theorems 5.1 and 5.2 hold. Moreover,

φ̇−
0 = φ̇+

0 := φ̇0, f
− = f+ := f, f−s+1 = f+s+1 := fs+1.

Then there exists a vector π = (π0, ..., πl) ̸= 0, with π0 ≤ 0 and a solution ψ(t) = (ψ1(t), · · · , ψn(t))
of equation (3.5), such that conditions 5.5)-5.8) hold. Moreover,

πQ0t0 +
(
πQ0x0 + ψ(t00)

)
φ̇0 = ψ(t00)f, πQ0t1 = −ψ(t10)fs+1.

Theorem 5.3 is a corollary to Theorems 5.1 and 5.2. Finally we note that, Theorem 5.1
can be proved analogously to Theorem 4.1 on the basis of variation formula (see Theorem
3.1).
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