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1. Introduction

As is known, real economical, biological, physical and majority of processes contain an
information about their behavior in the past, i. e., the processes that contain effects with
delayed action and which are described by functional differential equations with delays [1-3].
In the present work the controlled functional differential equation

z(t) = f(t,x(t),x(t —11),...,2x(t — 7s),u(t),u(t — 1)

e u(t — 0r)), z(t) €R" (1.1)

as well as with the discontinuous initial condition
z(t) = p(t), t <to, x(to) = o (1.2)
and with the continuous initial condition
z(t) = p(t),t < to (1.3)

is considered

Condition (1.2) is called a discontinuous initial condition since, in general, x(to) # xo.
Discontinuity at the initial moment may be related to the instant change in a dynamical
process (changes of investment, environment and so on). Condition (1.3) is called a continuous
initial condition since, always, z(tg) = ¢(to).

In section 2, the local variation formula of solution is obtained, that is, a linear repre-
sentation of variation of the solution of problem (1.1)-(1.2) in the neighborhood of the right
end of the main interval with respect to perturbations of the initial data. In the section 3
the global variation formula of solution is obtained for problem (1.1)-(1.3). In the variation
formulas the effects of perturbations of the initial moment and several delays and also the
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effects of discontinuous and continuous initial conditions are detected. The variation formula
plays a basic role in proving the necessary conditions of optimality [4-9] and in the sensi-
tivity analysis of mathematical models [10]. Moreover, the variation formula allows one to
get an approximate solution of the perturbed equation [11]. The term “variation formula
of solution” has been introduced by R. V. Gamkrelidze and proved in [4] for the ordinary
differential equation. The effects of perturbation of the initial moment and the discontinu-
ous initial condition in the variation formulas for the first time were revealed in [12] for the
delay differential equation. The variation formulas for various classes of controlled functional
differential equations are derived in [8,13-19].

In sections 4 for the optimization problem with the discontinuous initial conditions with
general boundary conditions and functional the necessary conditions of optimality are proved:
for the initial and final moments in the form of inequalities and equalities; for delays con-
taining in the phase coordinates and for the initial vector in the form of equalities; for the
initial and control functions in the form of the integral maximum principle. In sections 5 for
the optimization problem with the continuous initial conditions the necessary conditions of
optimality are proved.

Optimal control problems for various classes of functional differential equations are inves-
tigated in [5-8,16,20].

2. Local variation formulas of solution for the controlled functional differential
equation with the discontinuous initial condition

Let O C R™ and Uy C R” be open sets. Let hjo > h;1 > 0,i=1,sand 0 > --- > 6, >0
be given numbers and the n-dimensional function f(t,x,z1,...,Zs, u,u1, ..., u) satisfies the
following conditions:

(a) for almost all fixed ¢ € I = [a,b] the function f(t,-) : O x Us™ — R™ is continu-
ously differentiable;

(b) for each fixed (z,z1, ..., Ts, U, U1, ..., us,) € O1F* x U} the functions

fltyzyxy, - xg,uyug, oy ug), fo(t, ), fo, (8, ), =1,

and L
fu(ta '), ful(ta )al = 17 k

are measurable on I;
(c) for compact sets K C O and U C Uy there exists a function m, ,(t) € L1(I, [0, 00))
such that

s
’ f(taxvxla'-'7'%'87“7“17"'7“743) | + | fx(tf) | +Z ‘ fﬂvi(t7 ) |
=1

k
L fult) [+ ] fut,) (S my (8)
=1

for all (z, 1, ..., Ts, u, U1, ..., u) € K% x U and for almost all ¢ € I.

Furthermore, ® is the set of continuous initial functions ¢ : Iy = [7,b] — O,7 = a —
max {hlg, e ,hsz} and let Q) be a set of control measurable functions u(t),t € Iy = [a — 0, b]
satisfying the conditions: the set clu(lz) C Uy and it is compact in R".

To each element

n= (to,Tl, ey Tgy a:o,go,u) € A1 = [CL, b) X [hn,hlg]x
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<o X [hst, hsa] X O X & x Q

we assign the delay controlled functional differential equation

B(t) = f(t,2(t), x(t — 1), o 2t — 75, ult), u(t — 0)
e ult — 0)) (2.1)

with the discontinuous initial condition

z(t) = p(t),t < to,z(to) = xo. (2.2)

Condition (2.2) is called discontinuous because, in general, z(tg) # ¢(to).

Definition 2.1. Let u = (to, 71, ..., Ts, Zo,0,u) € Aj. A function z(t) = z(t; u) € O,t €
[T,t1],t1 € (to,b] is called a solution of equation (2.1) with the initial condition (2.2) or the
solution corresponding to p and defined on the interval [7,¢;] if it satisfies condition (2.2) and
is absolutely continuous on the interval [t, 1] and satisfies equation (2.1) almost everywhere
(a.e.) on [to, t1].

Let o = (too, 710, * * » Ts0, Z00s L0, Uo) € A1 be a fixed element and let xy(t) be the solution
corresponding to po and defined on the interval [7,¢10], where too,t19 € (a,b),too < t10 and
7i0 € (hi1, hi2), i =1, s.

Let us introduce the set of variation:

= {5,u = (dto, 071, ..., 0Ts, 0xp, 0ep, du) : Ity € (a,b) — top,

07; € (hit, hi2) — Tio, i = 1, 5,020 € O — 209, 0p = Z Aibpi,
i1

0pi € P — o, i =1,m,du € Q —ug,| 3ty |< a,| o7 |< ayi = 1, s,

[0 |< 0| A < avi = T, [l0ul] < o,

where @ > 0 is a fixed number, (a,b) — tgo = {dto = to — too : to € (a,b)} and |[ou|| =
sup {[6u(t)] : t € I}

There exist numbers §; > 0 and £; > 0 such that for arbitrary (e,0u) € (0,e1) x V7 we
have po + edp € Ay, and the solution x(¢; ug + edp) defined on the interval [7,¢10 + 1] C Ih
corresponds to it [16].

By the uniqueness, the solution x(¢; up) is a continuation of the solution z((t) on the
interval [7,t19+ 01]. Therefore, we can assume that the solution z((t) is defined on the whole
interval [7,t19 + 01].

Now we introduce the increment of the solution xo(t) := x(t; po),

Ax(t;edp) = x(t; po + edp) — xo(t),V(e,dp) € (0,e1) x V.

Theorem 2.1. Let the following conditions hold:
2.1) 750 > -+ > 710 and too + 750 < t10;
2.2) the function po(t) is absolutely continuous and po(t),t € I is bounded;
2.3) the function f(w,u,u1,...,ux), where w = (t,z,21,...,05) € I x O'F% is bounded on
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I x O x Uyth;
2.4) there exists the finite limit

lim f(wau()(t)vu()(t - 91)7 "'7“0(t - Hk‘)) = f_7w € (a7t00] X Ol+5a

w—rwWo

where wo = (oo, Too, Po(too — T10); -+, Po(too — Ts0));
2.5) there exist the finite limits

lim [f(wu,uo(t),uo(t—01),...,u0(t—0k))

(w1i,waq)—(w?;,ws,)

—f(wgi,uo(t),uo(t — 91), ...,’U,()(t — Gk))] = fi7

where wi;, we; € (a,b) x OV i =15,

w?i = (too + Tio, zo(too + Ti0), zo(too + Tio — T10), - -, Zo(too + Tio — Ti—10),

700, To(too + Tio — Ti+10), ---» To(too + Tio — Ts0)),
w3 = (too + Ti0, To(too + Tio), To(too + Tio — T10); -+, Zo(too + Tio — Ti—10),
wo(too), zo(too + Tio — Ti+10), -, Zo(too + Tio — Ts0))-
Then there exist numbers €9 € (0,1) and 3 € (0,01) with t1g — d2 > too + Tso such that for
arbitrary (t,e,0p) € [tio — d2,t10 + d2] x (0,e2) x Vi, where V|~ = {opu € Vi : §tg < 0}, we
have

Ax(t;edp) = edx(t; o) + o(t;edp). (2.3)

where
6z (t;0p) = =Y (too;t) f~ dto + Bu(t;op), (2.4)

Bu(t;0p) =Y (too; t)dxo — [Zy(too + Tio; t)fz}&o -3 [Y(too + i 1) fi
i=1 i=1
t

+ [ V(& falelio( — mo)de] o

too

3 [ Vg rldotes

too—Tio

t
+ [ YED|fuleou +§jm Jou(s — 6] de;

too
here it s assumed that

t too+Tio

Y(&t) fo; [El20(§ — Tio)dE = Y (&5 1) fai € 0(€ — Tio)dE

too too

+[ Y (€:1) Fr )0 (€ — Tio)de.

00+Ti0

Next, Y (&;t) is the n X n-matriz function, satisfying the equation

va(&t) ({, ZY §+7—207 )fzz[g"i_TzO] € € [t007 ] (25)

=1
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and the condition
H for & =t,
Y (&5t) = for & (2.6)
O for & >t,

where H is the identity matriz and © is the zero matriz; f.,[€] = fz,(§,20(),z0(§ —
710)7 e x0(§ - 7—80)7u0(€)7 u0(§ - 01)? e u0(§ - 0]@))7

liH(l) o(t;eop)/e = 0 uniformly for (¢,du) € [t10 — d2,t10 + d2] x V.
e—

Some comments. The function dz(¢;0u) is called the first variation of the solution
xo(t),t € [too — d2,to0 + d2]. The expression (2.4) is called the local variation formula of
solution.

The addend

—| Y (to0; ).~ + > Y (too + 7io; t)fz} dto
=1

in formula (2.4) is the effect of the discontinuous initial condition (2.2) and perturbation of
the initial moment tgg.

The addend

s t
- Z [Y(too + Tios t) fi + / Y (&5t) fa[€l0(€ — Tio)dﬁ} 0T
i=1

too

in formula (2.4) is the effect of the discontinuous initial condition (2.2) and perturbations of
the delays 7;0,7 = 1, s.
The expression

too

Y (too; t)dxo + Z/ Y (& + Tios t) f2,[€ + Tio]dp(&)dE

i=1 Y too—Tio

in formula (2.4) is the effect of perturbations of the initial vector xoo and the initial function
po(t)-
The addend

(e[l +qu Jou(e — 0:)|dg

too

is the effect of perturbation of the control function ug(t).
It is easy to see that (2.4) can be represented by the following form:

S (t; 0p) = dxo(t; 0p) + > dwi(t; op) (2.7)
i=1
where
too
dzo(t; 6p) =Y (too; 1) (dwo — f~ 6to) + Z/ Y (& + Tios t) f,[§ + Tio]dp(€)dE
too—Tio0

t
o R AGOIAGLT +quz Jou(s - 0,

too
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= fu[€70(& — 7io)o7 | dE,
i=1

and

dxi(t;0u) = =Y (too + Tio; t) fi(0to + 073),1 = 1, s.
Using of the Cauchy formula [16], we can conclude that the function

5560(t) _ 690(t)at € [7272500))
51’0(75; 5/1), te [too, ti0 + 52]

satisfies the following equation

dx(t) = f.[t]6 +§:hz5xt—nw+J@ t)ou(t +§:ﬁL(Mt— )

=1
S
= Fasltl@o(t — 7i0)07; (2.8)
i=1
with the initial condition
5$(t) = 5@(t), t e [f',too), 5$(t00) = 53}00 — f_(gt();

and the function

5$(t) o O,te [7ﬁ>t00+7-i0)7
S Gwi(t; 0p), t € [too + Tios to + 02

satisfies the following equation

dx(t) = fult] +Zm6M—w (2.9)

=1

with the initial condition
0x(t) = 0,t € [7,to0 + Tio), 0x(too + Tio) = — fi(dto + 07;).

Therefore, the local first variation of solution can be calculated by two ways: first-find
the matrix function Y'(§;t) (see (2.5) and (2,6)), second- find the solutions of s + 1 linear
equations ( see (2.7)-(2.9)).

Theorem 2.2. Let the conditions 2.1)-2.8) and 2.5) of the Theorem 2.1 hold. Moreover,
there exists the finite limit

lirn f(w,uo(t),uo(t — 91), ...,UQ(t — Gk)) = f+,

w—rwo

w e [too,b) X 01+S. (210)

Then there exist numbers e € (0,e1) and 02 € (0,081), with t1g— d2 > too + Tso such that for
arbitrary (t,e,0p) € [t10 — 02, t10 + d2] X (0,e2) X V2+, where V;“ = {ou € V : 6ty > 0}, the
formula (2.3) holds, where

Sx(t;6p) = =Y (too; t) fHto + B(L; Op).
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Theorem 2.3. Let the conditions 2.1)-2.5) of Theorem 2.1 and condition (2.10) hold.
Moreover,
fF=fr=1
Then there exist numbers €5 € (0,e1) and g € (0,01), with t19 — d2 > too + 7o such that for
arbitrary (t,e,dp) € [t1o — 02, t10 + 2] X (0,e2) X V, formula (2.3) holds, where

S (t; 610) = —Y (too; t) foto + B(t; Sp).

Theorems 2.1 and 2.2 are proved by the scheme given in [16]. Theorem 2.3 is a corollary
to Theorems 2.1 and 2.2. For the controlled functional differential equation without delay in
controls the analogous local variation formulas are proved in [18].

3. Global variation formulas of solution for the controlled functional differen-
tial equation with the continuous initial condition

To each element o = (tg, 71, ,Ts, 0, u) € Ao = [a,b) X [h11, hi2] X -+ X [hs1, hsa] X D X Q
we assign the delay controlled functional differential equation (2.1) with the continuous initial
condition

z(t) = p(t),t € [T, to]. (3.1)

Definition 3.1. Let o = (to,71,...,7s, 0, u) € Aa. A function z(t) = z(t;0) € O,t €
[7,t1],t1 € (to,b] is called a solution of equation (2.1) with the initial condition (3.1) or the
solution corresponding to g and defined on the interval |7, ¢1] if it satisfies condition (3.1) and
is absolutely continuous on the interval [tg, 1] and satisfies equation (2.1) a. e. on [tg, t1].

Let us introduce the set of variation:

Vo = {5@ = (8to, 071, -y 075, 0, 0u) = Ot € (a,b) — too,

07; € (hi1, hig) — o, i =1,5,0p = Z)\i(;%',
=1

d0pi € D — o, i =1,m,0u € Q —ug,| oty |< a,| 073 |[< ayi =1, s,
X |< ayi = T, [ldull < a}.

Let xo(t) be a solution corresponding to the element oy = (too, T10, ---,

Ts0, P00, Up) € Ao and defined on the interval [7,t10], where too,t10 € (a,b),to0 < tio and
7io € (hit, hi2),i =1, s.

There exist the numbers §; > 0 and 1 > 0 such that for arbitrary (e,d0) € (0,e1) x V3
we have g9 +edo € Ag, and the solution x(t; oo + cdp) defined on the interval [7,¢10+ 1] C I
corresponds to it [16].

Due to the uniqueness, the solution x(¢; o) is a continuation of the solution z((t) on
the interval [7,t19 + 01]. Therefore, we cane assume that the solution z((¢) is defined on the
interval [7,t10 + 1] C I4.

Let us define the increment of the solution xo(t) := z(t; o),

Ax(t;e00) = x(t; 00 + €00) — wo(t),

Y(t,e,d0) € [T,t10 + 1] X (0,e1) x Va.
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Theorem 3.1. Let the function po(t),t € I1 be absolutely continuous. Let the func-
tions po(t) and f(w,u,uy, ..., ur), (W, u,uy,...,ux) € I x O x U&Jrk be bounded, where
w = (t,x,x1,...,x5). Moreover, there exist the finite limits

lim  ¢o(t) = ¢,

t—too—

lim f(w,uo(t),uo(t — 91), ...,UO(t — 9/.;)) = f_,w € (a,too] X 01+S,
0

W—>W,

where wy = (too, Yo(too), wo(too — T10), ---» Po(too — 750));
Then there exist numbers 9 € (0,1) and da € (0,01) with t1g — d2 > too + Tso such that for
arbitrary (t,e,00) € [tio,ti0 + d2] x (0,e2) X V5, where Vo = {dp € Vo : 0ty < 0}, we have

Ax(t;edp) = edx(t; o) + o(t;€do). (3.2)

where

6a(t;50) = Y (toost) |5 — 1~ | ot + Ba(t:90),

s ot
Ba(t; 80) = Y (too; t)dp(too) + Z/ Y (s + Tio; t) f,[s + Tio]dp(s)ds
i=1

too—Tio

_/t Y(s;t)[zs:fxi[s]w'o(s ~ 7i0)o7i | ds
too i=1

t

k
+ | Y(s;t) [fu[s]éu(s) + Z fu;[s]0u(s — 01)] ds,
i=1

too

where Y (s;t) is the n X n-matriz function satisfying the equation (2.5) and the condition

(2.6).
Theorem 3.2. Let the function po(t),t € Iy be absolutely continuous and f(w,u, u, ..., ug),
(w, u,u1, ..., up) € T x O3 x U&"'k be bounded. Moreover, there exist the finite limits

. . _ . Jr
tilt%g+ Polt) = o,

lim f(w,uo(t),uo(t — 91), .‘.,UO(t — Gk)) = f+,w S [too,b) X Ol+s,

w—rwo

Then for each to € (too,t10), there exist numbers e2 € (0,e1) and 2 € (0,61) such that for
arbitrary (t,€,80) € [too, t1o +02] X (0,e2) x V5, where Vo~ = {§p € Va : §tg > 0}, the formula
(3.2) holds, where

6x(t:00) = Y (tooi ) | ¢ — £ |3t0 + B(t: be).
Theorem 3.3. Let the assumptions of Theorems 3.1 and 3.2 be fulfilled. Moreover,
bo — I =5 —ft =7
Then for each to € (too,t10), there exist numbers e2 € (0,e1) and 2 € (0,61) such that for
arbitrary (t,e,00) € [to,t10 + d2] x (0,22) x Va, the formula (2.4) holds, where

dx(t; 00) = Y (too; t) foto + Pa(t; bo).

Theorems 3.1 and 3.2 are proved by the scheme given in [16]. Theorem 3.3 is a corollary
to Theorems 3.1 and 3.2. For the controlled functional differential equation without delay in
controls the analogous global variation formulas are proved in [19].
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4. Optimal control problem with the discontinuous initial condition

Let U C R" be a convex compact set. Assume that the n-dimensional function f(¢, x, z1, ..., Ts, u,
U1, ..., ug) is continuous on the set I x O x U 1+k and continuously differentiable with re-
spect to (2,21, ..., Ts, U, Uy, ..., ux) € O x UM*: moreover,there exists a number M > 0
such that

’ f(t,.’L',.’L'l,...,l's,U) ’ + ’ fm(t,x,‘) ’ +Z ‘ fmi(t7x7 ) ‘ + ‘ fu(t,l',') ’
=1

k
+Z | fui(t,l‘,') |S M
=1

for all (t,z, 21, ..., Ts, U, U1, ..., u) € I x O1FS x ULk,

Furthermore, let ®; be the set of continuous initial functions ¢(t) € N,t € I;, where
N C O is a convex compact set; §2; is the set of measurable functions u(t) € U,t € Is; Xg C O
is a convex compact set.

To each element

v = (to,tl,’Tl,...,’TS, azo,go,u) c Al =1 x1Ix [hll,hlg] X ... X [hsl,hsg}

XX()X‘I)l XQl

we assign the delay controlled functional differential equation
z(t) = f(t,x(t),x(t —11), ..o, x(t — Ts),u(t), u(t — 61), ..., (4.1)

’U,(t — Qk)),t € [to,tl],u € Ql,

with the discontinuous initial condition
z(t) = p(t),t < to,z(to) = wo. (4.2)

Definition 4.1. Let v = (to,t1,71,...,Ts, Zo,p,u) € A1. A function z(t) = z(t;v) €
O,t € [7,t1] is called a solution of equation (4.1) with the initial condition (4.2) or the
solution corresponding to v and defined on the interval [7, 1] if it satisfies condition (4.2) and
is absolutely continuous on the interval [to,?;] and satisfies equation (4.1) a.e. on [tg, t1].

By the step method and Gronwall inequality it can be proved that for every element
u € Ay there exists the unique solution z(t; p) defined on the interval [7, b] and it is continuous
with respect to pu.

Let the scalar-valued functions ¢'(to,t1, 71, ..., 7s, o, 1), = 0,1, be continuously differen-
tiable on I x I x [hll,hgl] X ... X [hls,hgs] X 02.

Definition 4.2. An element v = (tg,t1,71, - ,Ts, To, ¢, u) € Aj is said to be admissible
if the corresponding solution z(t) = z(t; v) satisfies the boundary conditions

qi(to,tl,’]’l, ...,TS,IQ,CE(tl)) = O,i = 1,l. (43)

Denote by Aig the set of admissible elements.
Definition 4.3. An element vy = (oo, t10, 710, ** 5 Ts0, 200, L0, U0) € Ajo is said to be
optimal if for arbitrary element v € Ajg the inequality

¢°(t00s 10, T10, -+ 750, 200, (t10)) < ¢°(to, t1, 1, ey Ts, o, 2(t1)) (4.4)
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holds. Here z¢(t) = x(t; 1) and z(t) = z(t;v).

The problem (4.1) — (4.4) is called an optimal control problem with the discontinuous

initial condition.

Theorem 4.1. Let vy € Ay be an optimal element with too, t1o € (a,b) and AjpNA] # O,
where AI = (a,too] X (too,tlo] X [hn,hgl] X ... X [hls,hgs] X XO X (1)1 X Ql. MOT@O’UQ’I“, let the

following conditions hold:

4.1) Tso > -+ - > T10 and tog + Tso < t10 With 70 € (hi].a hig),i = 1,78;

4.2) the function @o(t) is absolutely continuous and po(t),t € Iy is bounded;
4.3) there exists the finite limit

lim f(w7u0(t)au0(t - 91)7 "'7u0(t - ek)) = f_7w € (a,too] X Ol+sa

w—rwWo

where wo = (too, T0o, o (too — T10), ---, Po(too — 7s0));
4.4) there exist the finite limits

lim [f(wlijuo(t),uo(t—91),...,u0(t—0k))

(w13,waq)—(w?,,wh,)

—f(wgi,uo(t),uo(t — 91)...,U0(t — Gk))] = fi7

where w1, we; € (a,b) x OV i =15,

w?i = (too + Tio, zo(too + Tio), zo(too + Tio — T10), ---» To(too + Tio — Ti—10),

200, £0(too + Tio — Ti+10), ---, Zo(too + Tio — Ts0)),
wY; = (too + Tio, Zo(too + Tio)s To(teo + Tio — T10), -+ To(too + Tio — Ti—10),
©o(t00), xo(too + Tio — Ti+10), ---, o(too + Tio — 7s0)),

4.5) there exists the finite limit

lim  f(w,ug(t), uo(t — 61), ..., uo(t — Ox)) = fii1,w € (too, t10) x O,

W—rWs+1

ws+1 = (t10, zo(t10), o(t1o — 710)5 ---, Zo(t10 — Ts0))-

Then there exist a vector m = (my, ..., m) # 0, with mg < 0 and a solution Y (t) = (P1(t),
of the equation

Y(t) = =) folt] = Y Gt + 7i0) fus[t + o), € [too, tao),

i=1
¢(t) = Oat > tha

such that the following conditions hold:
4.6) the conditions for the moments toy and tig :

TQoto > (too) S~ + Y ¥(too + Tio) fi,
i=1

TQot; > —(t10) foyr

where
Q= (qoa e 7ql)Ta Qo = Q(too,t10, T10, ---» Ts0, 00, Zo(t10)),

s Yn(t))

(4.5)
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0
= Qo;

Qoto - ato

4.7) the conditions for the delays 7,1 = 1, s:

too+Tio
Qo = (too + Ti0) fi + / D) f )0t — Ti0)

too

—i—/too Y (t) fu, [t]To(t — Tio)dt;

00+Ti0

4.8) the conditions for the vector xoo:
(WQ0x0 + ¢(too)>$oo = max (WQOxO + %Z)(too))l“o;
ro€Xo

4.9) the integral mazimum principle for the initial function @o(t):
too tio
/ Bt + 7i0) fult + Tiolo(®)dt = max [t + 7o) furlt + Tl ()
too—Tio sD(t)E@l too

4.10) the integral mazimum principle for the control function ug(t):

t1o k
/ P(t) [fu [tuo(t) + > fu, [Huo(t — ei)] dt
too P

t10 k
= max /t O Fulthut) + 3 fuu(t — 0)]d:
00 i=1
4.11) the condition for the function ¥(t),

YP(tio) = TQoq, -

Theorem 4.2. Let vy be an optimal element with top,t10 € (a,b) and Ajg N Af #+ Q,
where A;r = [too,tlo) X [tlo,b) X [hn,hgl] X o X [hls,hQS] X Xg X ®1 x Q1. Moreover, the
conditions 4.1), 4.2), and 4.4) of Theorem 4.1 hold and there exist the finite limits

lim f(w,uo(t),uo(t — 91), ...,UO(t — Qk)) = f*,w S [too,tlo) X OlJrS,

w—rwo

Hm  f(w, ug(t), uo(t — 01), ..., uo(t — Og)) = fif s, w € [t0,b) x O°TL.

W—Ws+1

Then there exist a vector m = (my, ..., m) # 0, with mop < 0 and a solution Y(t) = (P1(t), -+ ,Pn(t))
of equation (4.5), such that conditions 4.7)-4.11) hold. Moreover,

TQoto < W (too) ST+ Y ¥(too + Tio) fi,
i=1
TQot, < —Y(tio)fr -

Theorem 4.3. Let vy be an optimal element with top,t10 € (a,b) and the conditions of
Theorems 4.1 and 4.2 hold. Moreover,

f_:f+ =, fs+1:f;;1 = fst1-
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Then there exist a vector m = (7o, ..., m) # 0, with g < 0 and a solution Y(t) = (Y1(t), -+ ,¥n(t))
of equation (4.5), such that the conditions 4.7)-4.11) hold. Moreover,

7Qoro = (too) f + > v (too + 7i0) fis
i=1

Qo = —U(t10) fos1-

Let the function ug(t) be continuous at the points

too, too — Tio, ¢ = 1, 8;t00 + Tio, ¢ = 1, 85 t10,t10 — Tio, 1 = 1, 8.
Then we have

f= f(fooafﬂoo, ©o(too — 700)5 --» Po(too — Ts0), uo(too), uo(too — 1),

o (too — 9k)),
fs41 = f(tlo, zo(t10), Zo(tio — T10), ---» Zo(t10 — Ts0), o (t10), uo(tio — 01),
o up(tio — 9k)>;

fi= f(too + Tio, To(too + Tio), Zo(too + Tio — T10); -+, To(too + Tio — Ti~10), T00,
wo(too + Tio — Ti+10), -+, To(too + Tio — Ts0), uo(too + Tio), uo(too + Tio — 01),
<y ug (too + Tio — 9k)) - f(too + Ti0, Zo(too + Tio), To(too + Tio — T10), -,
wo(too + Tio — Ti—10), Po(too); Zo(too + Tio — Ti+10); ---» To(too + Tio — Ts0)
uo(too + Tio), uo(too + Tio — 01), ..., uo(too + Tio — 9k)>

It is clear that, if @o(tog) = xeo then f; =0,i =1, s.

Theorem 4.3 is a corollary to Theorems 4.1 and 4.2.

Proof of Theorem 4.1. On the basis of the variation formula of solution (see Theorem
2.1) Theorem 4.1 will be proved by the scheme given in [8, 16].

On the convex set Z = R4 x A}, where Ry = [0, 00), let us define the mapping

P:Z — R (4.6)

by the formula
P(z) = (0°(2), ., 0 (2)7, 2 = (&,v) € Z,
where
p'(2) = ¢ (to, t1, 71, oy Toy w0, (t15 1)) + €, P'(2) = ¢ (to, t1, 71,

--.,TS,ZEO,ZL'(tl; V)),i = ]., l.

Consequently,
P(Z) = Q(to,tl,Tl, ...,Ts,xo,x(tl; V)) + (é,O...,O)T.

It is clear that

P’ (20) < p%(2),p'(2) = 0,i = 1,1,Vz € Ry x (AjgN A]) C Z,
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where zo = (0,v0) = (0,00, t10, T10, -+, T505 T005 L0, Uo)-

Thus, the point zg = (0,19) € Z is critical (see [8, 16]), since P(z9) € 0P(Z). Moreover,
mapping (4.6) is continuous.

There exists a small 1 > 0 such that for arbitrary € € (0,e1) and

(52 = ((5{,(51/) = ((55,(5150,(%1,(57’1, ...,(5Tk,(5.%'0,(5(p, 5u),

where
06 € 10,a),6t; € (—a,0] and dp = (Sto, 071, ..., 0Tk, 00, O, 0u) € Vi~

we get,
20+ ¢edz = (€(5§,t00 + ebtg, t19 + €dt1, T10 + €071, ..., Tso + €0T5, Tgo

+edxg, wo + 65(70, ug + eéu)) € [0, Oé) X (a, too] X (tlo — 09, th] X
(hll,hlg) X ... X (hsl,hsg) X Xogx ®1 x O C Z.

It easy to see that on the interval [7, t1¢]
x(t;vo +edv) = x(t; po + edp) and xo(t) = x(t;v0) = x(; po),

therefore
Ax(t;edv) = z(t; vy + edv) — xo(t) = Ax(t;edp)

On the basis of Theorem 2.1 we have
Ax(t;edv) = edx(t; o) + o(t;edp),Y(t, e, 0u) € [tio — d2,t10] X (0,e2) x Vi,

where dx(¢;0p) has the form (2.4).
Now we calculate a differential of mapping (4.6) at the point zg. We have,

P(Zo + 852) — P(Zo) = Q(too + edtg, tig + €6t1, T10 + €071, ..., Tso + €075, Tog + €0,

1)

where
Qo = Q(t00,t10, 10, --- T50, To0, o (t10))-

We introduce the notation:
19(€5t1; E(s/,l,) = x(tlo + edtq; 6(5#) - l‘o(tlo)
and
Qle; s] = Q(too + sdto, t1p + £s0t1, T1p + £SOT1, ..., Tso + £8Ts, Too + £50x0,
."L‘(](tlo) + 8’19(€5t1; E5,u).
For 9(edty;edp) we have

19(€5t1; 55#) = $(t10 + edtq; 85,[14) — l‘o(tlo + €5t1) + xo(tlo + E(Stl) - 370(7510)

t10
= edx(t1p + edto; edp) + o(tip + edp; edp) + / xo(t)dt
t10+edty

= e[z (t10;edp) + fo 1 0t1] + o(edp).
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Let us transform the difference

Q(too + €dto, t1o + €dt1, T10 + €071, ..., Ts0 + €075, Too + €020, T(t10 + €0t1;01))
1 d 1 s
—Qp = /0 I Qle; slds = /0 [5 (Qto [€5 8]0t + Q4 g5 5]t + ;Qﬂ. [e; 8]0

+Quo € s]&xo) + Qu, [g; 8]9(ety; 56;1)} ds

= £|Qot0to + Qo 6t1 + Y _ Qor,07i + Qoay00 + Qoay [0 (t105 5p1) + fs_+15t1]} +y(edp),
i=1

where

1
v(edp) = 5/ {[Qto &3 5] = Qoto)oto + [Q4y [g; 5] — Qot, [0t
0
+ Z[Qn [5; 5] - QOTi](STi + [QIO [5; 5] - Q0x0]6$0 + [Qm [5; 5] - QOm][(sx(th; 6/1) + fsjrl(stl]
i=1

+Qoa, 0(8;510) }ds.

It is easy to see that
lim[QtO [67 S] - Qoto] — O) hm[Qt1 [E’ 8] - QOtl] - 07 lim [Qn [5’ S] - QUT»L'] - 07
e—0 e—0 e—0
;E%[on [5; 5] - QOxo] = 07 ;%[Qxl [5; 5] - QOxl] =0.

Therefore, v(edp) = o(edp). Thus,
P(z0+¢€02) — P(20) = edP,,(02) + o(£62),

where o0(£dz) := o(edp) and differential dP;,(dz) of the mapping (4.6) has the form

dP.,(02) = Qore0to + Qoty 0t1 + > Qor,07i + Quxy070 + Qoa, [63(t10; 611) + f1,10t1]
=1

Due to relation (2.4) we get

AP%,(82) = | Qoiy — QoayY (to0i t10) ™ = Y Qo Y (to0 + 70) i 3o
=1

+ [Qom + Qoz, Y (too; th)fg+1:| St 4> [Qon — Qoa1 Y (too + Tioi t10) fi
i=1

t10

+ Qoz, Y (t;t10) fo, [t]2(t — Tio)dt] o + [QOxO + Qoz, Y (to0; 7510)] 0z

too

too tio

Z /t Qoz, Y (t + Ti0: t10) 0 (t)dt + Qox, Y (5 t10) [fu [t]ou(t)

00—Ti0 too
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k
+3° fultoult - ei)] dt. (4.7)
=1

From the necessary condition of criticality [8, 16] it follows that: there exists a vector m =
(7o, ..., m) # 0 such that

mdP.,(02) < 0,¥ 6z € Ry x RZ x R® x [Xo — 2o0)

X[@1 = o] x [1 — ug). (4.8)

Introduce the function
Y(t) = mQoqx, Y (t; t10) (4.9)

as is easily seen, it satisfies equation (4.5) and the initial condition.
Taking into account (4.7) and (4.9) from inequality (4.8) we obtain

[WQOtO —P(too) S~ =D ltoo + TiO)fi] dto
=1

+ [WQOtl + %b(too)f;rl} oty + Z [TFQon — 1 (too + Tio) fi
i1

t1o

S [0 — 7)) 7 + [7Qumy + 4 (t00) 0
" oo+ [ w o] fulou)
;/tooﬂ‘o 00w /too [

k
+ 3" fultsult - aiﬂdt <0. (4.10)
=1

Let 6tg = 6t; = 0,07, = 0,i =1, 5,029 = 0,00 = 0,5u = 0 in (4.10), then we obtain
700E < 0,¥56 € Ry

This implies w9 < 0.

Let 66 = 0,67; = 0,i = 1,5,09 = 0,00 = 0,0u = 0 then taking into account that
dti € R_,i=0,1 from (4.10) we obtain condition 4.6).

Let 66 = 0tg = 0t1 = 0,6xzg = 0,0 = 0,0u = 0 then, taking into account that dxy €
Xo — xoo from (4.10) we obtain condition 4.7).

Let 6¢ = 6tg = 6t = 0,67; = 0,i = 1,5,0¢p = 0,0u = 0 then, taking into account that
dxo € Xo — zgp from (4.10) we obtain condition 4.8).

Let 66 = 0ty = 6t = 0,07, = 0,7 = 1, 5,029 = 0,0u = 0 then, taking into account that
dp € &1 — o from (14) we obtain condition 4.9).

Let 66 = 0ty = 6t = 0,07, = 0,7 = 1,,0xz9 = 0,5¢p = 0 then, taking into account that
du € ) — ug from (14) we obtain condition 4.10).

Finally we note that Theorem 4.2 can be proved analogously to Theorem 4.1.
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5. Optimal control problem with the continuous initial condition

Let us consider the optimal control problem

z(t) = f(t,x(t),x(t — 71), ..o, x(t — 7s), u(t), u(t — 61),

cou(t —0)),t € [to, t1],u € Q2 (5.1)

x(t) = p(t),t € [T, to], (5.2)
q"(to, t1, Tis ooy Ts, (o), 2(t1)) = 0,3 = 1,1, (5.3)
@ (to, t1, 71, ..., Ts, @(to), (1)) — min. (5.4)

Problem (5.1)-(5.4) is called an optimal control problem with the continuous initial con-
dition.

Definition 5.1. Let p = (to,t1,71, ..., Ts, 0, u) € Az = (a,b) X (h11,h12) X (hs1, hs2) X
Oy x Q. A function x(t) = z(t; p) € O,t € [T,t1] is called a solution of equation (5.1) with
the continuous initial condition (5.2) or the solution corresponding to p and defined on the
interval [7, ;] if it satisfies condition (5.2) and is absolutely continuous on the interval [t, t1]
and satisfies equation (5.1) a. e. on [to, t1].

Definition 5.2. An element p = (to,t1, 71, ..., Ts, , u) € Ag is said to be admissible if the
corresponding solution x(t) = z(t; p) satisfies the boundary conditions (5.3).

Denote by Asg the set of admissible elements.

Definition 5.3. An element py = (tg0, t10, 710, ---, 750, 0, Uo) € Agp is said to be optimal
if for an arbitrary element p € Ay the inequality

q°(t00, 1105 T10, -+ 7505 90 (t00), Zo(t10)) < ¢°(to, t1, 71y oy Ts, @(t0), 2(t1))

holds.

Theorem 5.1. Let pg be an optimal element with toy,tio € (a,b) and Az N A; # O,
where Ay = (a,too] X (too, t10] X [R11, ha1] X ... X [his, has] X @1 X Q1. Moreover, the following
conditions hold:

5.1) the function @o(t) is absolutely continuous and po(t),t € I is bounded;
5.2) there exist the finite limits
lim  ¢o(t) = &g,

t—too—

lim f(w7u0(t)au0(t - 91)7 "'7u0(t - Hk)) = f_,?,U € (a’tﬂo] X 01+S’

w—rwWo

where wo = (too, po(too — 710), - Po(too — Ts0));
5.3)there exists the finite limit

lim f(w,uo(t),uo(t — 91), ...,U()(t — Hk)) = f;_l,w S (to(),tlg] X Ol+s,

W—Ws+41

wst1 = (t10, zo(t10), zo(t10 — T10), ---» Zo(t10 — 70));
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Then there exists a vector m = (o, ..., m) # 0, with 7o < 0 and a solution Y (t) = (Y1(t), ..., Yn(t))
of the equation

S

Y(t) = =) folt] = Y Gt + 7i0) fus[t + o), € [too, tao), (5.5)

=1

w(t) = O,t > t10,

such that the following conditions hold:
5.4) the conditions for the moments too and tig :

TQot, + (WQO;UO + Tb(too)>%_ > Y(too) f s

TQot; > —(t10) oy

5.5) the conditions for the delays 70,1 = 1, s:

t1o

TQory = U(t) fo, [t]Zo(t — Ti0)dt;

too
5.6) the integral mazimum principle for the initial function po(t):
too

|:77Q0x0 + 1/1(7500)} ¢o(too) + Z / Y(t + Tio) fa, [t + Tio]po(t)dt

too— 77,0

d too

= max | [7Quu, + ¥(to0) | (to0) + 3 / B(t+Ti0) fus [t + Ti0lip(£)dE]

P(t)ed i—1 Y too—Tio

5.7) the integral mazimum principle for the control function uy(t):

tio k
[0 [Ruthuott) + 3 fultuote — 0] a
too i=1

t10
= max /to0 P(t) [ +quz u(t — 0 }t;

u(t)eﬂl
5.8) the condition for the function ¥(t):
Y(tio) = 7Qou; -

Theorem 5.2. Let py be an optimal element with ty,t10 € (a,b) and Ay N A; #+ 0,
where A;r = [too,t10) X [t10,b) X [h11, ho1] X ... X [h1s, has] X @1 X Q1. Moreover, the condition
5.1) of Theorem 5.1 holds and there exist the finite limits
lim o(t) = 303_7

t—too+

lim f(w,uo(t),uo(t — 91), ...,’U,()(t - Gk)) = f+,w € [too,b) X Ol+8,

w—rwWo

lim f(w,ug(t),uo(t — 01), ...,U()(t — Gk)) = fi:_s,w S [tlo,b) X OlJrS.

W—rWs41
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Then there exist a vector m = (7o, ..., m) # 0, with g < 0 and a solution Y(t) = (Y1(t), -+ ,¥n(t))
of equation (5.5), such that conditions 5.5)-5.8) hold. Moreover,

TQoto + (TQozo + ¥ (t00)) g < ¥(too) ST,

TQot, < —w(tlo)f:kl'

Theorem 5.3. Let vy be an optimal element with to,t1o € (a,b) and the conditions of
Theorems 5.1 and 5.2 hold. Moreover,

Yo =% =0, [T == f, fon = fla = fen

Then there ezists a vector m = (my, ..., m) # 0, with mog < 0 and a solution (t) = (P1(t),--- ,Pn(t))
of equation (3.5), such that conditions 5.5)-5.8) hold. Moreover,

TQoto + (TQozy + 1 (too))po = t(teo) f, TQot, = —1(t10) fss1-

Theorem 5.3 is a corollary to Theorems 5.1 and 5.2. Finally we note that, Theorem 5.1
can be proved analogously to Theorem 4.1 on the basis of variation formula (see Theorem
3.1).

Acknowledgement. The work was supported partly by the Sh. Rustaveli Science
Foundation (Georgia), Grant No. Ph. D.-F-17-89.

REFERENCES

1. Hale J. Theory of functional differential equations. Springer-Verlag New York, Hei-
delberg Berlin, 1977.

2. Kolmanovski V., Myshkis A. Introduction to the theory and applications of functional
differential equations. Kluwer Academic Publishers, 1999.

3. Delay differential equations and applications. Edited by Arion, O., Hbib, M. L. and
Ait Dads, E. Nato Science Series II, Mathematics, Physics and Chemistry,Springer 205,
2006.

4. Gamkrelidze R. V. Principles of optimal control theory. Plenum Press-New York and
London, 1978.

5. Neustadt L. W. Optimization: A theory of necessary conditions. Princeton Univ.
Press, Princeton, New York, 1976.

6. Ogustoreli N. M. Time-delay control systems. Academic Press, New-York-London,
1966.

7. Gabasov R., Kirillova F. The qualitative theory of optimal processes. “Nauka”,
Moscow, 1971.

8. Kharatishvili G.L., Tadumadze T.A. Variation formulas of solutions and optimal con-
trol problems for differential equations with retarded argument. J. Math. Sci. (N. Y.), 104,
1 (2007), 1-175.

9. Mardanov M. J., Mansimov K. B., Melikov T. K. Investigation of singular controls
and the second order necessary optimality conditions in systems with delay. “Flm”, Baku,
2013.

10. Tadumadze T. Sensitivity analysis of delay differential equations and optimization
problems. Proceedings of the 6th International Conference on Control and Optimization with
Industrial Applications, 1, 11-13 July, 2018, Baku, Azerbaijan, 367-369.



Variation Formulas of Solutions for the Controlled Functional ...

o7

11. Tadumadze T., Dvalishvili Ph., Shavadze T. On the representation of solution of
the perturbed controlled differential equation with delay and continuous initial condition.
Appl.Comput. Math., 18, 3 (2019), 305-315.

12. Tadumadze T. A. Local representations for the variation of solutions of delay differ-
ential equation. Mem. Differ. Equ. Math. Phys., 21 (2000), 138-141.

13. Tadumadze T., Gorgodze N. Variation formulas of solution for a functional differential
equation with delay function perturbation. Journal of Contemporary Mathematical Analysis,
49, 2 (2014), 53-63.

14. Tadumadze T. , Alkhazishvili L. Formulas of variation of solution for non-linear
controlled delay differential equation with continuous initial condition. Mem. Differ. Equ.
Math.Phys., 31 (2004), 83-97.

15. Tadumadze T., Nachaoui A. Variation formulas of solution for a controlled delay
functional-differential equation considering delay perturbation. TWMS J. App. Eng. Math.,
1,1 (2011), 34-44.

16. Tadumadze T. Variation formulas of solutions for functional differential equations
with several constant delays and their applications in optimal control problems. Mem. Differ.
Equ. Math. Phys., 70 (2017), 7-97.

17. Tordanishvili M. Local variation formulas of solutions for the nonlinear controlled
differential equation with the discontinuous initial condition and with delay in the phase
coordinates and controls. Transactions of A. Razmadze Mathematical Institute, 173, 2 (2019),
10-16.

18. Shavadze T. Variation formulas of solutions for nonlinear controlled functional differ-
ential equations with local constant delays and the discontinuous initial condition. Georgian
Math. J., https://doi:org/10.1515/gmj-2019-2080.

19. Shavadze T. Variation formulas of solutions for controlled functional differential
equations with the continuous initial condition with regard for perturbations of the initial
moment and several delays. Mem. Differ. Equ. Math. Phys., 74 (2018), 125-140.

20. Shavadze T. Necessary conditions of optimality for the optimal control problem with
several delays and the discontinuous initial. Bulletin of TICMI, 22, 2 (2018),143-147.

Received 05.08.2019; revised 09.10.2019; accepted 12.11.2019
Authors’ addresses:

T. Tadumadze

Department of Mathematics &

I. Vekua Institute of Applied Mathematics
1. Javakhishvili Thilisi State University

2 University St., Tbilisi 0186

Georgia

E-mail: tamaz.tadumadze@tsu.ge

T. Shavadze

I. Vekua Institute of Applied Mathematics
1. Javakhishvili Thilisi State University

2 University St.,Thbilisi 0186

Georgia

E-mail: tea.shavadze@gmail.com



