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Abstract. In the present paper the 2D equations of thermoelasticity with diffusion, micro-
temperatures and micro-concentrations are considered. The fundamental and singular ma-
trices of solutions are constructed by means of the elementary (harmonic, bi-harmonic and
meta-harmonic) functions.
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1. Introduction

To study basic thermoelastic problems involving diffusion, microtemperatures, and mi-
croconcentrations is of interest in many engineering applications such as satellite problems,
aircraft landing on water, the oil extraction.

The basic problems have been considered by several authors, by Bazarra et al. in [1] the
proposed dynamical problem for the thermoelastic body with diffusion whose microelements
are assumed to possess microtemperatures and microconcentrations. In [2] a nonlinear theory
of thermodinamics is considered for elastic materials whose particles are subjected to the
classical displacement, temperature and mass diffusion fields and whose microelements possess
microtemperatures and microconcentrations. It is shown that there exists coupling between
temperature, chemical potential, microtemperatures and microconcentrations for isotropic
bodies.

The diffusion theory was established by Nowacki [3] and developed later by Sherief et.al
[4]. The linear theory of thermoelasticity for materials with the classical displacement and
temperature fields, possess microtemperatures, was established by Grot [5]. Iesan and Quin-
tanilla in [6] have developed the linear theory of thermoelastic materials with microtempera-
tures, have formulated the boundary value problems and presented an uniqueness result and
a solution of the Boussinesq-Somigliana-Galerkin type.

A thermoelastic problems involving diffusion effect(i.e.the coupling among the fields of
strain, temperature, and mass diffusion which leads to a random walk of an ensemble of
particles, from regions of high concentrations to regions of lower concentrations )has been
considered by other authors. In [7-9] the thermoelastic diffusion theory with voids is consid-
ered.

Many problems are investigated for elastic materials with microtemperatures by several
researchers (some of those articles can be seen in [10-21] and references therein).

In the present paper the 2D linear equilibrium theory equations of thermoelasticity with
diffusion, microtemperatures and microconcentrations are considered and the fundamental
and singular matrices of solutions are constructed by means of the elementary (harmonic,
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bi-harmonic and meta-harmonic) functions.

2. Basic equations

Let x = (x1,22) be a point of the Euclidean two-dimensional space E2. The system of
equations of isotropic and homogeneous thermoelastic bodies with diffusion, microtempera-
tures and microconcentrations can be written as follows [1,2]

pAu+ (A + p)graddiva — y1gradd — yegrad P = 0, (1)
KAf + kK divT = 0, 2)
W*AP + hydivC = 0, (3)
ke AT + (k4 + ks)graddivT — ksgradf — k2T = 0, (4)
heAC + (hy + hs)graddivC — hagradP — heC = 0, (5)

where u := (uy,us) ' is the displacement vector, \, 1, kj;, hj, k*, k7, are the material constants,
0 is the difference of the temperature between the current state and a reference temperature,
T := (T1,T5)", C = (C1,Co)". T; and C; are called microtemperatures and microconcentra-
tions, respectively, P is the particle chemical potential. A is the 2D Laplace operator.

We assume that the constitutive coeflicients satisfy the following conditions

Akk k 2
0>0, k*>0, ki+ks>0, ke—ks>0, —2_ (Lyg) >o0,
To Ty

h* >0, ke>0, hg>0, ky>0, hy>0, 4hhy— (hy+h3)*>0,

A+pu>0, 2ks+ks+ke >0, keg+ ks >0.

3. The basic fundamental matrix

In this section we will construct the fundamental solution of equations (1-5) explicitly,
which consists of harmonic, bi-harmonic and meta-harmonic functions. For this we introduce
the following matrix differential operator

A(ax) :H Al](ax) H8><87 lv] = 1727 787 (6)

where
2

Ox0x;’

Alj :5lj:uA+()‘+:“) l,j=12, Ai;m=0, m=5,..,8,

0 0
Aig=—y1—, Aig=—y— j=1,2, A9, =0 =5,...,8
73 §a! 830]’ 74 V2 6[13], J y <y 2m L 5000y Oy

Agj:(), j:1,2, A4j:07 j:17273 A5j:07 j:1727

A6j:07 j:1727 A7j:07 j:172737 A8j207 j:172737
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0 0
Az =kx*A, A3 =0, AssZkTaTgl, Asg =h"—, A3; =0, Azz=0,

6902’
0 0
Ap=kxA, Az =0, Ap=0, Ayr=h1—, Aw=h-—,
8%1 8$2
Ass = ks 0 Asi =0, Ass = | koA — o+ (ks + ko) L
5= —hag o As =0, Ass = ke 2 4 58%27
Asg = (ks b =0 Ay =0, Ass=0, Ags— ksl Ags—0
w6 = (ks k) oy Asr =0, Ass =0, Aes=—ks ~, Aes =0,
0?2 2
Ags = (k ks)——.,  Ags = |keA — k k ks)—=
65 = (ka + 5)6:1,‘181172, 66 [6 2+ (kg + 5)8933]’
0
Agr =0, Agz =0, A74:—h378 , A7 =0, A7 =0,
T
0?2 2
A= |heA — h h hs)—= A7s = (h hs) ——
77 [6 2+ (ha + 5)(%%], 78 = (ha + 5>8x18x2’
8 2
84 390, =0 Ass=0, Asr (ha + 5)(%18962

82
A88 = |:h6A - h2 + (h4 + h5)8x2:| 5
2

da~ is the Kronecker delta. Then system (1-5) can be rewritten as

where
U= (ub PT,C).

We also consider the system of the equation
AT(9,)U =0.

where AT (9,) is the transpose of matrix A (9,).
The determinant of equation (7) is

AAAA(A — s2)(A — 52)(A — s3)(A — s2)® = 0.

where
2o Fke—kiks o a_ ke a Mha—lhs
! k*kq T ke T h*hq ,
h
sizh—g>0, k7 =ka+ ks + ke, h7=ha+ hs+ he.
6

2

¥ is an eight-component vector function. We assume that the values sj are distinct and

different from zero.
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From (9), after some calculations, we obtain

4 4 d 2 d
AT = S o, A= P SR g w0 o

where

dit = (s7 = s3)(s1 — s3)(s1 — s7),  dy' = (53— s7)(s3 — s3)(s3 — s}),

dy' = (53— s7)(s3 — s3)(s3 — s1),  di' = (s§ — s7)(s] — s3) (s — s3),

r?(lnr — 1)

:1 =
p=1mnr, o 1

™ .
o= D)

Hél)(ismr) is Hankel’s function of the first kind with the index 0,

21 21 18 i
(1) /. _ . 1 1 m - .
Hy " (ismr) - Jo(iSmr) Inr + - ( n—= +C 5 ) Jo(ismT)

%o (—1)F [ismr\ 2 (1 1
o (k)2 (2) pteoa el m=Eled

< (=1)* [is,r 2k
Jo(ismr) = kZ::O ((k!l))z < ;n > ;P =(z1— ) (22— ),

4
dj =0,
=1

J

J

S 2 S 4 S 6

=1 j=1 j=1

We introduce the matrix differential operator B(0x) consisting of cofactors of elements of
the matrix AT divided on hghrkgkrppok™h*:

%A_A—I—,u 9? 9

B¥ = A2(A — A — 2} (A — s2)(A — §2 1.9
Vo [0 0x:01; (A= s)(A = 53)(A = s3)(A—s3), ,) =12,

B;l . 07 B§2 — 0, BZl — 0, BZQ — 0, BZ3 — 0, B§4 . O,

LI 2 2 2y O
= — A“(A — A — A —55)—=
15 Lok ky ( 53)( 53)( 34)(%%7
1kT 2 2 2 2 0? *
Bf. = — A“(A — A — A—3s))—— =B
16 Nok*k7 ( 82)( 83)( 84) 8%161;2 25
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Y2h1 o 9 ) 5. 02
I7=— AZ(A — s2)(A — $2)(A — s2) =
17 ol ha (A —53)(A = s7)( 54)83}%’
Y2ht o 9 ) 5 02 .
s =— A2(A — $2)(A — s2)(A — _
'8 poh*hz ( el s S4)8x18x2 20
,YIkT 2 2 9 9 82
te = — AZ(A — $2)(A — $2)(A — s2) -2
% wok*ky ( 52)( 53)( s1) 822’
y2h1 o 9 ) o 02
5y = — A%(A — ) (A = s7) (A —
= = o AHA = (A - DA~ g
Y2h1 Lo 9 , 5. 02
2 = — AZ(A = 82)(A — $H)(A — §2)—;
® " poh*hy (A = 55)(A = s1)( 84)83:5’
Br = — ML AB(A — 2)(A— s2)(A — 522
35 k*k7 2 3 4 81'17
Bjy = - AY(A = s3)(A — s3)(A — )
36 k*ky 3 a$2,
B§7 = 0, B;S = 07 BZ5 = O’ BZﬁ — 0’
* hl o
Bir = = A = sD)(A = sH(A = sh) 5 -
x hy P
Bis = _WWAS(A — 53)(A — s9)(A — 3421)872’
Bj) = Bsy = Bg = Bs, = By = Bgy = 0,
L 1 2 Kiks] 027 15 , ,
Bss = v [M(A —s1)A - [(k:4 +ks)A+ 2 ] o A3(A = $2)(A = s3),
kiks 0?2
B* [ 1 3 _ 2 _ 2 —_ *
56 kﬁk’? |:(k4 + k5)A + k;* :| axlasz (A 83)(A 84) B657
1 2 hihs] 02
B = iy s = sha = [ ka5 S ava e -
1 hihg] 02
B = —— A — A — M YT ABA Q2 2
= Lol [iw( 53) [(hz; +hs)A + e ] 927 A% (A — s7)(A — 55
1 hihs] 0% 4 , ,
Bf.—_ A AS(A — VA _ 2)— B
" hehz [(h4+h5) M ] Ox10w2 (A= s1)(A —5) = Bar,

);

),
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1
Big = —— [h7(A —52)A — [(m + hs)A +

uh] 0
hehr

2] S| A - stia -

B;l = B;Q = B;:s = Békl = B§2 = B§3 =0,

By = o A%A - (B = (A - )

By = g A8 = (A - (A - )

Biy= e %A= A)(A - A - )

Biy= e %A= H)(A - DA - )

Bgr = Bgg = Brs = Brg = Bgs = Bgg = 0,

By = [a-B] T -da-He-

By = [a- B @ -ha-pa- .

By = A= 2| L na-a-a- s,
A N P N T I
By = A= 2| Iona-a-a- s,
B = A - 12| A - A - - D

Substituting ¥ into U = BW¥, we obtain the matrix of fundamental solutions for the equation
(7), that we denote by I'(x-y)

I'(x-y) =| T'yj(x-y)(02) |lsxs, 1,7 =1,2,...,8, (10)

where

F,,:f_)\Jrﬂ %o
Yoop ppo Oxidxy’

ivj = ]-2a ASOO =¥, ASO = Oa



About Some Solutions of the System of Equations of the Thermoelastic ...

g = N dan 2 Doy i—=1.9
i3 k*,Uz(] a.’Ez ) 14 h*,uo 81‘1 2]
_ =9k [p1—stpo  (s3s5+ sist + sis})
11 = &2 - kT 2.2.2.2 ?
1 7 8] §1825354

14 =
Sg h7

2

3 — o he [903 — 53%0
7

53 81528354

2.2 | 2.2 2.2
(5381 + s18% + 5153)
2222 )

D37 =T38 =145 =T46 =51 =50 = I'sy =57 = I'58 = 0,

Ie1 =Tea=Ts =T =I5 =171 =I'79 =173 =I'75 =0,

I'7¢ =I'g1 =T'gg = I's3 = I's5 = I'gg = 0,

1 ke (o1 —
I'33 = — - —= I'31=T30=T34=0
37 1 [501 r < 8% )] ) 31 32 34 )
1 h —
F44=h*[<,03—h2<—<'03 ¢>]7 Iy =Ty =Ty3=0,
7 S3
Ts — — ki 820415 _ _ ki 620415 7
15 pok*ky 9%2x2 16 pok*ky Ox1024 25
Lo — _ R &5 _ el Q%o
07 okthy 022 T okt 022
Fom— — Yoh1  0*air _ Fow — Yoh1 O%on7
27 ,uoh*h7 8.%'181‘2 18 28 ,u()h*h7 8.7}% ’
[ KL 0 p1—0 [ kL 0 p1—0
35 k*k7 8.%'1 8% ’ 3 k*k7 8.%'2 S% ’
F47:_h1 03— [oe 1 0 w3—¢
h*h7 (3331 S% ’ 18 h*h7 8$2 Sg ’
2 Oass *ass
| Tes = T'sg = —
55 = b 922 65 56 D101
r.. % & s _ s O%arr
7 ks 022 T he 022
| 620477 . ﬂ _ 820477
78 87 021025 88 = o 922
ks O — ks O —
ry— ks 0o ks 0y

:kz*k78x1 s3

:k*k78x2 s3
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r hs 9 p3—¢ r hs 0 p3—¢
T Wy 0w s2 7 Wby Oz 2
kiks (o1 @2 kiks o
sy = ——————+ | (ks + k + 4 - — + -,
= k6k7( — 82) |:( 4 5)( 802) k* (8% 8% k6]€7k‘* S%S%
1 hihs (o5 ¥4 hihs ¢
ary = o | (ha + h5)(p3 — pa) + LA .
77 h677( — 84) [( 4 5)(903 4,04) h* <S§ 3421 h6h7h* 8%8421
T O LR LR
' 51 s753535% ’
qyp = P37 5800 | shSt sisi+ sis)
' 53 s153535% ’
Clearly

2
%Hél)()\r) =njx—-y|— )\Z|X —y[?In|x — y| + const + O(]x — y|?).
It is evident that all elements of I'(x-y) are single-valued functions on the whole plane and
they have a logarithmic singularity at most. It can be shown that columns of the matrix
I'(x-y) are solutions to the system (7) with respect to x for any x # y. By applying the
methods, as in the classical theory of elasticity, we can directly prove the following;(for
details see in [22])

Theorem 1. The elements of the matriz T'(x-y) have a logarithmic singularity as x —'y
and each column of the matriz T'(x-y), considered as a vector, is a solution of system (7) at
every point X if x £y.

We consider the system of the equation A(a YU = AT(—04)U. The fundamental matrix
of solutions of system A )U =0 is I'(x) =TI"(—x). The following basic properties
of I'(x) may be easily verified: N

Theorem 2. FEach column of the matriz T'(x-y), considered as a vector, satisfies the
associated system A(9x)T'(x-y) = 0, at every point x if x # y and the elements of the matriz
I'(x-y) have a logarithmic singularity as x —'y.

4. Singular matrix of solutions

Let P(l)(ax, n) be the stress operator in the linear theory of thermoelasticity and
P(l)(ax, n)U is the stress vector which acts on an element of the arc with the normal
n = (nl, TLQ)

PW(9x,n)U = T(0x,n)u — n(110 + 12 P), (11)

where T'(0x,n) is the stress operator of the classical theory of elasticity

) )
0o _ "o (A+u)n1a o ()\+,u)n16$2 +,u%

(O, m) ) o0 0 :
A+ pnag = —nge gy T ANy
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We introduce the following matrices of differential operators

0 0 0
ke— + (k4 + ks)n1 (ka+ ks)ni— + ks
(1) _ on ox1 0x9 0s
0w = I T AN WL S AT TN MRS I
(ks + 5)7128761— 595 6871-1-( 4+ 5)71285[72
0 0 0 0
he— + (h4 + h5)n1— (h4 + h5)n1— + hs—
(2) _ on ox1 0xo Js
T 00w = PRI N VLA WU AT S SRR I
(hg + 5)n287x1_ 5% 6%4—( 4+ 5)71267x2
0,90 0 _ 0 0
on  1ox 28302’ ds 23m1 nl 0xy’
Tn(ax, Il) T12(8x7 n) — 711 — 2
T51(0x,m)  To2(0x, ) —yng  —y2ng
R(ax7 n) = )
0 0 k‘*i 0
on
, 0
0 0 0 h %
T (0x,n) T (0, n) 0 0
T3 (0x,m) T3y (9x.m) 0 0
R(l) (8}(’ n) — ,
0 0 T® (9x,n) T2 (0x,n)
0 0 73 (9x,n) T (0, n)

In the following we assume that

R O .
L(0x,n)I'(x-y) = 1 | Tx-y) =l Li;(02) [lsxs, 1,7 =1,2,...,8,
0 R

where

T (x-y) I'®(x-
P(xy) = < r<3>§x-§; F(‘”((X-yy)) >

Iy T Ty Ty
r — | T2r a2 Tag Doy

0 0 I's3 0

0 0 0 Ty
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I''s Thwe T'iz T'is
r@ _ | T2s Tae T2z Dag
I'ss I'sg 00
0 Tyr Tag
0 0 I'ss O
r@_ | 00 Te 0
00 0 Iy
0 0 0 Tgy
I'ss I'ss 0 O
r@ _ | Tes Tes 0 0
0 Tz I'zg
0 Tgr Tss
The elements L;; are
_ Oy 2>\+M£<92900 _ O 2)\+MQ<92<P0
1 on o 0sOxizs’ 2 Os po Os Ox2’
B A p 0 92 o) Apd o2
Lo =22 rZ 9020, Log= 22 422 THZ 2 V0
Js po Os Oxy on o 0s 0xiTo
_ 2#’71250611 _ 2#’72£80414
1 k‘*,u() Os 61‘2 ’ 1 k‘*,u() Os 6:@ ’
2py1 0 dany 2py2 0 day
Loy = — M 9 = 29 Ly = L3p =0
23 k*MO Os 8x1 ) 24 k*/.to ds 81‘1 ’ 31 32 )
or or
L33 =k* =22 Lag=Ly=1Lyp=Li=0 Ly=h"—2
on on
Loe — 2u’ylkfg(92a15 . 2ufylkfg62a15
1= Mok*k7 0s 8$1$2’ N Mok*k7 Js 8%’% ’
[ _2M72h1ﬁ320417 B _2M72h1Q320¢17
= poh*h7 s Ox1xo’ 18~ poh*hy 8s 0z3
2#71]€T 0 82a15 2;1"}/1/6? 0 82a15
Los = a0 26 =

- ,u,ok*k7 s 83:% ’

N uok*lﬁ % 8:61.732 ’
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_ 2uyohy 9 D*ouy

22 O D*arr

28 =

N ,u(]h*h7 % 89@% Moh*h7 Js 6951332 ’
or or
L35 = k* 35, Lag = k* =20 Lg; = Lsg =0
on on
or or
Las = Lig =0, Layp=h*=o8 Lyg = h*—=2
on on
L5y = L5y = L5y = Le1 = Leo = L3 = Les = L71 = Lo = 0,
L73 = Lg1 = Lgo = Lg3 = 0,
ks 0 0 w2 —¢
L k k kg) — —
53 = k:k*[ nip2 + (ks + 6)3 ors 2
ks 0 0 p2—¢
L k — (k kg) — —
63 = 1. k*[ a2 — (ks + 6)8s8:c1 2
hs 0 0 p3—
Loy= "2 [n 27
4= h-h* [ 7n1p3 + (h5 + hﬁ) ds Oz 3%
hs 0 0 p3—
Ly = h —(h 9 9
8= g [h7naps — ( 5+h6)8 FET
) 0 0?as; O(p1 — ¥2)
Lan — 212 v
5 = on (ks + F )85 02172 o0x1
k5 O 0 P« (1 — ¢2)
Leg = 2992 (1},
7 ke Os (ks +k6) 55 90 2 Oxy
ks 0o 0 9%ass O(p1 — p2)
Les = — 2922 4 (g 4 k
0= e as T TR 5T T
0o 0 Pass I(p1 — ¢2)
L k k
66 = an ( 5+ 6) Os 8331.%2 2 6952 ’
0 9 arr (w3 — ¢4)
Lor = 224 (s + he)—
"= on ( 5+ 6) Os 61'11’2 " (91‘1 ’
[ 9 *arr (w3 — ¢4)
Lgg = h h
88 311 ( 5+ 6)8 61’11‘2 3:132 ’
hs 0oy 0 Parr O(p3 — ¢a)
Log = %90 (o ip APz — p4)
= e Os (hs+1s) 5 o 2 Oz
hs Oy 9 O%arr I(p3 — 904)
Lgr = — 3924 | (s yo NP — pa)
1= e s T U T e gt

Let [L(0y,n)T(y-x)]

, be the matrix which we get from [L(0x, n)T'(x-

y)] by transposition
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- - T
of the columns and rows and the variables x and y (analogously [L(@y,n)I‘(y-x) )

Let us introduce the following single-layer and double-layer potentials :

The vector-functions defined by the equalities

V(x;g) = 717/F(X —y)g(y)dyS,
S

Vice) = [T~ x)g()dS

S

will be called single- layer potentials, while the vector-functions defined by the equalities

Wi(x:h) = % / [L(3y,0)T(y — x)] " h(y)dy S,
S
W (x: h) = % / L@y )T (y )| " h(y)dy s
S

will be called double layer potentials. Here g and h are the continuous (or Holder continuous)
vectors and S is a closed Lyapunov curve.

By applying the methods, as in the classical theory of elasticity, we can state the follow-
ing:(for details see in [22])

Theorem 3. The vectors V(z;g) and Wi(zh) are the solutions of the system
A(0,)U = 0 at any point © and = # y.The vectors V(z;g) and W(m, h) are the solu-
tions of the system A(0z)U = 0 at any point © and x # y. The elements of the matrices

~ T
[L(0y, )T (y — x)]" and [L(ay, ) (x—y)| contain a singular part, which is integrable
in the sense of the Cauchy principal value.
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