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ON THE SOLUTION OF THE FIRST PLANE INTERIOR BOUNDARY VALUE
PROBLEM OF STATICS OF THE THEORY OF ELASTIC MIXTURE BY

VARIATION METHOD
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Abstract. It is shown that a solution of the boundary value problem of statics of the
linear theory of elastic mixture, in the case of a finite simply connected plane domain, is the
minimizing vector-function of the functional whose integrand represents the double potential
energy of elastic mixture.
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1. Introduction

The basic two-dimensional boundary value problems of statics of the linear theory of
elastic mixtures are studied in [1], [2], [5] [6] and also by many other authors. Two-dimensional
boundary value problems of statics are investigated by potential method and the theory of
singular integral equations in [1]. Using potentials with complex densities the solutions of
basic plane boundary value problems of statics are reduced to the solution of Fredholm’s
linear integral equation of second kind in [2]. In the paper, the first boundary value problem
of statics is investigated by variation method in the case of the plane theory of elastic mixture
for a simply connected finite domain, when on the boundary a displacement vector is given.
To solve the problem we use the method described in [3] and [4].

2. Some auxiliary formulas and operators

The homogeneous equation of statics of the linear theory of elastic mixture for the two-
dimensional case can be written in the matrix form as [1]

A(∂x)U(x) = 0 (2.1)

where

A(∂x) =

[
A(1)(∂x) A(2)(∂x)

A(2)(∂x) A(3)(∂x)

]
, A(p)(∂x) = [A

(p)
kj (∂x)]2×2, p = 1, 2, 3,

A(2q−1)(∂x) = aqδkj∆+ bq
∂2

∂xk∂xj
q = 1, 2; k, j = 1, 2,

A(2)(∂x) = cδkj∆+ d
∂2

∂xk∂xj
k, j = 1, 2;

δkj is Kroneker’s symbol, and ∆ is the Laplace operator, u = (u′, u′′)T , u′ = (u1, u2)
T and

u′′ = (u3, u4)
T are partial displacements, x = (x1, x2),

a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5, b1 = µ1 + λ1 + λ5 − α2ρ2/ρ,
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b2 = µ2 + λ2 + λ5 − α2ρ1/ρ, α2 = λ3 − λ4, ρ = ρ1 + ρ2,

d = µ3 + λ3 − λ5 − α2ρ1/ρ ≡ µ3 + λ4 − λ5 + α2ρ2/ρ.

Here µ1, µ2, µ3;λp, p = 1, 5 are elastic constants, ρ1 and ρ2 are partial densities (positive
constants).
In the sequel it is assumed that

µ1 > 0, λ5 < 0, µ1µ2 − µ2
3 > 0, b1 − λ5 > 0,

(b1 − λ5)(b2 − λ5)− (d+ λ5)
2 > 0.

(2.2)

Let D+ be a finite two-dimensional region bounded by the contour S ∈ C2,α, 0 < α < 1.
A vector-function U = (u′, u′′)T = (u1, u2, u3, u4)

T is said to be regular in D+ if U ∈
C2(D+)

∩
C1,α(D+

∪
S).

Note that for a regular U = (u1, u2, u3, u4)
T and V = (v1, v2, v3, v4)

T vector-functions we
have the Green formula [1],∫

D+

[VA(∂x)U+E(u,v)]dx =

∫
S
[V(y)]+[Tu(y)]+dyS, (2.3)

where y = y1 + iy2, y ∈ S, TU = [(Tu)1, (Tu)2, (Tu)3, (Tu)4]
T is the stress vector [1]

E(u, v) = E(v, u) = (b1 − λ5)

(
∂u1
∂x1

+
∂u2
∂x2

)(
∂v1
∂x1

+
∂v2
∂x2

)

+(d+ λ5)

[(
∂u1
∂x1

+
∂u2
∂x2

)(
∂v3
∂x1

+
∂v4
∂x2

)
+

(
∂u3
∂x1

+
∂u4
∂x2

)(
∂v1
∂x1

+
∂v2
∂x2

)]

+(b2 − λ5)

(
∂u3
∂x1

+
∂u4
∂x2

)(
∂v3
∂x1

+
∂v4
∂x2

)

+µ1

[(
∂u1
∂x1

− ∂u2
∂x2

)(
∂v1
∂x1

− ∂v2
∂x2

)
+

(
∂u2
∂x1

+
∂u1
∂x2

)(
∂v2
∂x1

+
∂v1
∂x2

)]

+µ3

[(
∂u1
∂x1

− ∂u2
∂x2

)(
∂v3
∂x1

− ∂v4
∂x2

)
+

(
∂u3
∂x1

− ∂u4
∂x2

)(
∂v1
∂x1

− ∂v2
∂x2

)]

+

[(
∂u2
∂x1

+
∂u1
∂x2

)(
∂v4
∂x1

+
∂v3
∂x2

)(
∂u4
∂x1

+
∂u3
∂x2

)(
∂v2
∂x1

+
∂v1
∂x2

)]

+µ2

[(
∂u3
∂x1

− ∂u4
∂x2

)(
∂v3
∂x1

− ∂v4
∂x2

)
+

(
∂u4
∂x1

+
∂u3
∂x2

)(
∂v4
∂x1

+
∂v3
∂x2

)]

−λ5 [

(
∂u2
∂x1

− ∂u1
∂x2

)(
∂v2
∂x1

− ∂v1
∂x2

)
−
(
∂u2
∂x1

− ∂u1
∂x2

)(
∂v4
∂x1

− ∂v3
∂x2

)

−
(
∂u4
∂x1

− ∂u3
∂x2

)(
∂v2
∂x1

− ∂v1
∂x2

)
+

(
∂u4
∂x1

− ∂u3
∂x2

)(
∂v4
∂x1

− ∂v3
∂x2

)
]. (2.4)

From (2.4) when V=U we obtain∫
D+

[U A(∂x)U+ E(u,u)]dx =

∫
S
[U(y)]+[TU(y)]+dyS
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where E(u,u) is the double potential energy of the form

E(u,u) = (b1 − λ5)

(
∂u1
∂x1

+
∂u2
∂x2

)2

+ 2(d+ λ5)

(
∂u1
∂x1

+
∂u2
∂x2

)(
∂u3
∂x1

+
∂u4
∂x2

)

+(b2 − λ5)

(
∂u3
∂x1

+
∂u4
∂x2

)2

+ µ1

[(
∂u1
∂x1

− ∂u2
∂x2

)2

+

(
∂u2
∂x1

+
∂u1
∂x2

)2
]

+2µ3

[(
∂u1
∂x1

− ∂u2
∂x2

)(
∂u3
∂x1

− ∂u4
∂x2

)
+

(
∂u2
∂x1

+
∂u1
∂x2

)(
∂u4
∂x1

+
∂u3
∂x2

)]

+µ2

[(
∂u3
∂x1

− ∂u4
∂x2

)2

+

(
∂u4
∂x1

+
∂u3
∂x2

)2
]

−λ5

[(
∂u2
∂x1

− ∂u1
∂x2

)
−
(
∂u4
∂x1

− ∂u3
∂x2

)]2
. (2.5)

Owing to (2.2) it follows that E(u,u) is the positively defined quadratic form, also note
that the equation E(u,u) = 0 admits a solution

U = (u′,u′′)T u′ =

(
α1 − εx2
α2 + εx1

)
, u′′ =

(
α3 − εx2
α4 + εx1

)
where αq, q = 1, 4 and ε are arbitrary real constants.

Let us consider the functional

Π(u) =

∫
D+

E(u,u)dx, (2.6)

where E(u,u) is defined by (2.5).

On the basis of the above results we have that (2.6) functional is a positively defined
quadratic form.

3. Solution of the first interior boundary value problem

The first interior boundary value problem of statics is formulated as follows [1]; find a
regular solution of equation (1.1) in D+ satisfies the boundary condition

U+(y) = f(y), y ∈ S, (3.1)

where f ∈ C1,β(S), 0 < β < α < 1 is a given vector-function.

Let us denote by (I)+f the (1.1) (3.1) problem.

The following assertion is true [1].

Theorem 3.1. The (I)+f problem is uniquely solvable.

For the solution of the problem by the variation method we have used the way, developed
in [3] and [4].

Let us now prove the following

Theorem 3.2. The vector-function U(x) minimizes the functional (2.6) is a solution of
problem (I)+f if and only if the condition (3.1) is fulfilled
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Proof. At first let us prove sufficiency of equality (3.1), Let f(y) be such that minimization
of the vector-function U(x) of the functional (2.6) satisfies condition (3.1). Let us show that
the vector-function U(x) is the solution of problem (I)+f .

To this end let us consider the vector-function u(x) + εh(x) where ε is an arbitrary real
scalar constant, and h = (h1, h2, h3, h4)

T ̸= 0 is an arbitrary vector=function in D+ and
satisfies the condition

h+(y) = 0, y ∈ S. (3.2)

Elementary calculations yield (see (2.4), (2.5) and (2.6))

Π(u+ εh) ≡ Π(u) + 2εΠ(u,h) + ε2Π(h) > 0, (3.3)

where

Π(u,h) =

∫
D+

E(u,h)dx (3.4)

From (2.3) if V = h by virtue of (3.2) and (3.4) we obtain∫
D+

h(x)A (∂x)U(x)dx = −Π(u,h). (3.5)

Let us note that since in (3.3) ε is an arbitrary real scalar constant and the Π(u) functional
at U(x) attains minimum therefore we have

Π(u,h) = 0. (3.6)

By virtue of the fact h(x) ̸= 0 is an arbitrary regular vector-function in D+ therefore
owing to (3.6) from (3.5) it follows that U(x) is a solution of equation (1.1) in the domain
D+.

Finally, from the above arguments and owing to Theorem 3.1 we conclude that if (3.1)
condition is fulfilled then the minimization vector-function U(x) of the functional (2.6) is a
uniquely solution of the problem (I)+f .

Now let us show necessity of condition (3.1). Let f(y) be such that minimization vector-
function U(x) of the functional (2.6) is the solution of the problem (I)+f . We shall show that
condition (3.1) is fulfilled. Since the minimization vector-function U(x) of the functional
(2.6) is the solution of the problem (I)+f , owing to uniqueness Theorem 3.1 we can conclude
that (3.1) is fulfilled.

Finally, from Theorem 3.1 and Theorem 3.2 we conclude that minimization vector-
function U(x) of the functional (2.6) is the uniquely solution of the problem (I)+f .
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