
Seminar of I. Vekua Institute
of Applied Mathematics
REPORTS, Vol. 45, 2019

BOUNDARY VALUE PROBLEMS OF THE THEORY OF THERMOELASTICITY
FOR THE SPHERE WITH VOIDS

Bitsadze L.

Abstract. In the present paper the 3D equations of thermoelasticity for materials with voids
is considered. The representation of general solution of the system of equations is constructed
by means of elementary (harmonic, meta-harmonic and bi-harmonic) functions, which makes
it possible to solve the BVPs for a sphere. The Dirichlet type BVPs for the sphere with
voids and for the space with spherical cavity are solved explicitly. The obtained solutions are
represented in the form of absolutely and uniformly convergent series.

Keywords and phrases: Materials with voids, explicit solutions, sphere with voids, abso-
lutely and uniformly convergent series.

AMS subject classification (2010): 74F10, 74G05,74F05,74F99.

1. Introduction

The linear theory of thermoelasticity for materials with voids or empty pores is the
generalization of the classical theory of elasticity. This theory is used for investigated various
types of geological and biological materials for which the classical theory of elasticity is not
adequate. Porous materials with voids have applications in many fields of engineering, such
as the petroleum industry, material science and biology. This theory enable us to analyze the
behaviour of elastic porous materials which can be found in engineering, such as rock and
soil, bone, the manufactured porous materials. The voids are assumed to contain nothing of
mechanical or energetic significance.

The non-linear version of elastic materials with voids was proposed by Nunziato and
Cowin [1] and the linear version was developed by Cowin and Nunziato [2] to study math-
ematically the mechanical behavior of porous solids. Ieşan in [3] established a variational
theory for thermoelastic materials with voids. In [4,5] Ciarletta and Scalia studied a linear
thermoelastic theory of materials with voids, and established uniqueness and reciprocal the-
orems. In [6] Ieşan and Quintanilla have developed the theory of Nunziato and Cowin for
thermoelastic deformable materials with double porosity structure.

In the last years many authors have investigated the BVPs for elastic materials with
voids, using the theory developed by Cowin and his co-workers, also the BVPs for elastic
materials with double porosity structure. Below is mentioned a few works(see [7-22]), where
also the bibliographical information can be found.

Along with the development of the linear theory of elasticity for materials with voids, a
great deal of attention is attached to the construction of explicit solutions of boundary value
problems for concrete domains, useful for engineering practice.

In the present paper the 3D linear theory of thermoelasticity for materials with voids is
considered. The representation of general solution of the system of equations in the considered
theory is constructed by means of elementary (harmonic, meta-harmonic and bi-harmonic)
functions, which makes it possible to solve the BVPs for a sphere. The Dirichlet type BVPs
for the sphere with voids and for the space with spherical cavity are solved explicitly. The
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obtained solutions are represented in the form of absolutely and uniformly convergent series.

2. Basic equations. Boundary value problems

Let us assume that D is a ball of radius R centered at origin O(0, 0, 0) in the Euclidean
3D space E3 and S is a spherical surface of radius R. Let x = (x1, x2, x3) ∈ E3. Let D−

be the whole space with spherical cavity, with boundary S. Let us assume that the domain
D(D−) is filled with an isotropic material consisting of empty pores.

The basic system of equations in the linear theory of thermoelasticity for isotropic mate-
rials with voids, can be written as [3]:

µ∆u+ (λ+ µ)graddivu+ bgradφ− βgradθ = 0,

(α∆+ b0)φ− bdivu+mθ = 0,

(k∆+ b1)θ + b2divu+ b3φ = 0.

(1)

where u is the displacement vector in a solid, φ is the change of volume frac-
tion, θ is the temperature, b0 = −ξ, b1 = aT0iω, b2 = βT0iω, b3 = mT0iω,
λ, µ, β, α, ξ, m, a, k are constitutive coefficients, T0 = const > 0 is the
absolute temperature in the reference state, ∆ is the Laplacian.

Let us introduce the definition of a regular vector-function.
Definition. A vector-function U = (u, φ, θ)⊤ defined in the domain D is called regular

if
U ∈ C2(D) ∩ C1(D)

and for the infinite domain D− the vector U additionally should satisfy the following condi-
tions at the infinity:

U(x) = O(|x|−1),
∂U

∂xj
= O(|x|−2), |x|2 = x21 + x22 + x23 >> 1, j = 1, 2, 3.

Let us now formulate the Dirichlet type boundary value problems(BVPs):

Problem 1. Find a regular solution U of system (1) in the domain D, satisfying the

following boundary conditions on S :

u+(z) = F+(z), φ+(z) = f+
4 (z), θ+ = f+

5 (z), z ∈ S.

Problem 2. Find a regular solution U of system (1) in the domain D−, satisfying
the following boundary conditions on S :

u−(z) = F−(z), φ−(z) = f−
4 (z), θ− = f−

5 (z), z ∈ S,

where the vector-function F±(z) = (f1, f2, f3), and the functions f±
4 (z), f

±
5 (z, ) are

prescribed on S, at z. Under U±(z) we mean limits of U(x) at z ∈ S from D(D−)

[U(z)]+ = lim
D∋x→z∈S

U(x), [U(z)]− = lim
D−∋x→z∈S

U(x).

Throughout this paper we assume that

µ > 0, α > 0, ξ > 0, 3λ+ 2µ > 0, (3λ+ 2µ)ξ > 3β2, k > 0.
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Theorem 1. The Dirichlet type boundary value problem has at most one regular
solution in domain D(D−).

Theorem 1 can be proved similarly to the corresponding theorem in the classical
theory of thermoelasticity (for details see [23]).

3. Some auxiliary formulas

Let us introduce the spherical coordinates and the following notations:


x1 = ρ sin ξ cos η, x2 = ρ sin ξ sin η, x3 = ρ cos ξ,

y1 = R sin ξ0 cos η0, y2 = R sin ξ0 sin η0, y3 = R cos ξ0, y ∈ S,

|x| = ρ =
√

x2
1 + x2

2 + x2
3, 0 ≤ ξ ≤ π, 0 ≤ η ≤ 2π, 0 ≤ ρ ≤ R.

(2)

(x ·w) =
3∑

k=1

xkwk denotes the usual scalar product of two vectors x and w, [x ·w]-

denotes the vector product of the two vectors.

The operator
∂

∂Sk(x)
is defined as follows

[x · ∇]k =
∂

∂Sk(x)
, k = 1, 2, 3, ∇ =

(
∂

∂x1

,
∂

∂x2

,
∂

∂x3

)
.

Below we use the following identities [24]

(x · gradg) = ρ
∂g

∂ρ
,

∂

∂Sk(x)

∂

∂xk

=
∂

∂xk

∂

∂Sk(x)
,

3∑
k=1

∂2

∂S2
k(x)

=
∂2

∂ξ2
+ ctgξ

∂

∂ξ
+

1

sin2ξ

∂2

∂η2
,

3∑
k=1

∂

∂Sk(x)

∂

∂xk

= 0,
∂g(ρ)Y (ξ, η)

∂Sk(x)
= g(ρ)

∂Y (ξ, η)

∂Sk(x)
,

3∑
k=1

∂

∂Sk(x)
[x · g]k = ρ2divg(x)−

[
1 + ρ

∂

∂ρ

]
(x · g).

(3)

If gm is the spherical harmonic, then

3∑
k=0

∂2gm(x)

∂S2
k(x)

= −m(m+ 1)gm(x).

We introduce the following functions:
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(z · F)± =: h±

1 (z),

(
3∑

k=1

∂

∂Sk(z)
[z · f]k

)±

=: h±
2 (z),

3∑
k=1

(
∂fk

∂Sk(z)

)±

=: h±
3 (z), φ± = h±

4 (y), ϑ± =: h±
5 (y), y ∈ S.

(4)

In what follows we assume that the functions h±
k , k = 1, .., 5, can be expanded in

the form of the series

h±
k (y) =

∞∑
n=0

h±
kn(ξ0, η0),

where h±
kn k = 1, .., 5 are the spherical harmonics of order n

h±
kn =

2n+ 1

4πR2

∫
S

Pn(cos γ)h
±
k (y)dSy,

Pn Legandre polynomial of the n th order,γ is an angle formed by the radius-vectors
Ox and Oy,

cos γ =
1

|x||y|

3∑
k=1

xkyk.

4. A representation of regular solutions

In this section we present the general solution of system (1) by means of elementary
(harmonic, meta-harmonic and bi-harmonic) functions.

Theorem 2. If U := (u, φ, ϑ) is a regular solution of the homogeneous system (1)
then u, divu, φ and θ satisfy the following equations

∆∆(∆ + λ2
1)(∆ + λ2

2)u = 0,

∆(∆ + λ2
1)(∆ + λ2

2)Ψ = 0,
(5)

where Ψ = (divu, φ, θ).
Proof. Let U = (u, φ, θ) be a regular solution of equation (1). Upon taking the

divergence operation to equation (1)1, from (1) we obtain
µ0∆divu+ b∆φ− β∆θ = 0,

(α∆+ b0)φ− bdivu+mθ = 0,

(k∆+ b1)θ + b2divu+ b3φ = 0.

(6)

Rewrite the latter system as follows

D(∆)Ψ :=

 µ0∆ b∆ − β∆
−b α∆+ b0 m
b2 b3 k∆+ b1

Ψ = 0,
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the determinant of this system is equal to

detD = kµ0α∆(∆ + λ2
1)(∆ + λ2

2),

where λ2
j , j = 1, 2, are roots of the equation

αkµ0ξ
2 − a1ξ + a2 = 0,

a1 = µ0(αb1 + kb0) + αβb2 + kb2, µ0 = λ+ 2µ,

a2 = µ0(b0b1 −mb3) + b1b
2 +mbb2 + β(bb3 + b0b2).

We assume that the values λ2
j are distinct and different from zero.

Clearly, from the system (6) it follows that
∆(∆ + λ2

1)(∆ + λ2
2)divu = 0,

∆(∆ + λ2
1)(∆ + λ2

2)φ = 0,

∆(∆ + λ2
1)(∆ + λ2

2)θ = 0.

(7)

Further, applying the operator ∆(∆+λ2
1)(∆+λ2

2)) to equation (1)1, and using the last
relations we obtain

∆∆(∆ + λ2
1)(∆ + λ2

2)u = 0. (8)

The last formulas prove the theorem.
Theorem 3. The regular solution U of system (1) admits in the domain of regu-

larity a representation
u = Φ− grad

[
A0ϑ0 +

2∑
j=1

Ajϑj

λ2
j

]
, φ = Bϑ+

2∑
k=1

Bkϑk,

θ = ϑ+
2∑

k=1

ϑk, divu = Aϑ+
2∑

k=1

Akϑk,

(9)

where 

A =
mb3 − b0b1
b0b2 + bb3

, B = −mb2 + bb1
b0b2 + bb3

,

Aj =
mb3 − (b0 − αλ2

j)(b1 − kλ2
j)

b2(b0 − αλ2
j) + bb3

,

Bj = −
mb2 + b(b1 − kλ2

j)

b2(b0 − αλ2
j) + bb3

, µ0Aj + bBj − β = 0,

A0 =
(λ+ µ)A+ bB − β

µ
= −µ(mb3 − b0b1) + a2

µ(b0b2 + bb3)
,

(10)
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the functions ϑ0 and Φ are chosen such that

∆ϑ0 = ϑ, ∆Φ = 0, divΦ =
−a2

µ(b0b2 + bb3)
ϑ,

ϑ and ϑj, j = 1, 2, are solutions of the following equations

∆ϑ = 0, (∆ + λ2
j)ϑj = 0, j = 1, 2.

Proof. By an immediate verification we make sure that the functions φ, ϑ and
divu satisfy equations (1)2, and (1)3.

If supposing that φ, ϑ and divu, are known values, we can rewrite Eq. (1)1 in the
following form

∆u = −grad

[
A0ϑ−

2∑
j=1

Ajϑj

]
. (11)

The general solution of equation (11) has the following form

u = Φ+ u0, (12)

where the vector-function Φ is a harmonic function, satisfying the conditions

∆Φ = 0, divΦ =
−a2

µ(b0b2 + bb3)
ϑ, ∆divΦ = 0

and u0 is one of the particular solutions of the nonhomogeneous equation (11)

u0 = −grad

[
A0ϑ0 +

2∑
j=1

Ajϑj

λ2
j

]
, (13)

the function ϑ0 is chosen such that ∆ϑ0 = ϑ. It is obvious that ϑ0 is a bi-harmonic
function ∆∆ϑ0 = 0.

Thus the solution of system (1), is represented by formulas (9).

From (9) we conclude that the representation of a solution of equation (1)1 contains
a harmonic, bi-harmonic and a metaharmonic functions, while the representation of φ
and θ contains a harmonic and a metaharmonic functions.

5. The solution of problem 1

From the point of view of applications, it is interesting to investigate and construct
explicit solutions of boundary-value problems of thermoelasticity theory for concrete
domains (circle, plane with circular hole, sphere, the space with spherical cavity, ellipse
and ect.).

In this section, we will construct, an explicit solution of Problem 1 in details. Quite
similarly, we can construct the solution of problem 2.
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We look for the solution to system (1) in the form (9) and taking into account the
identities (2) and (3), from (9) we arrive at the following relations



(x · u) = (x ·Φ)− ρ
∂

∂ρ

[
A0ϑ0 +

2∑
j=1

Ajϑj

λ2
j

]
,

3∑
k=1

∂

∂Sk(x)
[x · u]k =

3∑
k=1

∂

∂Sk(x)
[x ·Φ]k

−
3∑

k=1

∂2

∂S2
k(x)

[
A0ϑ0 +

2∑
j=1

Ajϑj

λ2
j

]
,

3∑
k=1

∂uk

∂Sk(x)
=

3∑
k=1

∂Φk

∂Sk(x)
,

φ = Bϑ+
2∑

k=1

Bkϑk, θ = ϑ+
2∑

k=1

ϑk.

(14)

Let us replace functions (x · Φ) and
3∑

k=1

∂

∂Sk(x)
[x · Φ]k with function ϑ. To this end,

using the following identities

∆(x ·Φ) = 2div Φ = −2
a2

µ(b0b2 + bb3)
ϑ,

3∑
j=1

∂

∂Sk

[x · g]j = ρ2div g−
(
ρ
∂

∂ρ
+ 1

)
(x · g),

we obtain


(x ·Φ) = Ω− 2

a2
µ(b0b2 + bb3)

ϑ0,

3∑
k=1

∂

∂Sk(x)
[x ·Φ]k = − a2

µ(b0b2 + bb3)
ρ2ϑ−

(
ρ
∂

∂ρ
+ 1

)
(x ·Φ),

(15)

where Ω is an arbitrary harmonic function ∆Ω = 0.

Let us assume that the functions ϑ, ϑj, j = 1, 2, Ω and
3∑

k=1

∂Φk

∂Sk(x)
in (14) are



Boundary Value Problems of the Theory of Thermoelasticity for the ... 23

sought in the form [25]

ϑ(x) =
∞∑
n=0

ρn

Rn
Yn(ξ, η),

ϑj(x) =
∞∑
n=0

ϕn(λjρ)Yjn(ξ, η),

Ω(x) =
∞∑
n=0

ρn

Rn
Zn(ξ, η),

3∑
k=1

∂Φk

∂Sk(x)
=

∞∑
n=0

( ρ

R

)n

Z4n(ξ, η), ρ < R,

(16)

where Yn, Ykn, Zn and Z4n, k = 1, 2 are the unknown spherical harmonics of
order n,

ϕn(λkρ) =

√
RJn+ 1

2
(λkρ)

√
ρJn+ 1

2
(λkR)

k = 1, 2,

Jn+ 1
2
(λkρ) is the Bessel function. Taking into account (16), we can write the particular

solutions of equation ∆ϑ0 = ϑ in the following form

ϑ0(x) =
1

2

∞∑
n=0

ρ2

3 + 2n

( ρ

R

)n

Yn(ϑ, η). (17)

Substituting (16) and (17) into (14), passing to the limit as ρ → R, and bearing in
mind (4), for the determination of Yn, Ykn, Zn and Z4n, k = 1, 2 we arrive at the
following system of algebraic equations

Zn −
[
A0(n+ 2)

2
+

a2
µ(b0b2 + bb3)

]
R2

3 + 2n
Yn−

R
2∑

j=1

Aj

λ2
j

[
∂ϕn(λjρ)

∂ρ

]
ρ=R

Yjn = h+
1n,

−(n+ 1)Zn +

[
(n+ 1)A0

2
− a2

µ(b0b2 + bb3)

]
nR2Yn

(3 + 2n)

+
2∑

j=1

AjYjn

λ2
j

= h+
2n, Z4n = h+

3n,

BYn +
2∑

j=1

BjYjn = h+
4n, Yn +

2∑
j=1

Yjn = h+
5n.

(18)

By applying Theorem 1 we conclude that the determinant of system (18) for n ≥ 0 is
different from zero. Therefore, system (18) is uniquely solvable.
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This finally leads to the conclusion suggesting that the solution of Problem 1 is
given by formula (9), where functions ϑ, ϑj, Ω, ϑ0 are defined from (16),(17) and (18).

6. The solution of problem 2

In quite the same way, as above, we can construct the solution to the BVP for the
space with spherical cavity.

Let us assume that functions ϑ, ϑj, j = 1, 2, Ω and
3∑

k=1

∂Φk

∂Sk(x)
in (14) are

sought in the form [25]



ϑ(x) =
∞∑
n=0

(
R

ρ

)n+1

Yn,

ϑj(x) =
∞∑
n=0

Ψn(λjρ)Yjn(ξ, η).

Ω(x) =
∞∑

m=0

(
R

ρ

)n+1

Zn(ξ, η),

3∑
k=1

∂Φk

∂Sk(x)
=

∞∑
n=0

(
R

ρ

)n+1

Z4n(ξ, η), ρ > R

(19)

respectively, where Yn, Ykn, Zn and Z4n, k = 1, 2 are the sought functions,

Ψn(λkρ) =

√
RH

(1)

n+ 1
2

(λkρ)

√
ρH

(1)

n+ 1
2

(λkR)
k = 1, 2,

H
(1)

n+ 1
2

(λρ) is Hankel’s function. The solution ϑ0 of equation ∆θ0 = ϑ is defined as

ϑ0(x) =
ρ2

2

∞∑
n=0

Yn(ϑ, η)

(1− 2n)

(
R

ρ

)n+1

, ρ > R. (20)

Substituting (19) into (14), passing to the limit as ρ → R, and bearing in mind (4), for
the determination of Yj, Yjn, Z3n Z4n, we arrive at the following system of algebraic
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equations 

Zn −
[

a2
µ(b0b2 + bb3)

+
A0(1− n)

2

]
R2Yn

1− 2n

−

[
ρ
∂

∂ρ

2∑
j=1

Aj

λ2
j

Ψn(λjρ)

]
ρ=R

Yjn = h−
1n,

nZn +

[
nA0

2
+

a2
µ(b0b2 + bb3)

]
(n+ 1)R2Yn

1− 2n

+n(n+ 1)
2∑

j=1

Aj

λ2
j

Yjn = h−
2n, Z4n = h−

3n,

BYn +
2∑

j=1

BjYjn = h−
4n, Yn +

2∑
j=1

Yjn = h−
5n.

(21)

By applying the uniqueness theorem we conclude that the determinant of system
(21) for n ≥ 0 is different from zero. Therefore, system (21) is uniquely solvable.

For the absolute and uniform convergence of series in (16),(17),(19) and (20), to-
gether with their first derivatives, it is sufficient to assume that

hj ∈ C5(S), j = 1, 2, .., 5.

Under these conditions the resulting series are absolutely and uniformly convergent.
We note that in the elasticity theory of isotropic bodies, the basic BVPs for the

sphere in the classical setting for potential methods are thoroughly investigated in [23]
(see also references therein).

7. Conclusions

In this paper, system of equations of the thermoelasticity for isotropic materials
with voids is considered and the following results are obtained:

1. The regular solution system of equations is constructed explicitly by means of
elementary functions.

2. Solutions of the Problems 1 and 2 are obtained in the form of the absolutely and
uniformly convergent series.

3. On the basis of the method offered in this paper, it is possible to construct the
solutions of BVPs for the sphere and for the space with spherical cavity.
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